首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physicochemical forces that mediate attachment of yeasts to the phylloplane are unknown. Cell surface charge and hydrophobicity and adhesion to polystyrene, glass, and barley were assessed for wild-type Rhodosporidium toruloides and attachment-minus (Att) mutants. Cells were grown under conditions promoting (excess carbon) or not promoting (excess nitrogen) capsule production. Hydrophobicity was measured by adhesion to xylenes, and surface charge characteristics were assessed by attachment to either DEAE (positive)- or carboxymethyl (CM) (negative)-Sephadex ion-exchange beads. Hydrophobicity and adhesiveness of nonencapsulated, wild-type R. toruloides decreased from mid-log to late stationary phase. Encapsulated wild-type R. toruloides cells were more hydrophobic and more adhesive than nonencapsulated cells. However, two encapsulated Att mutants were more hydrophobic than the wild type and levels of adhesion of R. toruloides were similar on polystyrene and less hydrophobic glass surfaces. Adhesion of wild-type yeast to barley and polystyrene was correlated with attachment to CM-Sephadex beads, indicating a positive cell surface charge. Sixteen Att mutants did not exhibit a positive cell surface charge, and wild-type yeast cells that did not attach to CM-Sephadex did not adhere to either polystyrene or barley. Wild-type R. toruloides attached to CM-Sephadex beads by the poles of the cells, indicating a localization of positive charge which was also visualized with India ink. We conclude that localized, positive charge, and not hydrophobic interactions, mediates attachment of R. toruloides to barley leaves.  相似文献   

2.
A variety of cellular interactions is involved in the process of implantation of the mammalian embryo into the uterine tissue. Recent discoveries have demonstrated that intercellular recognition and adhesive events are governed by a class of cell surface molecules known as cell adhesion molecules (CAMs). In the present report, we have investigated the occurrence of the well-characterized cell adhesion molecule cell-CAM 105 on the surface of rat pre- and peri-implantation embryos of various stages. This was carried out by indirect immunofluorescence microscopy employing affinity-purified rabbit antibodies against cell-CAM 105. The embryonal stages investigated comprised morulae, normal day-4 blastocysts, and delayed and adhesive blastocysts obtained by using the method of experimentally delayed implantation. Cell-CAM 105 was absent in the early-morula stage, but in normal day-4 blastocysts and delayed blastocysts a specific staining for cell-CAM 105 was seen on the entire surface. However, adhesive-stage blastocysts exhibited a marked polarity with staining of the polar trophoblast cells. Scanning electron microscopy of adhesive-stage blastocysts revealed that the stronger staining of the polar region was not due to a greater number of microvilli on the polar trophoblast cells. Thus, it seems as if cell-CAM 105 is lost or masked from the surface of the mural trophoblast cells of adhesive-stage rat blastocysts. Since the mural trophoblast cells are the first to adhere to the uterine luminal epithelium during the onset of implantation and subsequently invade the uterine stroma, we suggest that the apparent downregulation of cell-CAM 105 in the mural trophoblast cells might be linked to the acquisition of trophoblast invasiveness.  相似文献   

3.
Blastocysts readily adhered to inert materials in culture, but they resisted adhesion to living cells even after several days under conditions which encouraged cell aggregation. As far as could be determined by observing their spreading behavior on polylysine- and polyglutamate-coated dishes, the mechanism of adhesion of blastocysts to inert surfaces was similar to that of freshly dissociated cells and cell lines. However, their adhesion to vesicles of isolated uterine epithelium, which was encouraged by hanging drop culture, was by a different mechanism that involved microvilli on both the embryonic and maternal surfaces. This interactive step, which was similar to that seen during attachment in vivo, was followed by a brief period of close trophoblast-epithelial contact which led ultimately to phagocytosis of sloughed epithelium. Blastocysts showed a clear preference for adhesion to cultured epithelium in vesicles that had begun to collapse. In this case the cells showed a columnar profile with sharply defined microvillous apexes, unlike the flattened cells in fully expanded vesicles or on culture dishes. We conclude that the preimplantation adhesion of mouse blastocysts requires specific changes on both the embryonic and maternal surfaces to overcome the mutual nonadhesiveness typical of epithelia. The relatively rapid adhesion of blastocysts to a culture dish, on the other hand, is more typical of the well-known spreading behavior of cells on a highly attractive surface.  相似文献   

4.
Chitosan (CS) and dextran sulfate (DS) are charged polysaccharides (glycans), which form polyelectrolyte complex-based nanoparticles when mixed under appropriate conditions. The glycan nanoparticles are useful carriers for protein factors, which facilitate the in vivo delivery of the proteins and sustain their retention in the targeted tissue. The glycan polyelectrolyte complexes are also ideal for protein delivery, as the incorporation is carried out in aqueous solution, which reduces the likelihood of inactivation of the proteins. Proteins with a heparin-binding site adhere to dextran sulfate readily, and are, in turn, stabilized by the binding. These particles are also less inflammatory and toxic when delivered in vivo. In the protocol described below, SDF-1α (Stromal cell-derived factor-1α), a stem cell homing factor, is first mixed and incubated with dextran sulfate. Chitosan is added to the mixture to form polyelectrolyte complexes, followed by zinc sulfate to stabilize the complexes with zinc bridges. The resultant SDF-1α-DS-CS particles are measured for size (diameter) and surface charge (zeta potential). The amount of the incorporated SDF-1α is determined, followed by measurements of its in vitro release rate and its chemotactic activity in a particle-bound form.  相似文献   

5.
At the initial phase of embryo implantation, the trophoblast must have acquired competence for adhesion to the uterine epithelium, a condition whose cell biological basis is far from understood. In the present study, trophoblast-type cells (BeWo, JAr, and Jeg-3 choriocarcinoma cell lines) were treated with retinoic acid, methotrexate, dibutyryl-cAMP, or phorbol-12-myristate-13-acetate in order to modulate their ability to adhere to uterine epithelial cells (RL95-2). In an established model, multicellular spheroids of choriocarcinoma cells were transferred onto the surface of monolayer cultures of RL95-2 cells followed by a centrifugal force-based adhesion assay. In controls, about 45% of BeWo and JAr cell spheroids and 75% of Jeg-3 spheroids adhered to uterine monolayers within 30 min. Pretreatment of spheroids with either of the agents stimulated differentiation as indicated by the rate of chorionic gonadotropin secretion, but consistently reduced the adhesion to the endometrial monolayer in all three choriocarcinoma cell lines. While previous investigations had shown that invasiveness of trophoblast cells (into extracellular matrix) does not seem to be linked to the differentiation program in a simple manner, the present data suggest that such an (inverse) link may indeed exist with respect to the ability to initiate an adhesive interaction with the uterine epithelium. These observations support the view that epithelial cell interactions as typical for the initial phase of embryo implantation are regulated in a way that is clearly different from cell-matrix interactions governing later phases of trophoblast invasion into the endometrial stroma.  相似文献   

6.
Implantation of blastocysts involves conversion of maternal and embryonic cell surfaces from a nonadhesive to an adhesive state in response to the internally driven developmental program or to externally generated factors. However, the intricacies of the cellular and subcellular changes that promote the attachment are not known, because these changes are difficult to determine in situ because of the nonaccessibility of the site. To overcome this, an in vitro model of implantation was developed by co-culturing rat blastocysts and uterine epithelial cells of the same gestational age (day 5 postcoitum; plug day as day 1) in drops hanging from the lid of a Petri dish. The system was used to study the changes on the surface membranes of the cells of the trophectoderm and uterine epithelium and to evaluate the antiadhesive activity of the newly designed test substances. The isolated epithelial cell vesicles were co-cultured with zona-free blastocysts in the microdrops (40–50 µl) hanging from the lid of a 60-mm Petri dish. The lid was placed over the lower dish, which was presaturated with the medium. The culture was examined 48 h later to determine the site of adhesion of epithelial cell vesicles with the trophoblasts lining the blastocyst. The cell-cell adhesion was monitored on a computerized image analyzer. To validate the adhesion of blastocysts and epithelial cell vesicles in co-culture, the expression of a cell adhesion molecule, uvomorulin, was studied using immunocytochemical technique after incubating with antiuvomorulin antibody. Intense staining was noted on the membrane surfaces at the site of attachment of the blastocyst and cell vesicles.The authors express their sincere thanks to the Ministry of Health and Family Welfare, Government of India, for their financial support  相似文献   

7.
Pseudomonas aeruginosa, an important opportunistic pathogen of man, exploits numerous factors for initial attachment to the host, an event required to establish bacterial infection. In this paper, we rigorously explore the role of two major bacterial adhesins, type IV pili (Tfp) and flagella, in bacterial adherence to distinct host receptors at the apical (AP) and basolateral (BL) surfaces of polarized lung epithelial cells and induction of subsequent host signaling and pathogenic events. Using an isogenic mutant of P. aeruginosa that lacks flagella or utilizing beads coated with purified Tfp, we establish that Tfp are necessary and sufficient for maximal binding to host N-glycans at the AP surface of polarized epithelium. In contrast, experiments utilizing a P. aeruginosa isogenic mutant that lacks Tfp or using beads coated with purified flagella demonstrate that flagella are necessary and sufficient for maximal binding to heparan sulfate (HS) chains of heparan sulfate proteoglycans (HSPGs) at the BL surface of polarized epithelium. Using two different cell-free systems, we demonstrate that Tfp-coated beads show highest binding affinity to complex N-glycan chains coated onto plastic plates and preferentially aggregate with beads coated with N-glycans, but not with single sugars or HS. In contrast, flagella-coated beads bind to or aggregate preferentially with HS or HSPGs, but demonstrate little binding to N-glycans. We further show that Tfp-mediated binding to host N-glycans results in activation of phosphatidylinositol 3-kinase (PI3K)/Akt pathway and bacterial entry at the AP surface. At the BL surface, flagella-mediated binding to HS activates the epidermal growth factor receptor (EGFR), adaptor protein Shc, and PI3K/Akt, and induces bacterial entry. Remarkably, flagella-coated beads alone can activate EGFR and Shc. Together, this work provides new insights into the intricate interactions between P. aeruginosa and lung epithelium that may be potentially useful in the development of novel treatments for P. aeruginosa infections.  相似文献   

8.
《Insect Biochemistry》1985,15(6):827-834
Negatively-charged Sepharose beads are not encapsulated in vivo by haemocytes of the locust Schistocerca gregaria. It has been suggested by other workers that components of the prophenoloxidase activation pathway of haemolymph might adhere to foreign surfaces and stimulate haemocyte adhesion, so one possible reason for the lack of encapsulation of beads might be due to failure of these components to adhere to the bead. Beads were thus incubated in locust haemocyte lysate supernatant, in which the prophenoloxidase pathway had been activated by Ca2+ or Zymosan supernatant, and were then injected into the haemocoeles of locusts. Although at least 5 proteins, including phenoloxidase, could be shown to be attached to the beads, these coated beads were not encapsulated suggesting either that the putative opsonin did not attach or that none of the components is opsonic in this system.In addition, it has been shown that the prophenoloxidase pathway in locust haemocyte lysate supernatant can be partially activated in the presence of Ca2+, strongly activated by β1,3-glucans and that production of phenoloxidase is not enhanced by the presence of bacterial LPS and is inhibited by a serine protease inhibitor. The changes in protein composition of unactivated and activated haemocyte lysate supernatant are discussed.  相似文献   

9.
Development of the blastocyst to implantation competency, differentiation of the uterus to the receptive state, and a cross talk between the implantation-competent blastocyst and the uterine luminal epithelium are all essential to the process of implantation. In the present investigation, we examined the possibility for a potential cross talk between the blastocyst and uterus involving the ezrin/radixin/moesin (ERM) proteins and ERM-associated cytoskeletal cross-linker proteins CD43, CD44, ICAM-1, and ICAM-2. In normal Day 4 blastocysts and after rendering dormant blastocysts to implantation-competent by estrogen in vivo (activated), the outer surface of mural trophectoderm cells showed much higher levels of radixin as compared to those in the polar trophectoderm cells, inner cell mass (ICM), and primitive endoderm. In contrast, ezrin was present on both the mural and the polar trophectoderm cell surfaces of normal Day 4 and activated blastocysts at higher intensity than dormant blastocysts. A distinct localization was noted in the primitive endoderm of dormant blastocysts that was not apparent in activated or normal Day 4 blastocysts. The expression of moesin was modestly higher at the mural trophectoderm of implantation-competent blastocysts, while the localization appeared to be present primarily on the polar trophectoderm cell surface of Day 4 blastocysts. The localization of ERM-associated adhesion molecules CD43, CD44, and ICAM-2 was more intense in the implantation-competent blastocysts compared with the dormant blastocysts. However, while CD44 was present both in the trophectoderm and in ICM, CD43 and ICAM-2 were localized primarily to the trophectoderm. The signal for ICAM-1 was very intense in the ICM but was modest in the trophectoderm. No significant changes in fluorescence intensity were noted between activated and dormant blastocysts. In the receptive uterus on Day 4 of pregnancy, ERM proteins were localized to the uterine epithelium, while on Day 5 the localization, especially of radixin and moesin, extended to the stroma surrounding the implantation chamber. With respect to ERM-associated adhesion molecules, while CD44 and ICAM-1 were exclusively localized in the stroma on Day 4, CD43 and ICAM-2 were localized to the epithelium. On Day 5, the localization of CD44 and ICAM-1 became highly concentrated in the antimesometrial stroma of the implantation chamber. The localization of CD43 and ICAM-2 remained mostly epithelial, although some stromal localization of CD43 was noted on Day 5. These results suggest that differential expression and distribution of ERM proteins and ERM-associated adhesion molecules are involved in the construction of the cellular architecture necessary for blastocyst activation and uterine receptivity leading to successful implantation.  相似文献   

10.
Human polymorphonuclear leukocytes (PMN) were found to tightly adhere on endothelial (lines EAhy926 and ECV304) and collagen surfaces under the influence of the chemotherapeutic drug suramin. This was observed by scanning electron microscopy and quantitated by myeloperoxidase assays. Suramin also inhibited Ca2+ ionophore A23187-stimulated leukotriene (LT) synthesis in PMN interaction with endothelial cells or with collagen surface. Suramin decreased the release of radiolabeled arachidonic acid (AA) and 5-lip-oxygenase (5-LO) metabolites by prelabeled PMN stimulated with A23187. Using agents releasing the suramin-stimulated adhesion namely jasplakonolide and dextran sulfate, we observed a reversal of the suramin effect on leukotriene synthesis. Jasplakonolide released the adhesion of PMN on endothelial and collagen-coated surfaces and restored 5-LO activity. Dextran-sulfate released adhesion on collagen-coated surfaces and abolished suramin inhibition. Arachidonate could also overcome adhesion and inhibition of 5-LO. We conclude that suramin-induced tight attachment of PMN on to solid surfaces lead to decreased leukotriene synthesis during subsequent A23187 stimulation in the absence of exogenous substrates.  相似文献   

11.
Blastocyst implantation requires molecular and cellular interactions between the uterine luminal epithelium and blastocyst trophectoderm. We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) is induced in the mouse luminal epithelium solely at the site of blastocyst apposition at 16:00 hours on day 4 of pregnancy prior to the attachment reaction (22:00-23:00 hours), and that HB-EGF promotes blastocyst growth, zona-hatching and trophoblast outgrowth. To delineate which EGF receptors participate in blastocyst activation, the toxicity of chimeric toxins composed of HB-EGF or TGF-(&agr;) coupled to Pseudomonas exotoxin (PE) were used as measures of receptor expression. TGF-(&agr;) or HB-EGF binds to EGF-receptor (ErbB1), while HB-EGF, in addition, binds to ErbB4. The results indicate that ErbB1 is inefficient in mediating TGF-(&agr;)-PE or HB-EGF-PE toxicity as follows: (i) TGF-(&agr;)-PE was relatively inferior in killing blastocysts, 100-fold less than HB-EGF-PE, (ii) analysis of blastocysts isolated from cross-bred egfr+/- mice demonstrated that HB-EGF-PE, but not TGF-(&agr;)-PE, killed egfr-/- blastocysts, and (iii) blastocysts that survived TGF-(&agr;)-PE were nevertheless killed by HB-EGF-PE. HB-EGF-PE toxicity was partially mediated by cell surface heparan sulfate proteoglycans (HSPG), since a peptide corresponding to the heparin-binding domain of HB-EGF as well as heparitinase treatment protected the blastocysts from the toxic effects of HB-EGF-PE by about 40%. ErbB4 is a candidate for being an HB-EGF-responsive receptor since RT-PCR analysis demonstrated that day 4 mouse blastocysts express two different erbB4 isoforms and immunostaining with anti-ErbB4 antibodies confirmed that ErbB4 protein is expressed at the apical surface of the trophectoderm cells. It is concluded that (i) HB-EGF interacts with the blastocyst cell surface via high-affinity receptors other than ErbB1, (ii) the HB-EGF interaction with high-affinity blastocysts receptors is regulated by heparan sulfate, and (iii) ErbB4 is a candidate for being a high-affinity receptor for HB-EGF on the surface of implantation-competent blastocysts.  相似文献   

12.
In order for the preimplantation embryo to implant into the uterus, the trophoblast cells must initially adhere to the uterine epithelial surface. In preparation, the luminal secretory cells of the epithelium lose their nonadhesive character and their surface microvilli and bulge into the lumen, forming uterodomes (pinopodes; uterodome is used instead of pinopode, since in humans the surface membrane exocytoses rather than endocytoses (Murphy, Hum Reprod 2000; 15:2451-2454). Previous research has led to the hypothesis that loss of the nonadhesive membrane-spanning mucin MUC1 from the uterodome surface allows trophoblast adherence. Immunofluorescence microscopic assay of luminal epithelia on human uterine biopsies taken from LH+0 to LH+13 show that another membrane-spanning mucin, MUC16, was lost from uterodome surfaces in all samples taken during the receptive phase, LH+6 to LH+8 (n = 12), and that MUC1 was present on uterodomes in 4 of 12 samples and on all ciliated cells of the epithelium in the receptive phase. Short interfering RNA (siRNA) knockdown of MUC16 in a uterine epithelial cell line ECC-1 that, like uterine epithelium, expresses MUC16 and MUC1 allowed increased adherence of cells of a trophoblast cell line. In parallel experiments, siRNA knockdown of MUC1 did not affect trophoblast cell adherence. These data indicate that MUC16 is a membrane component of the nonreceptive luminal uterine surface, which prevents cell adhesion, and that its removal during uterodome formation facilitates adhesion of the trophoblast.  相似文献   

13.
The extracellular matrix protein osteopontin (OPN) is a component of histotroph that increases in uterine flushings from pregnant ewes during the peri-implantation period and is localized on the apical surfaces of the uterine luminal epithelium (LE) and conceptus trophectoderm (Tr). The potential involvement of OPN in the implantation adhesion cascade in sheep was investigated by examining temporal, spatial, and potential functional relationships between OPN, Muc-1, and integrin subunits during the estrous cycle and early pregnancy. Immunoreactive Muc-1 was highly expressed at the apical surfaces of uterine luminal (LE) and glandular epithelium (GE) in both cycling and pregnant ewes but was decreased dramatically on LE by Day 9 and was nearly undetectable by Day 17 of pregnancy when intimate contact between LE and Tr begins. In contrast, integrin subunits alpha(v), alpha(4), alpha(5), beta(1), beta(3), and beta(5) were constitutively expressed on conceptus Tr and at the apical surface of uterine LE and GE in both cyclic and early pregnant ewes. The apical expression of these subunits could contribute to the apical assembly of several OPN receptors including the alpha(v)beta(3), alpha(v)beta(1), alpha(v)beta(5), alpha(4)beta(1), and alpha(5)beta(1) heterodimers on endometrial LE and GE, and conceptus Tr in sheep. Functional analysis of potential OPN interactions with conceptus and endometrial integrins was performed on LE and Tr cells in vitro using beads coated with OPN, poly-L-lysine, or recombinant OPN in which the Arg-Gly-Asp sequence was replaced with RGE or RAD. Transmembrane accumulation of talin or alpha-actinin at the apical surface of uterine LE and conceptus Tr cells in contact with OPN-coated beads revealed functional integrin activation and cytoskeletal reorganization in response to OPN binding. These results provide a physiological framework for the role of OPN, a potential mediator of implantation in sheep, as a bridge between integrin heterodimers expressed by Tr and uterine LE responsible for adhesion for initial conceptus attachment.  相似文献   

14.
Embryo implantation into the maternal uterus is a decisive step for successful mammalian pregnancy. Osteopontin (OPN) is a member of the small integrin-binding ligand N-linked glycoprotein family and participates in cell adhesion and invasion. In this study, we showed that Opn mRNA levels are up-regulated in the mouse uterus on day 4 and at the implantation sites on days 5 and 8 of pregnancy. Immunohistochemistry localized the OPN protein to the glandular epithelium on day 4 and to the decidual zone on day 8 of pregnancy. OPN mRNA and proteins are induced by in vivo and in vitro decidualization. OPN expression in the endometrial stromal cells is regulated by progesterone, a key regulator during decidualization. As a secreted protein, the protein level of OPN in the uterine cavity is enriched on day 4, and in vitro embryo culturing has indicated that OPN can facilitate blastocyst hatching and adhesion. Knockdown of OPN attenuates the adhesion and invasion of blastocysts in mouse endometrial stromal cells by suppressing the expression and enzymatic activity of matrix metalloproteinase-9 in the trophoblast. Our data indicated that OPN expression in the mouse uterus during early pregnancy is essential for blastocyst hatching and adhesion and that the knockdown of OPN in mouse endometrial stroma cells could lead to a restrained in vitro trophoblast invasion.  相似文献   

15.
Experiments were performed to examine adhesion of Rana pipiens gastrula cells and arrested hybrid gastrula cells to fibronectin-Sepharose beads (FN-beads). Blastula cells from both normal and hybrid embryos show poor adhesion to FN-beads. Beginning at the early gastrula stage, however, normal cells show a progressively increasing tendency to adhere to beads. In two different arrested hybrid embryos, cells from all developmental stages lack the ability to adhere to beads. A third hybrid shows an increase and then a decrease in cell-bead adhesion. A fourth hybrid shows a late increase in cell-bead adhesion in animal-half cells and no increase at all in vegetal-half cells. Blastula-stage cells have the ability to adhere to con A-beads and two kinds of Cytodex beads but will not adhere to FN-beads. Similarly, some cells from arrested hybrid embryos lack the ability to adhere to FN-beads but will adhere to con A-beads and cytodex beads. Observations in the light and scanning electron microscope show that normal cells form lamellipodia on FN-beads and move about actively on them, much like they do in vivo on surfaces coated by fibrils containing fibronectin. For adherent hybrid cells attached to beads, one kind does so by small pseudopodia but does not move on them and another kind forms active lamellipodia at the tips of fusiform cells and moves on beads.  相似文献   

16.
Periimplantation mouse embryos and uterine tissues were examined by means of immunohistochemistry for their expression of the Ca2+ dependent cell-cell adhesion molecules, E- and P-cadherin. E-cadherin was detected in all embryonic cells during periimplantation stages, and also detected in the uterine epithelium. When blastocysts attached to the uterine epithelium, E-cadherin was detected at implantation sites between the mural trophectoderm and the uterine epithelium on 5 day of pregnancy. P-cadherin was first detected in the mural trophectoderm on 4.5-day blastocysts, and then detected in the ectoplacental cone, giant cells and visceral endoderm from 5.5 day.
P-cadherin was also detected in the maternal uterine decidual cells from 5.5 day. After degeneration of uterine epithelial cells, giant cells make direct contact with uterine decidual cells, and P-cadherin was detected at contact sites between these cells.
Thus, the complicated process of implantation seems to be supported by temporal and spatial expression of the multiple classes of cadherins.  相似文献   

17.
The first step in the pathogenesis of enterotoxigenic Escherichia coli (ETEC) infections is adhesion of the bacterium to the small intestinal epithelium. Adhesion of ETEC is mediated by a number of antigenically distinct colonization factors, and among these, one of the most commonly detected is the non-fimbrial adhesin coli surface antigen 6 (CS6). The potential carbohydrate recognition by CS6 was investigated by binding of recombinant CS6-expressing E. coli and purified CS6 protein to a large number of variant glycosphingolipids separated on thin-layer chromatograms. Thereby, a highly specific binding of the CS6-expressing E. coli, and the purified CS6 protein, to sulfatide (SO3-3Galβ1Cer) was obtained. The binding of the CS6 protein and CS6-expressing bacteria to sulfatide was inhibited by dextran sulfate, but not by dextran, heparin, galactose 4-sulfate or galactose 6-sulfate. When using recombinantly expressed and purified CssA and CssB subunits of the CS6 complex, sulfatide binding was obtained with the CssB subunit, demonstrating that the glycosphingolipid binding capacity of CS6 resides within this subunit. CS6-binding sulfatide was present in the small intestine of species susceptible to CS6-mediated infection, e.g. humans and rabbits, but lacking in species not affected by CS6 ETEC, e.g. mice. The ability of CS6-expressing ETEC to adhere to sulfatide in target small intestinal epithelium may thus contribute to virulence.  相似文献   

18.
Spiroplasma citri is a plant pathogenic mollicute transmitted by the leafhopper vector Circulifer haematoceps. Successful transmission requires the spiroplasmas to cross the intestinal epithelium and salivary gland barriers through endocytosis mediated by receptor-ligand interactions. To characterize these interactions we studied the adhesion and invasion capabilities of a S. citri mutant using the Ciha-1 leafhopper cell line. S. citri GII3 wild-type contains 7 plasmids, 5 of which (pSci1 to 5) encode 8 related adhesins (ScARPs). As compared to the wild-type strain GII3, the S. citri mutant G/6 lacking pSci1 to 5 was affected in its ability to adhere and enter into the Ciha-1 cells. Proteolysis analyses, Triton X-114 partitioning and agglutination assays showed that the N-terminal part of ScARP3d, consisting of repeated sequences, was exposed to the spiroplasma surface whereas the C-terminal part was anchored into the membrane. Latex beads cytadherence assays showed the ScARP3d repeat domain (Rep3d) to be involved, and internalization of the Rep3d-coated beads to be actin-dependent. These data suggested that ScARP3d, via its Rep3d domain, was implicated in adhesion of S. citri GII3 to insect cells. Inhibition tests using anti-Rep3d antibodies and competitive assays with recombinant Rep3d both resulted in a decrease of insect cells invasion by the spiroplasmas. Unexpectedly, treatment of Ciha-1 cells with the actin polymerisation inhibitor cytochalasin D increased adhesion and consequently entry of S. citri GII3. For the ScARPs-less mutant G/6, only adhesion was enhanced though to a lesser extent following cytochalasin D treatment. All together these results strongly suggest a role of ScARPs, and particularly ScARP3d, in adhesion and invasion of the leafhopper cells by S. citri.  相似文献   

19.
In insects, melanotic encapsulation is an important innate immune response against large pathogens or parasites, and phenoloxidase (PO) is a key enzyme in this process. Activation of prophenoloxidase (proPO) to PO is mediated by a serine proteinase cascade. PO has a tendency to adhere to foreign surfaces including hemocyte surfaces. In this study, we showed that in the naïve larvae of the tobacco hornworm Manduca sexta, hemolymph proPO bound to the surface of granulocytes and spherule cells but not to oenocytoids, and about 10% hemocytes had proPO on their surfaces. When larvae were injected with water (injury) or microsphere beads (immune-challenge), hemolymph proPO was activated, and the number of hemocytes with surface proPO/PO increased at 12 h post-injection, but dropped to the normal level at 24 h. Hemocyte surface proPO can be activated in vitro, leading to melanization of these hemocytes. The number of melanized hemocytes from the larvae injected with water or microsphere beads significantly increased. We also showed that neither hemocytes nor cell-free plasma alone triggered melanization of immulectin-2-coated agarose beads in vitro. However, agarose beads were effectively melanized by isolated hemocytes in the presence of cell-free plasma. Our results suggest that activation of hemocyte surface proPO may initiate melanization, leading to the systemic melanization of hemocyte capsules.  相似文献   

20.
The implanting blastocyst must appose and adhere to the endometrial epithelium and, subsequently, invade it. Locally regulated uterine epithelial apoptosis induced by the embryo is a crucial step of the epithelial invasion in rodents. To address the physiological relevance of this process in humans, we investigated the effect of single human blastocysts on the regulation of apoptosis in cultured human endometrial epithelial cells (hEEC) in both apposition and adhesion phases of implantation. Here, we report a co-ordinated embryonic regulation of hEEC apoptosis. In the apposition phase, the presence of a blastocyst rescues hEEC from the apoptotic pathway. However, when the human blastocyst adheres to the hEEC monolayer, it induces a paracrine apoptotic reaction. Fas ligand (Fas-L) was present at the embryonic trophoectoderm. Fas was localized at the apical cell surface of hEEC, and flow cytometry revealed that 60% of hEEC express Fas. Neutralizing adhesion assays revealed that the Fas/Fas-L death system may be an important mechanism to cross the epithelial barrier, which is crucial for embryonic adhesion, and the manipulation of this system could have potential clinical implications as an interceptive mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号