首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The classification of maize inbred lines into heterotic groups is an important undertaking in hybrid breeding. The objectives of our research were to: (1) separate selected tropical mid-altitude maize inbred lines into heterotic groups based on grain yield data; (2) assess the genetic relationships among these inbred lines using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers; (3) examine the consistency between yield-based and marker-based groupings of the inbred lines. Thirty-eight tropical mid-altitude maize inbred lines were crossed to two inbred line testers representing the flint and dent heterotic pattern, respectively. The resulting testcrosses were evaluated in a trial at three locations for 2 years. Significant general combining ability (GCA) and specific combining ability (SCA) effects for grain yield were detected among the inbred lines. The tester inbred lines classified 23 of the 38 tested inbred lines into two heterotic groups based on SCA effects and testcross mean grain yields. This grouping was not related to endosperm type of the inbred lines. The outstanding performance of testcrosses of the remaining 15 inbred lines indicates the presence of significant genetic diversity that may allow the assignment of the lines into more than two heterotic groups. Diversity analysis of the 40 maize inbred lines using AFLP and SSR markers found high levels of genetic diversity among these lines and subdivided them into two main groups with subdivision into sub-groups consistent with breeding history, origin and parentage of the lines. However, heterotic groups formed using yield-based combining ability were different from the groups established on the basis of molecular markers. Considering the diversity of the genetic backgrounds of the mid-altitude inbred lines, the marker-based grouping may serve as the basis to design and carry out combining ability studies in the field to establish clearly defined heterotic groups with a greater genetic similarity within groups.Communicated by H.H. Geiger  相似文献   

2.
在玉米单交种育种中 ,鉴定高产杂交种和具有优良特性的自交系是一个重要的问题。研究以 1 7个优良玉米自交系为亲本 ,按照双列杂交配组合 ,利用 RAPD技术分析了 1 7个自交系的多态性以及 RAPD标记与 9个重要农艺性状 (包括产量 )的关系。基于 RAPD标记计算的相似系数聚类将 1 7个自交系分为 5个类群 ,经分析与系谱亲缘关系基本一致。杂交种性状及其特殊配合力与亲本间的遗传距离是高度相关的 ,与聚类前比较 ,聚类后平均遗传距离与平均产量、平均特殊配合力的相关系数显著提高 ,类间平均产量高于类内平均产量。RAPD技术可揭示优良玉米自交系的系谱亲缘关系 ,将自交系划分成不同的类群 ,从而为选择类间自交系杂交 ,进行亲本选配和分子标记辅助育种提供一种方法。  相似文献   

3.
Xu SX  Liu J  Liu GS 《Hereditas》2004,141(3):207-215
A challenge to maize breeders is to predict and identify inbred lines that can produce highly heterotic hybrids precisely. In the present study we surveyed the genetic diversity among 15 elite inbred lines of maize in China with SSR markers and assessed the relationship between SSR marker and hybrid yield/yield heterosis in a diallel set of 105 crosses. Forty-three SSR primers selected from all sixty-three primers gave stable profiles amplified in the sample of 15 inbred lines, which could clearly resolve on 4% metaphor agarose gel. The average number of alleles per SSR locus was 4.44 with a range from 2 to 9. The polymorphism information content (PIC) for the SSR loci varied from 0.28 to 0.81 with a mean of 0.6281. Genetic similarity (GS) among 15 lines was estimated with 191 alleles identified as raw data, the Nei's coefficient of GS ranged from 0.492 for 478 vs HZ4 up to 0.745 for E28 to ZH64 with a mean of 0.619. The cluster diagram based upon the SSR data grouped the 15 lines into families consistent with the yield heterotic response of these. Genetic distance (GD) based on SSR data was significantly correlated with hybrid yield/yield heterosis, the correlation coefficient (r) being 0.5432 and 0.4271 in 1999 and 0.4305 and 0.3614 in 1998 field test, respectively, whereas the determination coefficient (r2) was lower. The correlation between GD based on SSR data and hybrid yield/yield heterosis changed alone with the difference of number and pedigree relationship among parents that were used in this study. SSR makers showed high polymorphism and could be used to assess the relationship between inbred lines of maize, but it was difficult to predict the yield heterosis of maize.  相似文献   

4.
Information regarding diversity and relationships among breeding material is necessary for hybrid maize (Zea mays L.) breeding. Simple-sequence repeat (SSR) analysis of the 60 loci distributed uniformly throughout the maize genome was carried out for 65 inbred lines adapted to cold regions of Japan in order to assess genetic diversity among the inbred lines and to assign them to heterotic groups. The mean value (0.69) of the polymorphic-index content (PIC) for the SSR loci provided sufficient discrimination-ability for the assessment of genetic diversity among the inbred lines. The correlation between the genetic-similarity (GS) estimates and the coancestry coefficient was significant (r = 0.70). The average-linkage (UPGMA) cluster analysis and principal-coordinate analysis (PCOA) for a matrix of the GS estimates showed that the Northern flint inbred lines bred in Japan were similar to a Canadian Northern flint inbred line CO12 and a European flint inbred line F283, and that dent inbred lines bred in Japan were similar to BSSS inbred lines such as B73. These associations correspond to the known pedigree records of these inbred lines. The results indicate that SSR analysis is effective for the assessment of genetic diversity among maize inbred lines and for the assignment of inbred lines to heterotic groups.  相似文献   

5.
利用ISSR分子标记技术对40份玉米自交系进行亲缘关系分析。从59条ISSR引物中筛选出10条重复性高、多态性好的引物,分别对全部供试材料进行扩增,共扩出90条清晰谱带,其中多态性条带81条,多态性比率为90.00%,表明供试材料基因组DNA的多态性较高。用 NTSYSpc-2.10软件中的 UPGMA进行聚类分析,40份玉米自交系的遗传相似系数变化范围在0.65~1.00之间,在此基础上构建聚类分析树状图,揭示了玉米各自交系间的亲缘关系。本研究为今后分子水平上玉米优良自交系的改良与选育提供了一定的参考依据。  相似文献   

6.
Striga-resistant maize inbred lines are of interest to maize breeding programs in the savannas of Africa where the parasitic weed is endemic and causes severe yield losses in tropical maize. Assessment of the genetic diversity of such inbred lines is useful for their systematic and efficient use in a breeding program. Diversity analysis of 41 Striga-resistant maize inbred lines was conducted using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers to examine the genetic relationships among these lines and to determine the level of genetic diversity that exists within and between their source populations. The two marker systems generated 262 and 101 polymorphic fragments, respectively. Genetic similarity (GS) values among all possible pairs of inbred lines varied from 0.45 to 0.95, with a mean of 0.61±0.002 for AFLPs, and from 0.21 to 0.92, with a mean of 0.48±0.003, for SSRs. The inbred lines from each source population exhibited a broad range of GS values with the two types of markers. Both AFLPs and SSRs revealed similar levels of within population genetic variation for all source populations. Cluster and principal component analysis of GS estimates with the two markers revealed clear differentiation of the Striga-resistant inbred lines into groups according to their source populations. There was clear separation between early- and late-maturing Striga-resistant inbred lines. Considering the paucity of germplasm with good levels of resistance to Striga in maize, the broad genetic diversity detected within and among source populations demonstrates the genetic potential that exists to improve maize for resistance to Striga.  相似文献   

7.
Genomic alteration is a common phenomenon associated with plant tissue culture, which often encompasses genetic changes and epigenetic modifications (e.g. cytosine methylation). Here, we studied genomic alteration in maize by assessing calli and regenerated plants derived from three inbred lines (M17, J7 and JC) and two pairs of reciprocal F1 hybrids (pair I: M17/J7 and J7/M17 and pair II: M17/JC and JC/M17). By employing two molecular markers, the amplified fragment length polymorphism and methylation‐sensitive amplified polymorphism, we found that both types of genomic alterations occurred in calli and regenerated plants of all the studied maize inbred lines and F1 hybrids, but the extent and pattern of changes varied substantially across the genotypes. Among the three inbred lines, M17 showed markedly higher frequencies of both genetic (from 2.1% to 3.8%) and methylation alterations (from 6.5% to 9.9%, by adding up the various patterns) than the other two lines which showed similar frequencies for both types of alterations (genetic: 0.5–1.8%, methylation: 2.1–3.7%). Of the two F1 hybrid pairs, while pair I showed genetic variation frequencies similar to that of the inbred parent with lower changing frequency and pair II was intermediate of those of the parents, both pairs showed frequencies of methylation alteration more or less intermediate of those of their inbred parental lines. Parent‐of‐origin effects in both genetic and methylation changes were detected in only one of the hybrid pairs (primarily pair II) for a given changing pattern. Statistical testing confirmed the genotypic difference in both genetic and methylation (hypomethylation) alterations among the regenerants. Taken together, it could be concluded that the frequency and pattern of both genetic and cytosine methylation alterations in maize tissue culture were largely genetic context‐dependent traits, but stochasticity also played an important part. F1 hybrids were not significantly more stable than their inbred parental lines under tissue culture conditions.  相似文献   

8.
We examined the genetic diversity of 80 inbred waxy maize lines using 22 SSR molecular markers that could be used to achieve heterosis in waxy maize. Eighty inbred waxy maize lines with different phenotypes, 40 yellow, 25 white, 13 black, and two red lines were analyzed by SSR molecular marker fingerprint and cluster analysis. Using a standard genetic distance of 0.55, the 80 waxy maize inbred lines were clustered into nine groups. Among them, group II, group V, groups VII and VIII, and group IX were divided into three subgroups at a genetic distance of 0.46, into two subgroups at 0.49, into two subgroups at 0.46, and into four subgroups at 0.493, respectively. All but one of the yellow waxy maize inbred lines were clustered in groups VI, VII, VIII, and IX. Group IX (30 lines) contained 28 yellow lines; the other 11 yellow lines were distributed among groups VI, VII and VIII. Among the 25 white lines, 21 were clustered in groups III, V, VI and the third subgroup of group II. The black line N72 was in a group of its own. The black lines N75, N76 and N78 were distributed in groups VII, VIII and IX, respectively. The other nine black lines were clustered in group II. The red lines were distributed in the second subgroup of group II and there was no difference in genetic distance between them. In conclusion, there were considerable genetic differences among waxy maize inbred lines of different colors. The mean genetic distance of inbred lines of the same color was significantly less than that of lines of different colors. Therefore, we concluded that it was more accurate to determine the difference between the populations using the highly stable DNA genetic markers.  相似文献   

9.
Accuracy and reproducibility of genetic distances (GDs) based on molecular markers are crucial issues for identification of essentially derived varieties (EDVs). Our objectives were to investigate (1) the amount of variation for amplified fragment length polymorphism (AFLP) markers found among different accessions within maize inbreds and doubled haploid (DH) lines, (2) the proportion attributable to genetic and technical components and marker system specific sources, (3) its effect on GDs between maize lines and implications for identification of EDVs, and (4) the comparison to published SSR data from the same plant materials. Two to five accessions from nine inbred lines and five DH lines were taken from different sources of maintenance breeding or drawn as independent samples from the same seed lot. Each of the 41 accessions was genotyped with 20 AFLP primer combinations revealing 988 AFLP markers. Map positions were available for 605 AFLPs covering all maize chromosomes. On average, six (0.6%) AFLP bands were polymorphic between different accessions of the same line. GDs between two accessions of the same line averaged 0.013 for inbreds and 0.006 for DH lines. The correlation of GDs based on AFLPs and SSRs was tight (r = 0.97**) across all 946 pairs of accessions but decreased (r = 0.55**) for 43 pairs of accessions originating from the same line. On the basis of our results, we recommend specific EDV thresholds for marker systems with different degree of polymorphism. In addition, precautions should be taken to warrant a high level of homogeneity for DNA markers within maize lines before applying for plant variety protection.  相似文献   

10.
Knowledge about genetic variability of a crop allows for more efficient and effective use of resources in plant improvement programs. The genetic variation within temperate maize has been studied extensively, but the levels and patterns of diversity in tropical maize are still not well understood. Brazilian maize germplasm represents a very important pool of genetic diversity due to many past introductions of exotic material. To improve our knowledge of the genetic diversity in tropical maize inbred lines, we fingerprinted 85 lines with 569 AFLP bands and 50 microsatellite loci. These markers revealed substantial variability among lines, with high rates of polymorphism. Cluster analysis was used to identify groups of related lines. Well-defined groups were not observed, indicating that the tropical maize studied is not as well organized as temperate maize. Three types of genetic distance measurements were applied (Jaccard’s coefficient, Modified Rogers’ distance and molecular coefficient of coancestry), and the values obtained with all of them indicated that the genetic similarities were small among the lines. The different coefficients did not substantially affect the results of cluster analysis, but marker types had a large effect on genetic similarity estimates. Regardless of genetic similarity coefficient used, estimates based on AFLPs were poorly correlated with those based on SSRs. Analyses using AFLP and SSR data together do not seem to be the most efficient manner of assessing variability in highly diverse materials because the result was similar to using AFLPs alone. It was seen that molecular markers can help to organize the genetic variability and expose useful diversity for breeding purposes.  相似文献   

11.
Diversity among tropical maize inbred lines that compose breeding programs, is not well known. The lack of this information has made the arrangement of heterotic groups to be used for breeding purposes difficult. Methods of molecular analysis have been used as efficient alternatives for evaluating genetic diversity, aiming at heterotic group arrangement and acquisition of new hybrids. In this study, AFLP (amplified fragment length polymorphism) was used to investigate the genetic relationships among 96 tropical maize inbred lines from two different origins. The polymorphism level among the genotypes and the possibility of their allocation in heterotic groups were evaluated. Besides, correlations among genetic diversity and flowering time were analyzed. Nine primer combinations were used to obtain AFLP markers, producing 638 bands, 569 of which were polymorphic. Genetic similarities (GS), determined by Jaccard's similarity coefficient, varied from 0.345 to 0.891, with an average of 0.543. The dendrogram based on the GS and on the UPGMA cluster method did not separate the inbred lines in well-defined groups. Aiming at separating the lines into more accurate groups, Tocher's optimization procedure was carried out, 17 groups being identified. Association between flowering time and germplasm pools was detected. AFLP showed itself to be a robust assay, revealing a great power of detection of genetic variability in the tropical germplasm, and also demonstrated to be very useful for guiding breeding programs.  相似文献   

12.
Summary Strain identification in Zea mays by restriction fragment length polymorphism should be feasible due to the high degree of polymorphism found at many loci. The polymorphism in maize is apparently higher than that currently known for any other organism. Five randomly selected maize inbred lines were examined by Southern filter hybridization with probes of cloned low copy sequences. Typically, several alleles could be distinguished among the inbred lines with any one probe and an appropriately selected restriction enzyme. Despite considerable polymorphism at the DNA level, 16 RFLP markers in three inbred lines of maize were examined for six to 11 generations and found be stable. Mapping of RFLP markers in maize can be accelerated by the use of B-A translocation stocks, which enable localization of a marker to chromosome arm in one generation. The use of recombinant inbred lines in further refinement of the map is discussed.  相似文献   

13.
 To evaluate the genetic diversity of 18 maize inbred lines, and to determine the correlation between genetic distance and single-cross hybrid performance, we have used random amplified polymorphic DNA (RAPD), a PCR-based technique. Eight of these lines came from a Thai synthetic population (BR-105), and the others derived from a Brazilian composite population (BR-106). Thirty two different primers were used giving a total of 325 reproducible amplification products, 262 of them being polymorphic. Genetic divergence was determinated using Jaccard’s similarity coefficient, and a final dendrogram was constructed using an unweighted pair-group method with arithmetical averages (UPGMA). Cluster analysis divided the samples into three distinct groups (GI, GII and GIII) that were confirmed by principal-coordinate analysis. The genetic distances (GD) were correlated with important agronomic traits for single-cross hybrids and heterosis. No correlation was found when group division was not considered, but significant correlations were detected between GI×GII and GI×GIII GDs with their respective single-cross hybrid grain-yield values. Three groups were identified; that is, the BR-106 population was divided in two different groups and the BR-105 population remained mostly as one group. The results indicated that RAPD can be used as a tool for determining the extent of genetic diversity among tropical maize inbred lines, for allocating genotypes into different groups, and also to aid in the choice of the superior crosses to be made among maize inbred lines, so reducing the number of crosses required under field evaluation. Received: 24 May 1996 / Accepted: 22 November 1996  相似文献   

14.
利用SSR标记鉴定西瓜杂交种纯度的研究   总被引:14,自引:0,他引:14  
以2个西瓜杂交品种(系)的种子黑公子和04-17及其亲本为材料,用SSR标记技术研究杂种与其双亲之间的扩增谱带多态性,以甄别真假杂种.结果发现,所试验的52对SSR引物中有13对引物分别在2个西瓜杂交种和其双亲之间存在扩增条带的多态性,表现为:多数SSR引物对自交系的扩增只出现1条带,但部分引物在某些自交系中扩增出2条带,杂交种条带均为父母本的互补型,很适合做杂交种纯度鉴定.用引物CMCT134b对黑公子和引物CMGA165对04-17进行了各100粒单种子SSR鉴定,所测纯度分别为96%和100%,与田间纯度95.6%和99.7%非常接近,表明SSR标记技术在西瓜杂交种子纯度室内快速检测中的应用前景.  相似文献   

15.
Knowledge of genetic diversity (GD) and relationships among maize inbred lines is indispensable in a breeding program. Our objectives were to (1) investigate the level of genetic diversity among maize inbred lines and (2) assess their genetic structures by applying simple sequence repeat (SSR) markers. Fifty-six highland and mid-altitude maize inbred lines obtained from CIMMYT programs in Ethiopia and Zimbabwe were genotyped using 27 SSR loci. All of the genotypes studied could unequivocally be distinguished with the combination of the SSRs used. In total, 104 SSR alleles were identified, with a mean of 3.85 alleles per locus. The average polymorphism information content (PIC) was 0.58. GD expressed as Euclidean distance, varied from 0.28 to 0.73 with an average of 0.59. Cluster analysis using unweighted pair group method with arithmetic average (UPGMA) suggested five groups among the inbred lines. Most of the inbred lines adapted to the highlands and the mid-altitudes were positioned in different clusters with a few discrepancies. The pattern of groupings of the inbred lines was mostly consistent with available pedigree information. The variability detected using SSR markers could potentially contribute towards effective utilization of the inbred lines for the exploitation of heterosis and formation of genetically diverse source populations in Ethiopian maize improvement programs.  相似文献   

16.
The identification of superior hybrids is important for the success of a hybrid breeding program. However, field evaluation of all possible crosses among inbred lines requires extremely large resources. Therefore, efforts have been made to predict hybrid performance (HP) by using field data of related genotypes and molecular markers. In the present study, the main objective was to assess the usefulness of pedigree information in combination with the covariance between general combining ability (GCA) and per se performance of parental lines for HP prediction. In addition, we compared the prediction efficiency of AFLP and SSR marker data, estimated marker effects separately for reciprocal allelic configurations (among heterotic groups) of heterozygous marker loci in hybrids, and imputed missing AFLP marker data for marker-based HP prediction. Unbalanced field data of 400 maize dent × flint hybrids from 9 factorials and of 79 inbred parents were subjected to joint analyses with mixed linear models. The inbreds were genotyped with 910 AFLP and 256 SSR markers. Efficiency of prediction (R 2) was estimated by cross-validation for hybrids having no or one parent evaluated in testcrosses. Best linear unbiased prediction of GCA and specific combining ability resulted in the highest efficiencies for HP prediction for both traits (R 2 = 0.6–0.9), if pedigree and line per se data were used. However, without such data, HP for grain yield was more efficiently predicted using molecular markers. The additional modifications of the marker-based approaches had no clear effect. Our study showed the high potential of joint analyses of hybrids and parental inbred lines for the prediction of performance of untested hybrids.  相似文献   

17.
玉米雄穗颜色QTL分析   总被引:2,自引:0,他引:2  
雄穗是玉米的重要生殖器官,不同品种间玉米的雄穗外观差异明显。对玉米雄穗的颜色进行遗传分析和QTL定位,筛选与雄穗颜色紧密连锁的分子标记,可以作为玉米的品种保护和品种鉴别的有用工具。同时,紫色雄穗中花色苷类色素含量较高,与玉米雄穗的抗虫性密切相关。本研究利用一个黑玉米自交系SDM为共同父本,分别与白玉米自交系木6和黄玉米自交系Mo17杂交,构建2个相关F2∶3群体,分别命名为MuS(木6×SDM)和MoS(Mo17×SDM),在云南和重庆两个不同的环境中种植,对玉米花药颜色(COAn)和花药护颖颜色(COCa)2个性状进行QTL定位。结果表明:玉米花药和花药护颖的颜色均为数量性状,受主效基因和微效基因共同控制。2个群体在2个环境中共检测到7个与花药颜色相关的QTL,位于第2、3、6和10染色体上,其中位于第10染色体标记区间umc1196a-IDP8526内的QTL在重庆和云南同时表达,对表型的贡献率分别为23.17%和19.98%;2个群体在2个环境中共检测到9个与花药护颖颜色相关的QTL,位于第3、6、9和10染色体上,其中3个QTL为环境钝感QTL(在2个环境中均表达,且至少在1个环境中贡献率大于10%),分别位于第6染色体标记区间umc1979-umc1796、mmc0523-umc2006内和第10染色体标记区间umc1196a-umc2043内,对表型的贡献率为10.69%~59.30%。2个群体检测到的主效QTL的位置和效应高度一致,且控制花药颜色和花药护颖颜色2个性状的主效QTL有连锁分布的现象,主要表现在bins 6.04处的标记mmc0523和bins 10.04处的标记IDP8526附近。位于第6和第10染色体上的在不同环境和遗传背景下稳定的QTL可以作为进一步精细定位的靶位点,也可以为玉米雄穗颜色的分子标记辅助选择提供有价值的参考。  相似文献   

18.
二十八份玉米自交系的RAPD亲缘关系分析   总被引:4,自引:0,他引:4  
采用RAPD技术,对28份玉米自交系的亲缘关系进行分析。旨在DNA水平上揭示玉米自交系之间的亲缘关系,为进一步提高玉米杂种优势利用水平提供有益的信息从100个10bp随机引物中筛选出24个多态性较好的引物,对28份玉米自交系DNA进行扩增,扩增出24张DNA指纹图谱,其中多态性DNA谱带106条,占总扩增带数的64%。利用DNA扩增结果进行聚类分析,建立了28个玉米自交系的亲缘天系树状图,将供试材料划分为五个类群,RAPD分析结果与已知系谱的亲缘关系基本一致。  相似文献   

19.
An important trait defining fresh tomato marketability is fruit shelf life. Exotic germplasm of Solanum pimpinellifolium is able to prolong shelf life. Sixteen recombinant inbred lines with differing values of shelf life and fruit weight were derived by antagonistic-divergent selection from an interspecific cross involving Solanum pimpinellifolium. The objective of this study was to evaluate these recombinant inbred lines for many fruit quality traits such as diameter, height, size, acidity, colour, firmness, shelf life and weight, and to characterize them by amplified fragment length polymorphism markers. For most traits, a wide range of genetic variability was found and a wide range of molecular variation was also detected. Both sets of data allowed the identification of recombinant inbred lines by means of cluster analysis and principal component analysis. Genetic association among some amplified fragment length polymorphism markers and fruit quality traits, suggested by the principal component analysis, could be identified by single point analysis. Potential molecular markers underlying agronomical traits were detected in these recombinant inbred lines.  相似文献   

20.
Quality control (QC) genotyping is an important component in breeding, but to our knowledge there are not well established protocols for its implementation in practical breeding programs. The objectives of our study were to (a) ascertain genetic identity among 2–4 seed sources of the same inbred line, (b) evaluate the extent of genetic homogeneity within inbred lines, and (c) identify a subset of highly informative single-nucleotide polymorphism (SNP) markers for routine and low-cost QC genotyping and suggest guidelines for data interpretation. We used a total of 28 maize inbred lines to study genetic identity among different seed sources by genotyping them with 532 and 1,065 SNPs using the KASPar and GoldenGate platforms, respectively. An additional set of 544 inbred lines was used for studying genetic homogeneity. The proportion of alleles that differed between seed sources of the same inbred line varied from 0.1 to 42.3?%. Seed sources exhibiting high levels of genetic distance are mis-labeled, while those with lower levels of difference are contaminated or still segregating. Genetic homogeneity varied from 68.7 to 100?% with 71.3?% of the inbred lines considered to be homogenous. Based on the data sets obtained for a wide range of sample sizes and diverse genetic backgrounds, we recommended a subset of 50–100 SNPs for routine and low-cost QC genotyping, verified them in a different set of double haploid and inbred lines, and outlined a protocol that could be used to minimize errors in genetic analyses and breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号