首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we showed that overexpression of triggering receptor expressed on myeloid cells 2 (TREM2), a microglia-specific immune receptor, in the brain of a middle-aged (7 months old) APPswe/PS1dE9 mice could ameliorate Alzheimer’s disease (AD)-related neuropathology by enhancement of microglial amyloid-β (Aβ) phagocytosis. Since AD is an age-related neurodegenerative disorder, it is critical to assess the efficacy of TREM2 overexpression in aging animals with an advanced disease stage. In vivo, we employed a lentiviral strategy to overexpress TREM2 in the brain of aging (18 months old) APPswe/PS1dE9 mice, and observed its efficacy on AD-related neuropathology and cognitive functions. Afterwards, we directly isolated microglia from middle-aged and aging APPswe/PS1dE9 mice and determined effects of TREM2 overexpression on microglial Aβ phagocytosis and Aβ-binding receptors expression in vitro. In aging APPswe/PS1dE9 mice, TREM2 overexpression has no beneficial effect on AD-related neuropathology and spatial cognitive functions. Of note, in vitro experiments showed a significant reduction of Aβ phagocytosis in microglia from aging APPswe/PS1dE9 mice, possibly attributing to the declined expression of Aβ-binding receptors. Meanwhile, this phagocytic deficit in microglia from aging APPswe/PS1dE9 mice cannot be rescued by TREM2 overexpression. Taken together, our study shows that TREM2 overexpression fails to provide neuroprotection in aging APPswe/PS1dE9 mice, possibly attributing to deficits in microglial Aβ phagocytosis at the late-stage of disease progression. These findings indicate that TREM2-mediated protection in AD is at least partially dependent on the reservation of microglial phagocytic functions, emphasizing the importance of early therapeutic interventions for this devastating disease.  相似文献   

2.
Nitric oxide (NO) plays a role in a series of neurobiological functions, underlying behavior and memory. The functional role of nNOS derived NO in cognitive functions, however, is elusive. We decided to study cognitive functions in the Morris water maze (MWM) and the multiple T-maze (MTM) in 3-month-old male nNOS-knock-out mice (nNOS KO). To study the influence of neurology and behavior, we performed tests in an observational battery, the rota-rod, the elevated plus maze (EPM), the open field (OF), and a social interaction test. In the memory and relearning task of the MWM, most nNOS KO failed whereas performing better in the MTM. nNOS KO displayed significantly increased frequency of grooming, center crossings, and entries into the center in the OF. The observational battery revealed significantly increased scores for touch-escape reaction, body position, locomotion, and pelvic- and tail-elevation together with reduced vocalization. In the EPM, the time spent in the closed arm and the grooming frequency were significantly increased whereas urination was absent. We conclude that nNOS KO show impaired spatial performance in the MWM and herewith confirm the role of nNOS in cognitive functions such as processing, maintenance, and recall of memory. It must be taken into account that the major behavioral findings of increased grooming and anxiety-related behaviors may have led to impaired function in the MWM. The fact that nNOS KO performed well in the MTM, reflecting a low stress situation points to the interpretation that nNOS inhibition affects cognitive functions under stressful conditions (MWM) only.  相似文献   

3.
Brain tumor patients often develop cognitive impairment months to years after partial or fractionated whole-brain irradiation (WBI). Studies suggest that neuroinflammation and decreased hippocampal neurogenesis contribute to the pathogenesis of radiation-induced brain injury. In this study, we determined if the peroxisomal proliferator-activated receptor (PPAR) δ agonist GW0742 can prevent radiation-induced brain injury in C57Bl/6 wild-type (WT) and PPARδ knockout (KO) mice. Dietary GW0742 prevented the acute increase in IL-1β mRNA and ERK phosphorylation measured at 3 h after a single 10-Gy dose of WBI; it also prevented the increase in the number of activated hippocampal microglia 1 week after WBI. In contrast, dietary GW074 failed to prevent the radiation-induced decrease in hippocampal neurogenesis determined 2 months after WBI in WT mice or to mitigate their hippocampal-dependent spatial memory impairment measured 3 months after WBI using the Barnes maze task. PPARδ KO mice exhibited defects including decreased numbers of astrocytes in the dentate gyrus/hilus of the hippocampus and a failure to exhibit a radiation-induced increase in activated hippocampal microglia. Interestingly, the number of astrocytes in the dentate gyrus/hilus was reduced in WT mice, but not in PPARδ KO mice 2 months after WBI. These results demonstrate that, although dietary GW0742 prevents the increase in inflammatory markers and hippocampal microglial activation in WT mice after WBI, it does not restore hippocampal neurogenesis or prevent early delayed hippocampal-dependent cognitive impairment after WBI. Thus, the exact relationship between radiation-induced neuroinflammation, neurogenesis, and cognitive impairment remains elusive.  相似文献   

4.
The P2X7 receptor is an ATP-gated cation channel expressed by a number of cell types. We have shown previously that disruption of P2X7 receptor function results in downregulation of osteogenic markers and upregulation of adipogenic markers in calvarial cell cultures. In the present study, we assessed whether loss of P2X7 receptor function results in changes to adipocyte distribution and lipid accumulation in vivo. Male P2X7 loss-of-function (KO) mice exhibited significantly greater body weight and epididymal fat pad mass than wild-type (WT) mice at 9 months of age. Fat pad adipocytes did not differ in size, consistent with adipocyte hyperplasia rather than hypertrophy. Histological examination revealed ectopic lipid accumulation in the form of adipocytes and/or lipid droplets in several non-adipose tissues of older male KO mice (9–12 months of age). Ectopic lipid was observed in kidney, extraorbital lacrimal gland and pancreas, but not in liver, heart or skeletal muscle. Specifically, lacrimal gland and pancreas from 12-month-old male KO mice had greater numbers of adipocytes in perivascular, periductal and acinar regions. As well, lipid droplets accumulated in the renal tubular epithelium and lacrimal acinar cells. Blood plasma analyses revealed diminished total cholesterol levels in 9- and 12-month-old male KO mice compared with WT controls. Interestingly, no differences were observed in female mice. Moreover, there were no significant differences in food consumption between male KO and WT mice. Taken together, these data establish novel in vivo roles for the P2X7 receptor in regulating adipogenesis and lipid metabolism in an age- and sex-dependent manner.  相似文献   

5.
Nitric oxide is implicated in modulation of memory and pharmacological as well as genetic inhibition of neuronal nitric oxide synthase (nNOS) leads to impaired cognitive function. We therefore decided to study learning and memory functions and cognitive flexibility in the Morris water maze (MWM) in 1-month-old male mice lacking nNOS (nNOS KO). Hippocampal protein profiling was carried out to possibly link protein derangement to impaired cognitive function. Two-dimensional gel electrophoresis with in-gel digestion of spots and subsequent MALDI-TOF identification of proteins and quantification of proteins using specific software was applied. In the memory as well as in the relearning task of the MWM, most of the nNOS KO failed to find the submerged platform within a given time. Proteomic evaluation of hippocampus, the main anatomical structure computing cognitive functions, revealed aberrant expression of a synaptosomal associated protein of the exocytotic machinery (NSF), glycolytic enzymes, chaperones 78 kDa glucose-regulated protein, T-complex protein 1; the signaling structure guanine nucleotide-binding protein G(I)/G(S)/G(T) and heterogeneous nuclear ribonucleoprotein H of the splicing machinery. We conclude that nNOS knockout mice show impaired spatial performance in the MWM, a finding that may be either linked to direct effects of nNOS/NO and/or to specific hippocampal protein derangements.  相似文献   

6.

Transgenic and knockout animal models are widely used to investigate the role of receptors, signaling pathways, and other peptides and proteins. Varying results are often published on the same model from different groups, and much effort has been put into understanding the underlying causes of these sometimes conflicting results. Recently, it has been shown that a P2X4R knockout model carries a so-called passenger mutation in the P2X7R gene, potentially affecting the interpretation of results from studies using this animal model. We therefore report this case to raise awareness about the potential pitfalls using genetically modified animal models, especially within P2 receptor research. Although purinergic signaling has been recognized as an important contributor to the regulation of bone remodeling, the process that maintains the bone quality during life, little is known about the role of the P2X4 receptor (P2X4R) in regulation of bone remodeling in health and disease. To address this, we analyzed the bone phenotype of P2rx4tm1Rass (C57BL/6J) knockout mice and corresponding wildtype using microCT and biomechanical testing. Overall, we found that the P2X4R knockout mice displayed improved bone microstructure and stronger bones in an age- and gender-dependent manner. While cortical BMD, trabecular BMD, and bone volume were higher in the 6-month-old females and 3-month-old males, this was not the case for the 3-month-old females and the 6-month-old males. Bone strength was only affected in the females. Moreover, we found that P2X4R KO mice carried the P2X7 receptor 451P wildtype allele, whereas the wildtype mice carried the 451L mutant allele. In conclusion, this study suggests that P2X4R could play a role in bone remodeling, but more importantly, it underlines the potential pitfalls when using knockout models and highlights the importance of interpreting results with great caution. Further studies are needed to verify any specific effects of P2X4R on bone metabolism.

  相似文献   

7.
Impaired spatial learning is a prominent deficit in fragile X syndrome (FXS). Previous studies using the Fmr1 knockout (KO) mouse model of FXS have not consistently reported a deficit in spatial learning. Fmr1 KO mice bred onto an albino C57BL/6J‐Tyrc‐Brd background showed significant deficits in several primary measures of performance during place navigation and probe trials in the Morris water maze. Fmr1 KO mice were also impaired during a serial reversal version of the water maze task. We examined fear conditioning as an additional cognitive screen. Knockout mice exhibited contextual memory deficits when trained with unsignaled shocks; however, deficits were not found in a separate group of KO mice trained with signaled shocks. No potentially confounding genotypic differences in locomotor activity were observed. A decreased anxiety‐like profile was apparent in the open field, as others have noted, and also in the platform test. Also as previously reported, startle reactivity to loud auditory stimuli was decreased, prepulse inhibition and social interaction increased in KO mice. Female Fmr1 KO mice were tested along with male KO mice in all assays, except for social interaction. The female and male KO exhibited very similar impairments indicating that sex does not generally drive the behavioral symptoms of the disorder. Our results suggest that procedural factors, such as the use of albino mice, may help to reliably detect spatial learning and memory impairments in both sexes of Fmr1 KO mice, making it more useful for understanding FXS and a platform for evaluating potential therapeutics.  相似文献   

8.
The P2X7 nucleotide receptor (P2X7R) is an ATP-gated ion channel expressed in many cell types including osteoblasts and osteocytes. Mice with a null mutation of P2X7R have osteopenia in load bearing bones, suggesting that the P2X7R may be involved in the skeletal response to mechanical loading. We found the skeletal sensitivity to mechanical loading was reduced by up to 73% in P2X7R null (knock-out (KO)) mice. Release of ATP in the primary calvarial osteoblasts occurred within 1 min of onset of fluid shear stress (FSS). After 30 min of FSS, P2X7R-mediated pore formation was observed in wild type (WT) cells but not in KO cells. FSS increased prostaglandin (PG) E2 release in WT cells but did not alter PGE2 release in KO cells. Studies using MC3T3-E1 osteoblasts and MLO-Y4 osteocytes confirmed that PGE2 release was suppressed by P2X7R blockade, whereas the P2X7R agonist BzATP enhanced PGE2 release. We conclude that ATP signaling through P2X7R is necessary for mechanically induced release of prostaglandins by bone cells and subsequent osteogenesis.  相似文献   

9.
The ATP-gated P2X(7) receptor (P2X(7)R) was shown to be an important mediator of inflammation and inflammatory pain through its regulation of IL-1β processing and release. Trichinella spiralis-infected mice develop a postinflammatory visceral hypersensitivity that is reminiscent of the clinical features associated with postinfectious irritable bowel syndrome. In this study, we used P2X(7)R knockout mice (P2X(7)R(-/-)) to investigate the role of P2X(7)R activation in the in vivo production of IL-1β and the development of postinflammatory visceral hypersensitivity in the T. spiralis-infected mouse. During acute nematode infection, IL-1β-containing cells and P2X(7)R expression were increased in the jejunum of wild-type (WT) mice. Peritoneal and serum IL-1β levels were also increased, which was indicative of elevated IL-1β release. However, in the P2X(7)R(-/-) animals, we found that infection had no effect upon intracellular, plasma, or peritoneal IL-1β levels. Conversely, infection augmented peritoneal TNF-α levels in both WT and P2X(7)R(-/-) animals. Infection was also associated with a P2X(7)R-dependent increase in extracellular peritoneal lactate dehydrogenase, and it triggered immunological changes in both strains. Jejunal afferent fiber mechanosensitivity was assessed in uninfected and postinfected WT and P2X(7)R(-/-) animals. Postinfected WT animals developed an augmented afferent fiber response to mechanical stimuli; however, this did not develop in postinfected P2X(7)R(-/-) animals. Therefore, our results demonstrated that P2X(7)Rs play a pivotal role in intestinal inflammation and are a trigger for the development of visceral hypersensitivity.  相似文献   

10.
Glutamate delta-1 (GluD1) receptors are expressed throughout the forebrain during development with high levels in the hippocampus during adulthood. We have recently shown that deletion of GluD1 receptor results in aberrant emotional and social behaviors such as hyperaggression and depression-like behaviors and social interaction deficits. Additionally, abnormal expression of synaptic proteins was observed in amygdala and prefrontal cortex of GluD1 knockout mice (GluD1 KO). However the role of GluD1 in learning and memory paradigms remains unknown. In the present study we evaluated GluD1 KO in learning and memory tests. In the eight-arm radial maze GluD1 KO mice committed fewer working memory errors compared to wildtype mice but had normal reference memory. Enhanced working memory in GluD1 KO was also evident by greater percent alternation in the spontaneous Y-maze test. No difference was observed in object recognition memory in the GluD1 KO mice. In the Morris water maze test GluD1 KO mice showed no difference in acquisition but had longer latency to find the platform in the reversal learning task. GluD1 KO mice showed a deficit in contextual and cue fear conditioning but had normal latent inhibition. The deficit in contextual fear conditioning was reversed by D-Cycloserine (DCS) treatment. GluD1 KO mice were also found to be more sensitive to foot-shock compared to wildtype. We further studied molecular changes in the hippocampus, where we found lower levels of GluA1, GluA2 and GluK2 subunits while a contrasting higher level of GluN2B in GluD1 KO. Additionally, we found higher postsynaptic density protein 95 (PSD95) and lower glutamate decarboxylase 67 (GAD67) expression in GluD1 KO. We propose that GluD1 is crucial for normal functioning of synapses and absence of GluD1 leads to specific abnormalities in learning and memory. These findings provide novel insights into the role of GluD1 receptors in the central nervous system.  相似文献   

11.
Transient global ischemia (which closely resembles clinical situations such as cardiac arrest, near drowning or severe systemic hypotension during surgical procedures), often induces delayed neuronal death in the brain, especially in the hippocampal CA1 region. The mechanism of ischemia/reperfusion (I/R) injury is not fully understood. In this study, we have shown that the P2X7 receptor antagonist, BBG, reduced delayed neuronal death in the hippocampal CA1 region after I/R injury; P2X7 receptor expression levels increased before delayed neuronal death after I/R injury; inhibition of the P2X7 receptor reduced I/R-induced microglial microvesicle-like components, IL-1β expression, P38 phosphorylation, and glial activation in hippocampal CA1 region after I/R injury. These results indicate that antagonism of the P2X7 receptor and signaling pathways of microglial MV shedding, such as src-protein tyrosine kinase, P38 MAP kinase and A-SMase, might be a promising therapeutic strategy for clinical treatment of transient global cerebral I/R injury.  相似文献   

12.
13.
It has been suggested that propofol can modulate microglial activity and hence may have potential roles against neuroinflammation following brain ischemic insult. However, whether and how propofol can inhibit post‐cardiac arrest brain injury via inhibition of microglia activation remains unclear. A rat model of asphyxia cardiac arrest (CA) was created followed by cardiopulmonary resuscitation. CA induced marked microglial activation in the hippocampal CA1 region, revealed by increased OX42 and P2 class of purinoceptor 7 (P2X7R) expression, as well as p38 MAPK phosphorylation. Morris water maze showed that learning and memory deficits following CA could be inhibited or alleviated by pre‐treatment with the microglial inhibitor minocycline or propofol. Microglial activation was significantly suppressed likely via the P2X7R/p‐p38 pathway by propofol. Moreover, hippocampal neuronal injuries after CA were remarkably attenuated by propofol. In vitro experiment showed that propofol pre‐treatment inhibited ATP‐induced microglial activation and release of tumor necrosis factor‐α and interleukin‐1β. In addition, propofol protected neurons from injury when co‐culturing with ATP‐treated microglia. Our data suggest that propofol pre‐treatment inhibits CA‐induced microglial activation and neuronal injury in the hippocampus and ultimately improves cognitive function.

  相似文献   


14.
We assessed baseline and KCl-stimulated glutamate release by using microdialysis in freely moving young adult (7 months) and middle-aged (17 months) transgenic mice carrying mutated human amyloid precursor protein and presenilin genes (APdE9 mice) and their wild-type littermates. In addition, we assessed the age-related development of amyloid pathology and spatial memory impaired in the water maze and changes in glutamate transporters. APdE9 mice showed gradual spatial memory impairment between 6 and 15 months of age. The stimulated glutamate release declined very robustly in 17-month-old APdE9 mice as compared to 7-month-old APdE9 mice. This age-dependent decrease in stimulated glutamate release was also evident in wild-type mice, although it was not as robust as in APdE9 mice. When compared to individual baselines, all aged wild-type mice showed 25% or greater increase in glutamate release upon KCl stimulation, but none of the aged APdE9 mice. There was an age-dependent decline in VGLUT1 levels, but not in the levels of VGLUT2, GLT-1 or synaptophysin. Astrocyte activation as measured by glial acidic fibrillary protein was increased in middle-aged APdE9 mice. Blunted pre-synaptic glutamate response may contribute to memory deficit in middle-aged APdE9 mice.  相似文献   

15.
Fragile X syndrome (FXS) is caused by suppressed expression of fragile X mental retardation protein (FMRP), which results in intellectual disability accompanied by many variably manifested characteristics, such as hyperactivity, seizures and autistic‐like behaviors. Treatment of mice that lack FMRP, Fmr1 knockout (KO) mice, with lithium has been reported to ameliorate locomotor hyperactivity, prevent hypersensitivity to audiogenic seizures, improve passive avoidance behavior and attenuate sociability deficits. To focus on the defining characteristic of FXS, which is cognitive impairment, we tested if lithium treatment ameliorated impairments in four cognitive tasks in Fmr1 KO mice, tested if the response to lithium differed in adolescent and adult mice and tested if therapeutic effects persisted after discontinuation of lithium administration. Fmr1 KO mice displayed impaired cognition in the novel object detection task, temporal ordering for objects task and coordinate and categorical spatial processing tasks. Chronic lithium treatment of adolescent (from 4 to 8 weeks of age) and adult (from 8 to 12 weeks of age) mice abolished cognitive impairments in all four cognitive tasks. Cognitive deficits returned after lithium treatment was discontinued for 4 weeks. These results show that Fmr1 KO mice exhibit severe impairments in these cognitive tasks, that lithium is equally effective in normalizing cognition in these tasks whether it is administered to young or adult mice and that lithium administration must be continued for the cognitive improvements to be sustained. These findings provide further evidence that lithium administration may be beneficial for individuals with FXS .  相似文献   

16.
Recent studies have shown that a high-fat diet (HFD) is involved in both metabolic dysfunction and cognitive deficiency and that docosahexaenoic-acid-enriched phospholipids (DHA-PLs) have beneficial effects on obesity and cognitive impairment. However, there are only a few studies comparing differences between DHA-PC and DHA-PS in HFD-induced Alzheimer's disease (AD) models. After 8 weeks feeding with HFD, 10-month-old SAMP8 mice were fed with 1% (w/w) DHA-PC or 1% DHA-PS (biosynthesized from DHA-PC) for 8 weeks; we then tested the behavioral performances in the Barnes maze test and Morris maze test. The changes of the generation and accumulation of Aβ, oxidative stress, apoptosis, neuroinflammation and neurotrophic factors were also measured. The results indicated that both DHA-PC and DHA-PS significantly improved the metabolic disorders and cognitive deficits. Both DHA-PC and DHA-PS could ameliorate oxidative stress, and DHA-PS presented more notable benefits than DHA-PC on Aβ pathology, mitochondrial damage, neuroinflammation and neurotrophic factors; DHA-PS was for the first time found to increase the production of insoluble Aβ (less pathogenic) in this AD model. These data suggest that DHA-PLs can significantly improve cognitive deficiency, and the molecular mechanisms for this closely relate to the phospholipid polar groups.  相似文献   

17.
Understanding the factors that contribute to age-related cognitive decline is imperative, particularly as age is the major risk factor for several neurodegenerative disorders. Levels of several cytokines increase in the brain during aging, including IL-1β, whose levels positively correlate with cognitive deficits. Previous reports show that reducing the activity of the mammalian target of rapamycin (mTOR) extends lifespan in yeast, nematodes, Drosophila, and mice. It remains to be established, however, whether extending lifespan with rapamycin is accompanied by an improvement in cognitive function. In this study, we show that 18-month-old mice treated with rapamycin starting at 2 months of age perform significantly better on a task measuring spatial learning and memory compared to age-matched mice on the control diet. In contrast, rapamycin does not improve cognition when given to 15-month-old mice with pre-existing, age-dependent learning and memory deficits. We further show that the rapamycin-mediated improvement in learning and memory is associated with a decrease in IL-1β levels and an increase in NMDA signaling. This is the first evidence to show that a small molecule known to increase lifespan also ameliorates age-dependent learning and memory deficits.  相似文献   

18.
The P2X7 nucleotide receptor is an ATP-gated ion channel expressed widely in cells of hematopoietic origin. Our purpose was to explore the involvement of the P2X7 receptor in bone development and remodeling by characterizing the phenotype of mice genetically modified to disrupt the P2X7 receptor [knockout (KO)]. Femoral length did not differ between KO and wild-type (WT) littermates at 2 or 9 months of age, indicating that the P2X7 receptor does not regulate longitudinal bone growth. However, KO mice displayed significant reduction in total and cortical bone content and periosteal circumference in femurs, and reduced periosteal bone formation and increased trabecular bone resorption in tibias. Patch clamp recording confirmed expression of functional P2X7 receptors in osteoclasts from WT but not KO mice. Osteoclasts were present in vivo and formed in cultures of bone marrow from KO mice, indicating that this receptor is not essential for fusion of osteoclast precursors. Functional P2X7 receptors were also found in osteoblasts from WT but not KO mice, suggesting a direct role in bone formation. P2X7 receptor KO mice demonstrate a unique skeletal phenotype that involves deficient periosteal bone formation together with excessive trabecular bone resorption. Thus, the P2X7 receptor represents a novel therapeutic target for the management of skeletal disorders such as osteoporosis.  相似文献   

19.
Memory impairment is the most common symptom in patients with Alzheimer’s disease. The purpose of this study is to evaluate the memory enhancing effects of P7C3, a recently identified compound with robust proneurogenic and neuroprotective effects, on the cognitive impairment induced by scopolamine, a muscarinic acetylcholine receptor antagonist. Different behavior tests including the Y-maze, Morris water maze, and passive avoidance tests were performed to measure cognitive functions. Scopolamine significantly decreased the spontaneous alternation and step-through latency of C57BL/6J mice in Y-maze test and passive avoidance test, whereas increased the time of mice spent to find the hidden platform in Morris water maze test. Importantly, intraperitoneal administration of P7C3 effectively reversed those Scopolamine-induced cognitive impairments in C57BL/6J mice. Furthermore, P7C3 treatment significantly enhanced the level of brain-derived neurotrophic factor (BDNF) signaling pathway in the cortex and hippocampus, and the usage of selective BDNF signaling inhibitor fully blocked the anti-amnesic effects of P7C3. Therefore, these findings suggest that P7C3 could improve the scopolamine-induced learning and memory impairment possibly through activation of BDNF signaling pathway, thereby exhibiting a cognition-enhancing potential.  相似文献   

20.
The P2X7 receptor (P2X7R) is an ATP-gated ion channel highly expressed in microglia. P2X7R plays important roles in inflammatory responses in the brain. However, little is known about the mechanisms regulating its functions in microglia. Lysophosphatidylcholine (LPC), an inflammatory phospholipid that promotes microglial activation, may have some relevance to P2X7R signaling in terms of microglial function. In this study, we examined its effects on P2X7R signaling in a mouse microglial cell line (MG6) and primary microglia. LPC facilitated the sustained increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) through P2X7R channels activated by ATP or BzATP. The potentiated increase in [Ca(2+)](i) was actually inhibited by P2X7R antagonists, brilliant blue G and oxidized ATP. The potentiating effect of LPC was not observed with P2Y receptor systems, which are also expressed in MG6 cells. G2A, a receptor for LPC, was expressed in MG6 cells, but not involved in the facilitating effect of LPC on the P2X7R-mediated change in [Ca(2+)](i). Furthermore, LPC enhanced the P2X7R-associated formation of membrane pores and the activation of p44/42 mitogen-activated protein kinase. These results suggest that LPC may regulate microglial functions in the brain by enhancing the sensitivity of P2X7R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号