首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The focus of this study was to clarify the relation between the nitric oxide (NO) production and cytokine expression including tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6), and also investigated the effect of COS on LPS stimuli from RAW 264.7 cell. The lipopolysaccharide (LPS) of Gram-negative bacteria induces the expression of cytokines and potent inducers of inflammatory cytokines such as TNF-alpha and IL-6. In this experiment, upon stimulation with increasing concentrations of chitosan, the LPS-stimulated TNF-alpha and IL-6 secretion was significantly recovered within the incubation media of RAW 264.7 cells. Consistently, RT-PCR with mRNA and Western blot with anti-cytokine antiserum including TNF-alpha and IL-6 showed that the amount of TNF-alpha and IL-6 secretion in the incubation media recovered with the concentration of chitosan. The LPS-stimulated NO secretion was significantly recovered within the 6h and 12h incubation media of RAW 264.7 cells, too. The recovery effect of chitosan on IL-6 and NO secretion may be induced via the stimulus of TNF-alpha in RAW 264.7 cell. These results once again suggest that chitosan oligosaccharide may have the anti-inflammatory effect via the stimulus of TNF-alpha in the LPS-stimulated inflammation in RAW 264.7 cells.  相似文献   

2.
3.
4.
Porphyran, extracted from an edible red alga (Porphyra yezoensis), is a sulphated polysaccharide with a wide variety of biological activities including anti-tumour, antioxidant and immuno-modulating activities. In this study, we examined the effect of porphyran on nitric oxide (NO) production in mouse macrophage cell line RAW264.7 cells. Although no significant activity of porphyran to induce NO or tumour necrosis factor-α (TNF-α) production in RAW264.7 cells was observed at the concentration range tested (10-500 μg/ml), it was found for the first time that porphyran inhibited NO production and expression of inducible nitric oxide synthase (iNOS) in RAW264.7 cells stimulated with lipopolysaccharide (LPS). In the presence of 500 μg/ml porphyran, NO production and expression of iNOS in LPS-treated RAW264.7 cells were completely suppressed. On the other hand, porphyran showed only a marginal effect on the secretion of TNF-α from LPS-stimulated RAW264.7 cells. Electrophoretic mobility shift assay (EMSA) using infrared dye labelled oligonucleotide with nuclear factor-κB (NF-κB) consensus sequence suggested that porphyran inhibited the LPS-induced NF-κB activation. The LPS-inducible nuclear translocation of p65, and the phosphorylation and degradation of IκB-α were also inhibited by the pre-treatment with porphyran. Our results obtained in in vitro analysis suggest that porphyran suppresses NO production in LPS-stimulated macrophages by the blocking of NF-κB activation.  相似文献   

5.
Effects of four inhibitors of NF-κB, SAPK/JNK and TLR4 signaling, namely, inhibitor XII, SP600125, CLI-095 and OxPAPC on a macrophage response to low dose ammonium were studied in RAW 264.7 cells. Low dose ammonium induced proinflammatory response in cells as judged from enhanced production of TNF-α, IFN-Γ, and IL-6, and by activation of signal cascades. The increase in production of cytokines, namely TNF, IFN, and IL-6, demonstrated that low-dose ammonium induced à proinflammatory cellular response. In addition, an activation of NF-κB and SAPK/JNK cascades, as well as enhancement of TLR4 expression was shown. Each of used inhibitors reduced to a variable degree the proinflammatory response of RAW 264.7 cells to chemical toxin by decreasing cytokine production. The inhibitor of NF-κB cascade, IKK Inhibitor XII, was more effective, and not only prevented the development of proinflammatory response induced by ammonium, but also decreased cytokine production below control values. The inhibitor of extracellular domains of TLR2 and TLR4 (OxPAPC) had almost the same anti-inflammatory effect, and an addition of the inhibitor of JNK cascade (SP600125) to cell culture practically neutralized the effect of ammonium ions by decreasing cytokine production to control level. Inhibitor analysis showed that activation of RAW 264.7 cells induced by chemical toxin coincided incompletely with intracellular signaling pathways that were earlier determined regarding macrophage response to toxin from Gram-negative bacteria. Nevertheless, application of the inhibitors protected RAW 264.7 from the toxic effect of low dose ammonium.  相似文献   

6.
Magnesium Isoglycyrrhizinate (MgIG), a novel molecular compound extracted from licorice root, has exhibited greater anti-inflammatory activity and hepatic protection than glycyrrhizin and β-glycyrrhizic acid. In this study, we investigated the anti-inflammatory effect and the potential mechanism of MgIG on Lipopolysaccharide (LPS)-treated RAW264.7 cells. MgIG down-regulated LPS-induced pro-inflammatory mediators and enzymes in LPS-treated RAW264.7 cells, including TNF-α, IL-6, IL-1β, IL-8, NO and iNOS. The generation of reactive oxygen species (ROS) in LPS-treated RAW264.7 cells was also reduced. MgIG attenuated NF-κB translocation by inhibiting IKK phosphorylation and IκB-α degradation. Simultaneously, MgIG also inhibited LPS-induced activation of MAPKs, including p38, JNK and ERK1/2. Taken together, these results suggest that MgIG suppresses inflammation by blocking NF-κB and MAPK signaling pathways, and down-regulates ROS generation and inflammatory mediators.  相似文献   

7.
While a high-dose of ionizing radiation is generally harmful and causes damage to living organisms, a low-dose of radiation has been shown to be beneficial in a variety of animal models. To understand the basis for the effect of low-dose radiation in vivo, we examined the cellular and immunological changes evoked in mice exposed to low-dose radiation at very low (0.7 mGy/h) and low (3.95 mGy/h) dose rate for the total dose of 0.2 and 2 Gy, respectively. Mice exposed to low-dose radiation, either at very low- or low-dose rate, demonstrated normal range of body weight and complete blood counts. Likewise, the number and percentage of peripheral lymphocyte populations, CD4+ T, CD8+ T, B, or NK cells, stayed unchanged following irradiation. Nonetheless, the sera from these mice exhibited elevated levels of IL-3, IL-4, leptin, MCP-1, MCP-5, MIP-1α, thrombopoietin, and VEGF along with slight reduction of IL-12p70, IL-13, IL-17, and IFN-γ. This pattern of cytokine release suggests the stimulation of innate immunity facilitating myeloid differentiation and activation while suppressing pro-inflammatory responses and promoting differentiation of naïve T cells into T-helper 2, not T-helper 1, types. Collectively, our data highlight the subtle changes of cytokine milieu by chronic low-dose γ-radiation, which may be associated with the functional benefits observed in various experimental models.  相似文献   

8.
Mast cells play important roles in many biological responses, such as those during allergic diseases and inflammatory disorders. Although laser and UV irradiation have immunosuppressive effects on inflammatory diseases by suppressing mast cells, little is known about the effects of γ-ionizing radiation on mast cells. In this study, we investigated the effects of γ-ionizing radiation on RBL-2H3 cells, a convenient model system for studying regulated secretion by mast cells. Low-dose radiation (<0.1 gray (Gy)) did not induce cell death, but high-dose radiation (>0.5 Gy) induced apoptosis. Low-dose ionizing radiation significantly suppressed the release of mediators (histamine, β-hexosaminidase, IL-4, and tumor necrosis factor-α) from immunoglobulin E (IgE)-sensitized RBL-2H3 cells. To determine the mechanism of mediator release inhibition by ionizing radiation, we examined the activation of intracellular signaling molecules such as Lyn, Syk, phospholipase Cγ, PKCs, and MAPK, and intracellular free calcium concentrations ([Ca(2+)](i)). The phosphorylation of signaling molecules following stimulation of high-affinity IgE receptor I (FcεRI) was specifically inhibited by low-dose ionizing radiation (0.01 Gy). These results were due to the suppression of FcεRI expression by the low-dose ionizing radiation. Therefore, low-dose ionizing radiation (0.01 Gy) may function as a novel inhibitor of mast cell activation.  相似文献   

9.
Interleukin-4 (IL-4) and interleukin-10 (IL-10) were evaluated for their ability to inhibit the production of nitric oxide (NO) by interferon-gamma (IFN-gamma)- or lipopolysaccharide (LPS)-activated murine macrophages (RAW 264.7 and J774.2). Macrophages pre-treated with IL-4 and then stimulated with IFN-gamma or LPS showed significant inhibition in their ability to produce NO as measured by nitrite production. Simultaneous treatment of IL-4 pre-incubated cells with IFN-gamma and LPS together augmented nitrite accumulation. On the other hand, similar exposures of the macrophages to IL-10 followed by IFN-gamma or LPS treatments resulted in significantly increased NO production. Thus IL-10 failed to suppress IFN-gamma or LPS-induced NO production and showed opposite effects in these experiments to IL-4. We conclude that the two lymphokines have differing roles in the control of production of NO and might act to control the secretion of nitric oxide in vivo.  相似文献   

10.
A seco-triterpenoid, sentulic acid (SA) isolated from Sandoricum koetjape Merr attenuated nitric oxide (NO) production following co-stimulation with lipopolysaccharide (LPS) and interferon-gamma (IFNγ) in RAW264.7 macrophage cells. The mRNA expression levels of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), IFNγ, interleukin (IL)-6, and IL-12 in LPS/IFNγ co-stimulated RAW264.7 cells also decreased upon SA treatment. To determine the molecular mechanisms underlying the inhibitory effect of SA on LPS/IFNγ-induced NO production in RAW264.7 cells, we further analyzed Toll-like receptor (TLR) signaling by western blotting. The expression of TLR4 and IFN signaling molecules in cells treated with SA was significantly suppressed compared to that in cells not treated with SA. Additionally, SA inhibited the binding of LPS to the TLR4 receptor in RAW264.7 cells stimulated with Alexa Fluor 488-conjugated LPS. These results demonstrate that SA attenuates NO production after LPS/IFNγ co-stimulation in RAW264.7 cells by inhibiting the binding of LPS to TLR4. Our findings suggest that SA is beneficial for the treatment of inflammatory diseases.  相似文献   

11.
We have shown that metastasis is suppressed by low-dose total-body irradiation (TBI) in tumor-bearing rats. We have evaluated the immunological effects of low-dose TBI. Total-body irradiation with 0.2 Gy was given 14 days after the implantation of 5 x 10(5) allogenic hepatoma cells (KDH-8) which produce transforming growth factor beta (TGF-beta). On day 21, the splenocytes and tumor-tissue infiltrating lymphocytes were analyzed by FACScan and RT-PCR for the mRNA of the genes that encode tumor necrosis factor alpha (TNF-alpha), interferon gamma (IFN-gamma), TGF-beta, interleukin (IL)-4, IL-10 and IL-6. The same procedure was conducted with untreated rats and with rats that underwent local irradiation with 0.2 Gy. The low-dose TBI significantly decreased the incidence of lung and lymph node metastasis (P < 0.01), whereas the same dose of local irradiation had no effect on the incidence of metastasis. The proportion of CD8+ cells in splenocytes increased in the low-dose TBI group (P < 0.01) compared to the locally irradiated and the untreated groups. The tumor-tissue infiltrating lymphocytes were also significantly increased after low-dose TBI (P < 0.01). The FACScan analysis revealed that 72% of the tumor-tissue infiltrating lymphocytes were CD8+. In both spleen and tumor tissue after low-dose TBI, mRNA expression of the genes that encode IFN-gamma and TNF-alpha increased, while that of the Tgfb gene decreased. There was no expression of the mRNAs of the Il4, Il6 and Il10 genes. CD8+ cells and the cytokine network may play an important role in the antitumor effect of low-dose TBI.  相似文献   

12.
目的:研究二氢青蒿素(Dihydroartemisinin,DHA)对超高分子量聚乙烯(Ultra highmolecularweightpolyethylene,UHMWPE)颗粒诱导的小鼠巨噬细胞系RAW264.7细胞源性炎性因子释放的影响。方法:建立UHMWPE颗粒诱导的小鼠巨噬细胞系RAW264.7细胞源性炎性因子释放模型;施加不同浓度的二氢青蒿素观察药物对细胞的影响,酶联免疫分析法(Enzyme-linked immuno sorbent assay,ELISA)检测细胞培养液上清中TNF-α,IL-1β,IL-6和IL-10含量,MTT法检测细胞毒性反应。结果:酶联免疫分析方法结果表明,二氢青蒿素可以显著抑制由UHMWPE颗粒诱导的小鼠RAW264.7细胞促炎细胞因子TNF-α,IL-1和IL-6的表达,并显著促进抗炎因子IL-10的释放,其效应具有剂量依赖性。结论:二氢青蒿素具有显著的抗炎作用,可以抑制UHMWPE颗粒诱导的巨噬细胞炎症反应,其在预防人工关节置换术后假体无菌性松动的药物治疗方面具有潜在的作用。  相似文献   

13.
目的:研究β-榄香烯抗巨噬细胞源性泡沫细胞的形成及抑制巨噬细胞炎症因子分泌的作用。为探讨β-榄香烯抗动脉粥样硬化(AS)的作用提供依据。方法:采用氧化低密度脂蛋白(ox-LDL)诱导小鼠单核/巨噬细胞(RAW264.7)建立巨噬细胞源性泡沫细胞模型,采用油红O染色鉴定泡沫细胞形成。给予不同浓度(0.5,5,50μM)β-榄香烯干预后,ELISA方法检测巨噬细胞源性泡沫细胞内胆固醇含量和肿瘤坏死因子-α(TNF-α),白介素-6(IL-6)分泌量的变化。结果:β-榄香烯可降低巨噬细胞源性泡沫细胞内总胆固醇(P<0.05或P<0.01),胆固醇酯含量(P<0.01),减少炎症因子TNF-α,IL-6的分泌(P<0.05或P<0.01),并且呈现出一定的浓度依赖性。结论:β-榄香烯抑制巨噬细胞对ox-LDL的摄取,降低细胞内胆固醇的含量,抑制泡沫细胞的形成,同时改善巨噬细胞的炎症状态从而发挥抗动脉粥样硬化的作用。  相似文献   

14.
Current studies have found that low-dose irradiation (IR) can promote bone regeneration. However, mechanism studies of IR-triggered bone regeneration mainly focus on the effects of osteoblasts, neglecting the role of the surrounding immune microenvironment. Here in this study, in vitro proliferation experiments showed that low-dose IR ≤2 Gy could promote the proliferation of bone marrow mesenchymal stem cells (BMSCs), and qRT-PCR assay showed that low-dose IR ≤2 Gy could exert the M2 polarization of Raw264.7 cells, while IR >2 Gy inhibited BMSC proliferation and triggered M1 polarization in Raw264.7 cells. The ALP and mineralized nodules staining showed that low-dose IR ≤2 Gy not only promoted osteoblast mineralization through IR-triggered osteoblast proliferation but also through M2 polarization of Raw264.7 cells, while high-dose IR >2 Gy had the opposite effect. The co-incubation of BMSC with low-dose IR irradiated Raw264.7 cell supernatants increased the mRNA expression of BMP-2 and Osx. The rat cranial defects model revealed that low-dose IR ≤2 Gy gradually promoted bone regeneration, while high-dose IR >2 Gy inhibited bone regeneration. Detection of macrophage polarity in peripheral blood samples showed that low-dose IR ≤2 Gy increased the expression of CD206 and CD163, but decreased the expression of CD86 and CD80 in macrophages, which indicated M2 polarization of macrophages in vivo, while high-dose IR had the opposite effect. Our finding innovatively revealed that low-dose IR ≤2 Gy promotes bone regeneration not only by directly promoting the proliferation of osteoblasts but also by triggering M2 polarization of macrophages, which provided a new perspective for immune mechanism study in the treatment of bone defects with low-dose IR.  相似文献   

15.
蜂蛹多肽因具有丰富的营养价值,以及增强免疫、抗肿瘤及抗氧化等生物学活性,而受到了广泛关注,但目前关于蜂蛹多肽纯化组分的体外免疫调节活性的研究尚未见报道。为了探究蜂蛹多肽对巨噬细胞RAW264.7免疫活性的影响,以蜂蛹多肽纯化组分BPP-21为研究对象,研究其在不同浓度(12.5、25、50、100和200 μg·mL-1)下对RAW264.7巨噬细胞的细胞活力、吞噬能力、细胞因子分泌能力、NO分泌能力和氧化应激指标的影响。结果显示,在浓度12.5~200 μg·mL-1范围内,BPP-21对RAW264.7巨噬细胞无明显的细胞毒性作用,可显著提高干扰素-γ(interferon-gamma,IFN-γ)与NO的分泌水平(P<0.05);在浓度25~200 μg·mL-1范围内,显著增加细胞吞噬能力以及白细胞介素-2(interleukin-2,IL-2)、肿瘤坏死因子α(tumor necrosis factor-alpha,TNF-α)的分泌量(P<0.05);在浓度50~200 μg·mL-1范围内,显著提高细胞内超氧化物歧化酶(superoxide dismutase,SOD)活力(P<0.05)。研究表明,蜂蛹多肽纯化组分BPP-21可增强RAW264.7巨噬细胞的免疫活性,为蜂蛹多肽免疫调节剂的研究与开发提供了理论依据。  相似文献   

16.
Dioscorealide B (DB), a naphthofuranoxepin has been purified from an ethanolic extract of the rhizome of Dioscorea membranacea Pierre ex Prain & Burkill which has been used to treat inflammation and cancer in Thai Traditional Medicine. Previously, DB has been reported to have anti‐inflammatory activities through reducing nitric oxide (NO) and tumor necrosis factor‐α (TNF‐α) production in lipopolysaccharides (LPS)‐induced RAW 264.7 macrophage cells. In this study, the mechanisms of DB on LPS‐induced NO production and cytokine expression through the activation of nuclear factor‐κB (NF‐κB) and ERK1/2 are demonstrated in RAW 264.7 cells. Through measurement with Griess's reagent, DB reduced NO level with an IC50 value of 2.85 ± 0.62 µM that was due to the significant suppression of LPS‐induced iNOS mRNA expression as well as IL‐1β, IL‐6, and IL‐10 mRNA at a concentration of 6 µM. At the signal transduction level, DB significantly inhibited NF‐κB binding activity, as determined using pNFκB‐Luciferase reporter system, which action resulted from the prevention of IκBα degradation. In addition, DB in the range of 1.5–6 µM significantly suppressed the activation of the ERK1/2 protein. In conclusion, the molecular mechanisms of DB on the inhibition of NO production and mRNA expression of iNOS, IL‐1β, IL‐6, and IL‐10 were due to the inhibition of the upstream kinases activation, which further alleviated the NF‐κB and MAPK/ERK signaling pathway in LPS‐induced RAW264.7 macrophage cells. J. Cell. Biochem. 109: 1057–1063, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Phosphatidic acid (PA) is an important second messenger produced by the activation of numerous cell surface receptors. Recent data have suggested that PA regulates multiple cellular processes. In this study, we found that PA positively regulates the lipopolysaccharide (LPS)-induced differentiation of RAW264.7 murine macrophage cells into dendritic-like cells. Co-treatment of PA with LPS further increased dendritic cell surface marker expressions (CD80, CD86, CD40, MHC class I, and class II antigens) and reduced the phagocytic activity of LPS-treated cells. Moreover, PA up regulated allostimulatory activity and the secretion of IL-12 in LPS-treated RAW264.7 cells. Taken together, these data indicate that PA might play a role in the LPS-mediated differentiation of macrophage cells into dendritic-like cells.  相似文献   

18.
Mitogen-activated protein kinases have been shown to respond to various stimuli including cytokines, mitogens and gamma irradiation, leading to cell proliferation, differentiation, or death. The duration of their activation determines the specificity of response to each stimulus in various cells. In this study, the crucial intracellular kinases, ERK, JNK, and p38 kinase involved in cell survival, death, or damage and repair were examined for their activity in RAW 264.7 cells at various time points after irradiation with 2 Gy doses of proton ions or X-rays. This is the first report that shows that the MAPK signaling induced after heavy ion or X-ray exposure is not the same. Unlike gamma irradiation, there was prolonged but marginal activation of prosurvival ERK pathway and significant activation of proapoptotic p38 pathway in response to high LET radiation.  相似文献   

19.
Effects of four inhibitors of NF-kappaB, SAPK/JNK and TLR4 signaling, namely, inhibitor XII, SP600125, CLI-095 and Oxpapc on a macrophage response to low dose ammonium were studied in RAW 264.7 cells. Low dose ammonium induced pro-inflammatory response in cells as judged from enhanced production of TNF-alpha, IF-gamma, and IL-6, and by activation of signal cascades. The increase in production of cytokines, namely TNF, IFN, and IL-6, demonstrated that low-dose ammonium induced a pro-inflammatory cellular response. In addition, an activation of NF-kappaB and SAPK/JNK cascades, as well as enhancement of TLR4 expression was shown. Each of used inhibitors reduced to a variable degree the pro-inflammatory response of RAW 264.7 cells on chemical toxin by decreasing cytokine production. The inhibitor of NF-kappaB cascade, IKK Inhibitor XII, was more effective, and not only prevented the development of pro-inflammatory response induced by ammonium, but also decreased cytokine production below control values. The inhibitor of extra cellular domains of TLR2 and TLR4 (OxPAPC) had almost the same anti-inflammatory effect, and an addition of the inhibitor of JNK cascade (SP600125) to cell culture practically neutralized effect of ammonium ions by decreasing cytokine production to control level. Inhibitory analysis showed that activation of RAW 264.7 cells induced by chemical toxin coincide incompletely with intracellular signaling pathways that were early determined regarding macrophage's response to toxin from gram-negative bacteria. Nevertheless, application of the inhibitors defended RAW 264.7 from toxic effect of the low dose ammonium.  相似文献   

20.
Oxidative burst and cytokines synthesis by macrophages is a crucial point for successful pathogen defense. However, macrophage cell lines commonly used in inflammatory research differ in their responses to external stimuli. Thus, there is the necessity to carefully characterize the cells before experimental usage. In this study we investigated the applicability of two widely-used macrophage cell lines, RAW264.7 and P-388D1, for studying oxidative burst and cytokine synthesis. Cells were tested for NADPH oxidase activity, iNOS-mRNA levels, and the release of NO, TNF-α, IL-6 and IL-10. Stimulation of RAW264.7 triggered oxidative burst as well as synthesis of TNF-α, IL-6 and IL-10. In contrast, following stimulation P-388D1 produced TNF-α and IL-6 only. Our findings confirm the relevance of cell line selection for reliability of in vitro-experiments. Moreover, the results approve RAW264.7 cells to be a suitable model to investigate the modulation capability of macrophages e.g. in context of fatty acid supplementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号