首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracts of rat anterior and intermediate-posterior pituitary were fractionated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and assayed for immunoactive ACTH and endorphin. In both lobes the major forms of immunoactive ACTH have apparent molecular weights of 31,000 (31K), 20–21K, 14K, and 4.5K, and the major forms of immunoactive endorphin have apparent molecular weights of 31K (coincident with the peak of immunoactive ACTH), 13K (a βLPH-like peptide), and 3.5K (a β-endorphin-like peptide). However, the quantitative distribution of immunoactivity among the various forms differs greatly between the lobes. Assays using an extreme COOH-terminal ACTH antiserum indicate that the 31K ACTH/endorphin molecule in rat antierior and intermediate pituitary is similar to the pro-ACTH/endorphin molecule from mouse pituitary tumor cells. A radioimmunoassay that is specific for the NH2-terminal non-ACTH, nonendorphin segment (referred to as 16K fragment) of the mouse pro-ACTH/endorphin molecule was used to assay extracts of rat pituitary. In addition to detecting material at 31K and 20–21K, the 16K fragment radioimmunoassay detects significant amounts of cross-reactive material with an apparent molecular weight of 16K in extracts of both lobes. This result also suggests that the structure and processing of the rat 31K ACTH/endorphin molecule is similar to that of mouse tumor cell pro-ACTH/endorphin. Cell suspensions were prepared from the anterior and intermediate lobes of the rat pituitary and maintained in culture for a 24-h period. The isolated cells from both lobes incorporate [3H] phenylalanine into immunoprecipitable ACTH- and endorphin-containing molecules. By sequential immunoprecipitation with ACTH and endorphin antisera, it is possible to demonstrate directly that a single molecule (31K ACTH/endorphin) has antigenic determinants for both ACTH and endorphin. Significant amounts of 31K ACTH/endorphin are released into the culture medium by isolated anterior lobe and intermediate lobe cells. The isolated intermediate lobe cells synthesize and secrete relatively large amounts of a β-endorphin-like molecule; the isolated anterior lobe cells secrete significant amounts of both a βLPH-like molecule and a β-endorphin like molecule. These same quantitative differences between anterior and intermediate lobe tissue were observed in immunoassays of extracts of the separated lobes and probably reflect differences in the processing of the common precursor. The isolated anterior lobe cells can be stimulated to release increased amounts of immunoprecipitable ACTH and endorphin by incubation with a cyclic AMP analog and a phosphodiesterase inhibitor.  相似文献   

2.
Using in situ hybridization with a pro-opiomelanocortin (POMC)-mRNA probe and immunocytochemistry with antisera to POMC and to various POMC-derived peptides, it is shown that melanotrope cells in the pars intermedia of the hypophysis of the South African aquatic toad Xenopus laevis contain POMC, α-melanophore-stimulating hormone (α-MSH), γ-MSH, acetylated and non-acetylated endorphins and adrenocorticotropic hormone (ACTH). With the exception of γ-MSH, these peptides are also found in the corticotrope cells in the rostral pars distalis. In the Xenopus brain, neuronal cell bodies in the ventral hypothalamic nucleus express POMC, α-MSH, γ-MSH, non-acetylated endorphins and ACTH, neurones in the anterior preoptic area reveal POMC, α-MSH, γ-MSH and non-acetylated endorphin, neurones in the suprachiasmatic nucleus contain α-MSH, non-acetylated endorphin and ACTH and neurones in the posterior tubercle show α-MSH, non-acetylated endorphin and ACTH immunoreactivities. In the locus coeruleus POMC and ACTH coexist, whereas α-MSH and non-acetylated endorphin occur together in the nucleus accumbens, the striatum and the nucleus of the paraventricular organ. Finally, α-MSH alone is present in the olfactory bulb, the medial septum, the medial and lateral parts of the amygdala, the ventromedial and posterior thalamic nuclei, the optic tectum and the anteroventral tegmental nucleus, and non-acetylated endorphin alone appears in the epiphysis. It is suggested that neurones that form POMC-derived peptides may play a direct or indirect role in the control of POMC-producing hypophyseal cells and/or in the physiological processes these endocrine cells regulate. This idea is supported by the fact that the suprachiasmatic nucleus and the locus coeruleus, both involved in melanotrope cell control, show POMC and POMC-peptide expression. A possible involvement in melanotrope and/or corticotrope control of the anterior preoptic and ventral hypothalamic nuclei, which both express POMC and various POMC-derived peptides, deserves future attention.  相似文献   

3.
Levels of immunoreactive pro-opiomelanocortin (POMC) peptides (N- and C-terminal ACTH, N- and C-terminal LPH and α-MSH) have been measured in pituitary extracts from human fetuses of 12–22 weeks gestation. The levels of ACTH were 30–200 times higher than α-MSH in all fetuses studied. Sephadex G-75 and G-25 chromatography of 8 extracts showed peaks of 34 kilodaltons (K) POMC, 22K ACTH, β-LPH, γ-LPH, β-endorphin, approximately 8K ACTH, 1–39 ACTH, α-MSH and CLIP. The 8K and 22K forms of ACTH are both partly glycosylated.In vitro culture of pituitaries from 2 fetuses (22 and 26 weeks gestation) gave a detectable basal output of ACTH but not of α-MSH. Stimulation of these pituitary cells with human fetal and rat hypothalamic extracts and with synthetic ovine CRF-41 produced a significant increase in ACTH release, and either small or undetectable amounts of α-MSH.These results demonstrate the presence of POMC-related peptides in early gestation human fetal pituitaries and suggest that ACTH, and not α-MSH, is the major corticotrophic hormone at this stage of gestation.  相似文献   

4.
We have studied the post-translational processing of POMC-derived peptides during fetal monkey development using immunoassay and reverse-phase high-performance liquid chromatography (RP HPLC). Pituitary tissues obtained from fetal monkeys ranging from Gestational Day 50 to 155 were fractionated and analyzed for ACTH- and alpha-MSH-related peptides and compared to adult forms. Extracts of whole pituitary from Fetal Days 50 and 55 contained ACTH(1-39) and very small amounts of CLIP (corticotropin-like intermediate-lobe peptide; ACTH(18-39))-like immunoactivity. Acetylated alpha-MSHs were not detectable at Day 50. alpha-MSHs were barely detectable at Day 55. By Day 65, when pituitary lobes were separable, small amounts of des-, mono-, and diacetyl alpha-MSH were detectable in NIL extracts, but not in anterior lobe extracts. ACTH(1-39) levels were negligible when compared to increasing alpha-MSHs through Fetal Day 80 to 155 in the intermediate lobe. The CLIP immunoactivity was negligible in Day 80 and adult anterior lobe extracts. Thus, lobe-specific proteolytic processing of ACTH-related peptides was well established by midterm gestation. Marked increases of alpha-N- and alpha-N,O-acetylated forms of alpha-MSHs were detected during middle and late stage fetal development. Diacetyl alpha-MSH was the predominant form of alpha-MSH in adult NIL extracts. No acetylated alpha-MSHs were found in anterior lobe tissues, thus adult anterior lobe extracts contained almost exclusively ACTH(1-39). However adult NIL extracts contained two distinct forms of CLIP-related immunoactivity. Therefore changes in post-translational processing patterns of ACTH-related and alpha-MSH-related peptides continued to some extent, postnatally. These data indicate that marked changes in post-translational processing of POMC-derived ACTH-related products occur during the first half of monkey gestation.  相似文献   

5.
Pro-opiomelanocortin (POMC) is glycosylated and proteolytically cleaved to produce a number of smaller peptide hormones including adrenocorticotropic hormone (ACTH) and endorphin in mammalian pituitary and the mouse pituitary cell line AtT-20/D16v. When glycosylation of POMC is inhibited in AtT-20 cells with the drug tunicamycin, a 26,000-dalton protein appears in place of the glycosylated 29,000- and 32,000-dalton forms of POMC. The 26,000-dalton form found in tunicamycin-treated cells has the same [35S]methionine tryptic peptides as 29,000- and 32,000-dalton POMC, indicating that the decrease in apparent mass is most likely due to loss of carbohydrate and not to changes in the peptide backbone. The 4,500-dalton form of alpha(1-39)ACTH and the 3,000- and 11,000-dalton forms of endorphin are all present in tunicamycin-treated cells. The glycosylated form of alpha(1-39)ACTH, however, is missing and the glycosylated ACTH intermediates are replaced by unglycosylated ACTH intermediates. Pulse-chase studies demonstrate that the 26,000-dalton unglycosylated POMC is the precursor of the smaller ACTH and endorphin molecules in tunicamycin-treated cells. Furthermore, all of the forms of ACTH and endorphin found in tunicamycin-treated cells are secreted. Thus, it appears that glycosylation is not an essential step for correct cleavage or secretion of POMC or its products.  相似文献   

6.
R Cheng  B Pomeranz  G Yü 《Life sciences》1979,24(16):1481-1486
Dexamethasone, a cortisol analogue which inhibits ACTH and endorphin release in a negative feedback system, partially reduces electroacupuncture analgesia (EAA) in mice. In addition, mice forced to drink 2% saline for 3 days (this reduces pituitary endorphin levels) had a complete loss of EAA. These two experiments support our previous finding that hypophysectomy abolishes EAA. Altogether, these results implicate pituitary endorphins in EAA.  相似文献   

7.
We have investigated the presence of ACTH, -MSH and β-endorphin, three peptides which derive from the multifunctional precursor protein proopiomelanocortin (POMC) in the brain of the rainbow trout Salmo gairdneri. Using both the indirect immunofluorescence and peroxidase-antiperoxidase techniques, a discrete group of positive cells was identified in the hypothalamus, within the anterior part of the nucleus lateralis tuberis. -MSH-containing neurons represented the most abundant immunoreactive subpopulation. Coexistence of -MSH, ACTH and β-endorphin was observed in the lateral part of the nucleus. ACTH- and β-endorphin-containing cells were mainly distributed in the rostral and caudal regions of the nucleus. In the medial portion of the nucleus lateralis tuberis, numerous cells were only stained for -MSH. Moderate to dense plexuses of immunoreactive fibers were observed in the ventral thalamus and the floor of the hypothalamus. Some of these fibers projected towards the pituitary. The concentrations of ACTH, -MSH and β-endorphin-like immunoreactivities were measured in microdissected brain regions by means of specific radioimmunoassays. Diencephalon, mesencephalon and medulla oblongata extracts gave dilution curves which were parallel to standard curves. The highest concentrations of POMC-derived peptides were found in the diencephalon (-MSH: 4.28±0.43 ng/mg prot.; ACTH: 1.08±0.09 ng/mg prot.; β-endorphin: 1.02±0.1 ng/mg prot.), while lower concentrations were detected in the mesencephalon, medulla oblongata and telencephalon. The present results demonstrate that various peptides derived from POMC coexist within the same cell bodies of the fish hypothalamus. Taken together, these data suggest that expression and processing of POMC in the fish brain is similar to that occurring in pituitary melanotrophs.  相似文献   

8.
9.
The initial steps in the processing of the common precursor to adrenocorticotropin (ACTH) and endorphin in mouse pituitary tumor cells (AtT-20) have been investigated. Three forms of the precursor have been resolved by sodium dodecyl sulfate (NaDodSO4)-polyacrylamide gel electrophoresis with apparent molecular weights of 29 000 (29K ACTH-endorphin), 32 000 (32K ACTH-endorphin) and 34 000 (34K ACTH-endorphin). These forms have a similar peptide backbone, but their carbohydrate content differs. In particular, a tryptic glycopeptide has been observed in 32K ACTH-endorphin which is not present in 29K ACTH-endorphin and has been identified as the tryptic peptide containing the alpha(22--39) sequence of ACTH. Similar heterogeneity in carbohydrate has been observed in some of the smaller molecular weight forms of ACTH which are resolved by NaDodSO4 gel electrophoresis. Pulse chase and continuous labeling studies using radioactive amino acids and sugars suggest that the 29K ACTH-endorphin is converted to 32K and 34K ACTH-endorphin by the addition of carbohydrate. The glycopeptide and pulse chase studies suggest that 29K ACTH-endorphin is at a branch point in the processing pathways. It can either be converted to 4.5K ACTH by proteolytic processing or to 32K ACTH-endorphin by the further addition of carbohydrate. The 32K ACTH-endorphin can then be converted to 13K ACTH, the glycosylated form of 4.5K ACTH (Eipper, B.A., & Mains,, R.E. (1977) J.Biol. Chem.252, 882), by proteolytic processing. A comparison of the distribution of the different molecular weight forms of ACTH and endorphin in mouse pituitary extracts and in the mouse pituitary tumor cells reveals that the pituitary contains all of the forms of ACTH and endorphin seen in the tumor cells, including the three forms of the ACTH-endorphin precursor. However, the molecular weight distribution of the forms in the anterior lobe is very different from that in the intermediate lobe of mouse pituitary.  相似文献   

10.
Pro-opiomelanocortin (POMC)-related peptides in extracts of anterior and neurointermediate pituitary lobes from pigs were characterized by gel chromatography, reversed-phase chromatography and radioimmunoassays. The peptide content was ca. 3-fold greater in the anterior lobe compared to the neurointermediate lobe (19.8 nmol POMC/anterior lobe vs 7.0 nmol/neurointermediate lobe). In the neurointermediate lobe 93% of POMC was processed to alpha-melanocyte-stimulating hormone (alpha-MSH) and analogs exclusively of low molecular weight. Most of the remaining adrenocorticotropic hormone (ACTH)-related material consisted of the glycine-extended intermediate ACTH-(1-14) and analogs. In contrast only one fourth to one third of the N-terminal part of POMC (N-POMC) was processed to amidated gamma-MSH and its C-terminal glycine-extended precursor. The relative amount of amidated gamma-MSH was the same as alpha-MSH and analogs (94%). However, more than 95% of these peptides were of high molecular weight. In the anterior lobe 2.3% of N-POMC was processed and 94% was amidated gamma-MSH of only high molecular weight. These results show that gamma-MSH and alpha-MSH are amidated to the same extent and that gamma 1-MSH and gamma 2-MSH immunoreactivity are present in both the anterior lobe and the neurointermediate lobe. The results suggest that the production of amidated peptides is not regulated by the amidation process itself but at an earlier step (e.g. at the proteolytic cleavage).  相似文献   

11.
12.
A signature feature of tetrapod pro-opiomelanocortin (POMC) is the presence of three melantropin (MSH) coding regions (α-MSH, β-MSH, γ-MSH). The MSH duplication events occurred early during the radiation of the jawed vertebrates well over 400 million years ago. However, in at least one order of modern bony fish (subdivision Teleostei; order Salmoniformes; i.e. salmon and trout) the γ-MSH sequence has been deleted from POMC. To determine whether the γ-MSH deletion has occurred in other teleost orders, a POMC cDNA was cloned from the pituitary of the neoteleost Oreochromis mossambicus (order Perciformes). In O. mossambicus POMC, the deletion is more extensive and includes the γ-MSH sequence and most of the joining peptide region. Because the salmoniform and perciform teleosts do not share a direct common ancestor, the γ-MSH deletion event must have occurred early in the evolution of the neoteleost fishes. The post-translational processing of O. mossambicus POMC occurs despite the fact that the proteolytic recognition sequence, (R/K)-Xn-(R/K) where n can be 0, 2, 4, or 6, a common feature in mammalian neuropeptide and polypeptide hormone precursors, is not present at several cleavage sites in O. mossambicus POMC. These observations would indicate that either the prohormone convertases in teleost fish use distinct recognition sequences or vertebrate prohormone convertases are capable of recognizing a greater number of primary sequence motifs around proteolytic cleavage sites.  相似文献   

13.
The suggestion that calcitonin is contained within the structure of the common precursor to ACTH and endorphin was examined. Immunohistochemical staining demonstrated calcitonin in thyroid parafollicular cells, and ACTH and 16K fragment in ACTH/endorphin cells of pituitary. No 16K fragment immunostaining was detected in thyroid parafollicular cells; no calcitonin staining was detected in pituitary. Immunoprecipitation of [35S]methionine-labeled molecules synthesized by rat intermediate pituitary cells demonstrated that neither 30K precursor, 16K fragment nor any other major labeled cell product was recognized by calcitonin antiserum. Analyses of tryptic peptides of 30K precursor indicated that peptides expected from calcitonin were not present in 30K precursor.  相似文献   

14.
Mouse pituitary neurointermediate lobes were pulse-incubated in [3H] arginine or [3H] lysine for 10 min and then chase-incubated for periods 0 to 4h. The labeled peptides from the lobes were analysed by immunoprecipitation with specific antisera, and thereafter, by acid-urea polyacrylamide gel electrophoresis. Using this paradigm, the synthesis of a prohormone common to adrenocorticotropin (ACTH) and endorphin was detected in 10 min pulse labeled lobes. Following a chase period, processing of the prohormone to several forms of ACTH (mol. wt. 25000, 23000, and 13000), beta-lipotropin and beta-endorphin was observed. To determine the intracellular site of processing of the prohormone, subcellular fractionation studies of labeled lobes were carried out. Analysis of the fractions from the pulse-labeled lobes revealed that the newly synthesized labeled prohormone was primarily localized in a granule-enriched fraction. In lobes that were pulsed and then chase-incubated for 1 h, there was a decrease in the amount of prohormone and an appearance of processed products in the granule-enriched fraction. In another paradigm, where the secretory granule-fraction was isolated from pulse-labeled lobes and then incubated in vitro for 6 h at pH 5.5, processing of the endogenous labeled prohormone within the isolated granule fraction was observed. These data suggest, that in the mouse neurointermediate lobe, the ACTH/endorphin prohormone (pro-opiocortin) is rapidly packaged into secretory granules after synthesis and processed intragranularly.  相似文献   

15.
Oncofetal aspects of ACTH and pro-opiomelanocortin (POMC)-derived peptides were studied immunohistochemically at the light and electron microscopic level in human fetal pituitary glands, pituitary adenomas, and small-cell carcinoma of the lung. ACTH, beta-endorphin, and gamma-MSH were localized in the same cells of both fetal and adult pituitary, as well as in the above-mentioned neoplastic tissues. However, alpha-MSH was observed only in the early fetal pituitary, its concentration decreasing with advancing gestational age. The adult pituitary contained only a few alpha-MSH-positive cells. By immunoelectron microscopy, ACTH in the adult pituitary was localized exclusively in the secretory granules. In fetal pituitary at 9 weeks' gestation, ACTH was localized in the perinuclear spaces (PNS), cisternae of rough endoplasmic reticulum (RER), Golgi saccules, and secretory granules. The staining pattern of ACTH in these organelles varied from cell to cell. In fetal pituitaries of greater gestational ages, ACTH was localized in secretory granules. The pituitary adenomas mimicked the staining characteristics of the adult pituitary, i.e., negative or only very occasional alpha-MSH staining and localization of ACTH in the secretory granules. The ectopic ACTH-producing tumors showed a staining pattern similar to that of the early fetal pituitary, i.e., positive staining for alpha-MSH and the presence of ACTH in PNS and cisternae of RER.  相似文献   

16.
The pituitary hormones adrenocorticotropic hormone (ACTH), beta-endorphin, and alpha-melanocyte stimulating hormone (alpha-MSH) are synthesized by proteolytic processing of their common proopiomelanocortin (POMC) precursor. Key findings from this study show that cathepsin L functions as a major proteolytic enzyme for the production of POMC-derived peptide hormones in secretory vesicles. Specifically, cathepsin L knock-out mice showed major decreases in ACTH, beta-endorphin, and alpha-MSH that were reduced to 23, 18, and 7% of wild-type controls (100%) in pituitary. These decreased peptide levels were accompanied by increased levels of POMC consistent with proteolysis of POMC by cathepsin L. Immunofluorescence microscopy showed colocalization of cathepsin L with beta-endorphin and alpha-MSH in the intermediate pituitary and with ACTH in the anterior pituitary. In contrast, cathepsin L was only partially colocalized with the lysosomal marker Lamp-1 in pituitary, consistent with its extralysosomal function in secretory vesicles. Expression of cathepsin L in pituitary AtT-20 cells resulted in increased ACTH and beta-endorphin in the regulated secretory pathway. Furthermore, treatment of AtT-20 cells with CLIK-148, a specific inhibitor of cathepsin L, resulted in reduced production of ACTH and accumulation of POMC. These findings demonstrate a prominent role for cathepsin L in the production of ACTH, beta-endorphin, and alpha-MSH peptide hormones in the regulated secretory pathway.  相似文献   

17.
Secondary stressors in long-term hypoxic (LTH) fetal sheep lead to altered function of the hypothalamic-pituitary-adrenal axis. Although ACTH is considered the primary mediator of glucocorticoid production in fetal sheep, proopiomelanocortin (POMC) and 22-kDa pro-ACTH (22-kDa ACTH) have been implicated in the regulation of cortisol production in the ovine fetus. This study was designed to determine whether POMC expression and processing are altered after LTH. Pregnant ewes were maintained at high altitude (3,820 m) from day 30 of gestation to near term, when the animals were transported to the laboratory. Reduced Po2 was maintained by nitrogen infusion through a maternal tracheal catheter. On days 139-141, fetal anterior pituitaries were collected from normoxic control and LTH fetuses. We measured POMC and corticotrophin-releasing factor type 1 receptor (CRF1-R) mRNA using quantitative real-time PCR, and we used Western blot analysis for quantitation of ACTH, ACTH precursor, and CRF1-R proteins. We measured plasma ACTH1-39 using a two-site immunoradiometric assay specific for ACTH1-39. Plasma ACTH precursors were measured by ELISA. Anterior pituitary POMC mRNA levels were not different between groups, whereas CRF1-R levels were significantly higher in the LTH anterior pituitaries compared with control (P<0.05). In contrast, protein levels of POMC, CRF1-R, 22-kDa ACTH, and ACTH1-39 were significantly lower in the LTH group. Plasma concentrations of both ACTH precursors and ACTH1-39 were significantly elevated in LTH fetuses, whereas the ratio of plasma precursors to ACTH was significantly lower. We conclude that LTH results in enhanced POMC processing and/or release to ACTH and increased hypothalamic drive.  相似文献   

18.
α-Melanocyte-stimulating hormone (α-MSH) is a proopiomelanocortin (POMC)-derived peptide, which is produced in the pituitary and at other sites including the skin. It has numerous effects and in the skin has a pigmentary action through the activation of the melanocortin-1 (MC-1) receptor, which is expressed by melanocytes. Recent evidence suggests that the related POMC peptides such as adrenocorticotrophin (ACTH), which is the precursor of α-MSH, is also an agonist at the MC-1 receptor. By using immunocytochemistry, we confirmed the presence of α-MSH in human skin where staining was evident in keratinocytes and especially strong in melanocytes and possibly Langerhans cells. ACTH was also present and tended to show the strongest reaction in differentiated keratinocytes. Immunostaining was also observed for the prohormone convertases, PC1 and PC2, which are involved in the formation of ACTH and its cleavage to α-MSH, respectively. The amounts of immunoreactive ACTH exceeded those of α-MSH. Using HPLC we identified for the first time the presence of ACTH1-39, ACTH1-17, ACTH1-10, acetylated ACTH1-10, α-MSH, and desacetyl α-MSH in epidermis and in cultured keratinocytes. The ability of these peptides to activate the human MC-1 receptor was examined in HEK 293 cells that had been transfected with the receptor. All peptides increased adenylate cyclase in these cells with the following order of potency: ACTH1-17 > α-MSH > ACTH1-39 > desacetyl α-MSH > acetylated ACTH1-10 > ACTH1-10. ACTH1-17 also increased the dendricity and melanin content of cultured human melanocytes indicating that the peptide was able to activate MC-1 receptors when present in their normal location. However, as found with α-MSH, not all cultures were responsive and, as we have previously suggested, we suspect that this was the result of changes at the MC-1 receptor. Nevertheless, it would appear that ACTH peptides can serve as natural ligands of the MC-1 receptor on human melanocytes and their presence in the skin suggests that, together with α-MSH, they may have a role in the regulation of human melanocytes.  相似文献   

19.
20.
The synthesis and secretion of various intermediate pituitary proteins was studied by using dispersed intermediate pituitary cell suspensions. Control studies indicated that the isolated cells were obtained in good yield and that after more than 24 h in culture the isolated cells continued to synthesize a collection of proteins similar to those found in freshly extracted intermediate pituitary tissue. Rat intermediate pituitary cells synthesized a molecule (Mr = 30,000; called 30K) that contained antigenic determinants for beta-endorphin, gamma-lipotropin, corticotropin (ACTH), and 16K fragment (the NH2-terminal region of mouse tumor cell pro-ACTH/endorphin). This 30K molecule, two high molecular weight forms of ACTH(13K and 20K), and 16K fragment were all shown to be glycoproteins. Continuous labeling and pulse-chase incubations were used to define the intracellular biosynthetic processing of the 30K molecule. After a 15-min pulse incubation the 30K molecule was the only labeled protein containing antigenic determinants for beta-endorphin, gamma-lipotropin, ACTH, or 16K fragment. A beta-lipotropin-like molecule served as a biosynthetic intermediate in the production of proteins similar to beta-endorphin and gamma-lipotropin. Methionine-enkephalin and alpha-endorphin were not major products in the intermediate lobe cells. Molecules similar to alpha-melanocyte-stimulating hormone and corticotropin-like intermediate lobe peptide (ACTH(18-39)) were also derived from the same 30K molecule; 20K ACTH served as a biosynthetic intermediate in this conversion. In rat intermediate pituitary cells ACTH(1-39) was not a major final product of the intracellular biosynthetic processing of the 30K molecule. The 30K molecule also served as a precursor to a protein similar to mouse tumor cell 16K fragment and related smaller proteins. With rat intermediate pituitary cells, pulse-chase experiments utilizing [35S]methionine demonstrated almost quantitative conversion of the 30K precursor into labeled proteins similar to beta-endorphin and alpha-melanocyte-stimulating hormone. In the absence of added secretagogues, small amounts of all of the smaller proteins derived from the 30K precursor were secreted coordinately into the culture medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号