首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human embryonal carcinoma cells could serve as a useful model system for analysis of early human development. A limited number of human embryonal carcinoma cell lines have been generated from in vivo tumors. We report here that alpha-difluoromethylornithine, a specific enzyme-activated inhibitor of ornithine decarboxylase activity, can induce differentiation in human embryonal carcinoma cells. The differentiated phenotype could be distinguished from undifferentiated cells by altered cellular morphology, biochemical and cell surface antigenic properties. These results suggest that alterations in the intracellular levels of polyamines may play a role in human embryonal carcinoma cell differentiation, and possibly human embryogenesis.  相似文献   

2.
Retinoic acid (RA) treatment of embryonal carcinoma cell line NTERA-2 clone D1 (NT2/D1) induces growth arrest and terminal differentiation along the neuronal pathway. In the present study, we provide a functional link between RA and p27 function in the control of neuronal differentiation in NT2/D1 cells. We report that RA enhances p27 expression, which results in increased association with cyclin E/cyclin-dependent kinase 2 complexes and suppression of their activity; however, antisense clones, which have greatly reduced RA-dependent p27 inducibility (NT2-p27AS), continue to synthesize DNA and are unable to differentiate properly in response to RA as determined by lack of neurite outgrowth and by the failure to modify surface antigens. As to the mechanism involved in RA-dependent p27 upregulation, our data support the concept that RA reduces p27 protein degradation through the ubiquitin/proteasome-dependent pathway. Taken together, these findings demonstrate that in embryonal carcinoma cells, p27 expression is required for growth arrest and proper neuronal differentiation.  相似文献   

3.
Besides nuclear retinoid receptors and cellular retinoid binding proteins also retinoic acid (RA)-synthesizing enzymes (using all-trans-retinal as substrate) and RA-catabolizing enzymes (producing hydroxylated products) may explain the specific effects of retinoids. In the past we have established an active role for 4-hydroxy-RA and 4-oxo-RA, which originally were considered to be inactive retinoids, but in fact are highly active modulators of positional specification in Xenopus development. Here we present evidence for a specific role of hydroxylated RA metabolites in the onset of neuronal differentiation. 4-Hydroxy- and 18-hydroxy-RA are products of the hydroxylation of RA by a novel cytochrome P450 (CYP)-type of enzyme, CYP26, expression of which is rapidly induced by RA. P19 embryonal carcinoma (EC) cell lines stably expressing hCYP26 undergo extensive and rapid neuronal differentiation in monolayer at already low concentrations of RA, while normally P19 cells under these conditions differentiate only in endoderm-like cells. Our results indicate that the effects on growth inhibition and RARbeta transactivation of P19 EC cells are mediated directly by RA, while the onset of neuronal differentiation and the subsequent expression of neuronal markers is mediated by hCYP26 via the conversion of RA to its hydroxylated products.  相似文献   

4.
We have found that the gene expression of the ninth member of the fibroblast growth factor (FGF) family, FGF9 was induced during retinoic acid(RA)-induced neuronal differentiation of murine embryonal carcinoma P19 cells. We have reported here the nucleotide sequence of the mouse FGF9 cDNA. The murine cDNA showed 92.4% nucleotide sequence homology to the human FGF9 cDNA and 98.2% homology to that of rats. This mouse FGF9 cDNA encoded a polypeptide consisting of 208 amino acids with amino acid sequence identical to that of rats. Only one amino acid was replaced compared to the human homolog. The highly conserved sequence homology of FGF9 suggests its functional importance. FGF9 was originally isolated from a culture medium of a human glioma cell line as a growth-promoting factor for glial cells [5]. Upon induction of neuronal differentiation by forming cell aggregates with 10−6 M RA, the gene expression of FGF9 was increased biphasically during the first 96 hours when cells were aggregating and from 168 hours to 192 hours followed by plating onto a tissue culture dish as glia-like cells proliferated. Neither undifferentiated P19 cells nor the cells aggregated without RA remaining undifferentiated expressed FGF9. This indicates that RA regulates the gene expression of FGF9 that may play an important role in neuronal differentiation in both early and late developmental process.  相似文献   

5.
Murine embryonal carcinoma (EC) cells are induced to differentiate when cultured in the presence of retinoic acid (RA). Whereas the EC cells have a high plating efficiency, the differentiated cells have little or no colony-forming ability under the same conditions. We have assumed that the loss of colony-forming ability following exposure of EC cells to RA corresponds to the irreversible commitment of EC cells to differentiate. We found that uncommitted EC cells persist in RA-treated aggregates of EC cells and that the proportion of EC cells stabilizes at a level inversely related to the RA concentration. Both experimental evidence and mathematical modelling results are consistent with the interpretation that there is a dynamic equilibrium achieved by a balance between the processes of EC cell proliferation and differentiation. Since different cell types are induced by different RA concentrations, our results suggest that the commitment to differentiate is not related in any simple way to the developmental program which ensues.  相似文献   

6.
Differentiation of human embryonic stem (ES) cells and embryonal carcinoma (EC) cells provides an in vitro model to study the process of neuronal differentiation. Retinoic acid (RA) is frequently used to promote neural differentiation of pluripotent cells under a wide variety of culture conditions. Through systematic comparison of differentiation conditions we demonstrate that RA induced neuronal differentiation of human ES and EC cells requires prolonged RA exposure and intercellular communication mediated by high cell density. These parameters are necessary for the up-regulation of neural gene expression (SOX2, PAX6 and NeuroD1) and the eventual appearance of neurons. Forced over-expression of neither SOX2 nor NEUROD1 was sufficient to overcome the density dependency of neuronal differentiation. Furthermore, inhibition of GSK3β activity blocked the ability of RA to direct cell differentiation along the neural lineage, suggesting a role for appropriately regulated WNT signalling. These data indicate that RA mediated neuronal differentiation of human EC and ES cell lines is not a cell autonomous program but comprises of a multi-staged program that requires intercellular input.  相似文献   

7.
Murine embryonal carcinoma cells can be induced to differentiate in vitro by various physical and chemical means. We report here that inhibition of ornithine decarboxylase activity with a specific enzyme-activated inhibitor, alpha-difluoromethylornithine, can induce differentiation in embryonal carcinoma cells. The differentiated phenotype can be distinguished from undifferentiated embryonal carcinoma cells by altered cellular morphology, biochemical and cell surface antigenic properties. These results suggest that alterations in the levels of cellular polyamines may play a role in embryonal carcinoma cell differentiation.  相似文献   

8.
9.
Induced muscle differentiation in an embryonal carcinoma cell line.   总被引:16,自引:7,他引:16       下载免费PDF全文
Cells of the teratocarcinoma-derived line P19S1801A1 (01A1) are pluripotent embryonal carcinoma cells and can be induced to differentiate when aggregated and exposed to dimethyl sulfoxide. Many nonneural cell types appear in dimethyl sulfoxide-treated cultures, cardiac and skeletal muscle being the most easily identified. We have used immunofluorescence procedures with monoclonal antibodies directed against muscle myosin to confirm and quantitate the number of muscle cells formed. A monoclonal antibody reactive with an embryonal carcinoma-specific surface antigen was used to confirm the disappearance of undifferentiated cells after dimethyl sulfoxide treatment. Cardiac muscle cells developed within 4 to 5 days of drug exposure, but skeletal muscle cells did not become evident until 7 to 8 days. We have isolated a mutant cell line (D3) which appears to be incapable of muscle development but which does form neurons and glial cells when exposed to high retinoic acid concentrations. We propose that this system will be useful for investigation of the means by which pluripotent cells become committed to development along the striated muscle lineages.  相似文献   

10.
The gigaseal patch clamp technique was used to investigate the electrophysiological properties of a line of embryonal carcinoma cells (PCC4) that were induced to undergo neuronal differentiation. A large increase in number of voltage-dependent potassium and sodium channels was observed during differentiation. The pharmacology and kinetics of the macroscopic sodium and potassium currents in the differentiated cells closely resembled those of the rapid inward sodium current and the delayed rectifier, respectively. The kinetic behavior of single-channel potassium currents was consistent with the properties of the macroscopic delayed rectifier current.  相似文献   

11.
Several subclones of the human embryonal carcinoma (EC) cell line Tera-2 can be induced to differentiate in monolayer culture by retinoic acid (RA) to a flattened cell type with reduced growth rate. Using a method based on the transition probability model, we have analysed changes in cell cycle kinetics of Tera-2 cells during the differentiation process. Growth inhibition was shown to occur without a lag period and to be partly due to an increase in the duration of the S-phase, but with a relatively greater contribution from an increase in the duration of G1-phase. Since the fraction of the cell population in the G1-phase then doubled, cells accumulated in this part of the cycle. In contrast, the reduced proliferation rate of two murine EC cell lines, PC13 and P19, treated with RA occurs after a lag period of about two cell cycles and is mainly attributable to an increase in the duration of the S-phase. The results illustrate a differential response of human and murine EC cells to growth regulation by RA and again emphasize that although the stem cells of murine teratocarcinomas may provide a useful model, they are not identical to their human counterparts.  相似文献   

12.
We have previously shown that the P19 line of embryonal carcinoma cells develops into neurons, astroglia, and fibroblasts after aggregation and exposure to retinoic acid. The neurons were initially identified by their morphology and by the presence of neurofilaments within their cytoplasm. We have more fully documented the neuronal nature of these cells by showing that their cell surfaces display tetanus toxin receptors, a neuronal cell marker, and that choline acetyl-transferase and acetyl cholinesterase activities appear coordinately in neuron-containing cultures. Several days before the appearance of neurons, there is a marked decrease in the amount of an embryonal carcinoma surface antigen, and at the same time there is a substantial decrease in the volumes of individual cells. Various retinoids were able to induce the development of neurons in cultures of aggregated P19 cells, but it did not appear that polyamine metabolism was involved in the effect. We have isolated a mutant clone which does not differentiate in the presence of any of the drugs which are normally effective in inducing differentiation of P19 cells. This mutant and others may help to elucidate the chain of events triggered by retinoic acid and other differentiation-inducing drugs.  相似文献   

13.
Murine embryonal carcinoma cells can differentiate into a varied spectrum of cell types. We observed the abundant and precocious development of neuronlike cells when embryonal carcinoma cells of various pluripotent lines were aggregated and cultured in the presence of nontoxic concentrations of retinoic acid. Neuronlike cells were also formed in retinoic acid-treated cultures of the embryonal carcinoma line, P19, which does not differentiate into neurons in the absence of the drug. The neuronal nature of these cells was confirmed by their staining with antiserum directed against neurofilament protein in indirect immunofluorescence experiments. Retinoic acid-treated cultures also contained elevated acetylcholinesterase activity. Glial cells, identified by immunofluorescence analysis of their intermediate filaments, and a population of fibroblastlike cells were also present in retinoic acid-treated cultures of P19 cells. We did not observe embryonal carcinoma, muscle, or epithelial cells in these cultures. Neurons and glial cells appeared in cultures exposed to retinoic acid for as little as 48 h. We found no evidence for retinoic acid toxicity, suggesting that the effect of the drug was to induce the development of neurons and glia rather than to select against cells differentiating along other developmental pathways.  相似文献   

14.
The ability of retinoic acid (RA) to induce differentiation in embryonal carcinoma (EC) cells was examined by growing mouse F9 cells in a medium containing 1 μM RA. The altered properties of the cells became apparent after a lag period of approx. 24 h and were fully expressed after 5 days. The RA-induced phenotype was characterized by changes in cell morphology, slowing of the rate of cell multiplication, reduced DNA and protein synthesis, altered pattern of polypeptide synthesis and changes in cell surface components. The slowing of cell multiplication and general reduction in the rate of protein synthesis was paralleled by changes in the relative rates at which different polypeptides were synthesized. Two-dimensional gel electrophoretic analysis of [35S]methioninelabelled cell proteins showed an altered relative synthesis of at least fifty polypeptides. The relative rate of synthesis of two components of the cytoskeleton identified as vimentin and tropomyosin were shown to increase.  相似文献   

15.
The F3 molecule is a member of the immunoglobulin superfamily anchored to membranes by a glycane-phosphatidylinositol, and is predominantly expressed on subsets of axons of the central and peripheral nervous system. In a previous paper (Gennarini, G., P. Durbec, A. Boned, G. Rougon, and C. Goridis. 1991. Neuron. 6:595-606), we have established that F3 fulfills the operational definition of a cell adhesion molecule and that it stimulates neurite outgrowth when presented to sensory neurons as a surface component of transfected CHO cells. In the present study the question as to whether soluble forms of F3 would be functionally active was addressed in vitro on cultures of mouse dorsal root ganglion neurons. We observed that preparations enriched in soluble F3 had no effect on neuron attachment but enhanced neurite initiation and neurite outgrowth in a dose-dependent manner. By contrast, soluble NCAM-120 does not have any measurable effect on these phenomena. Addition of anti-F3 monovalent antibodies reduced the number of process-bearing neurons and the neuritic output per neuron to control values. Addition of cerebrospinal fluid, a natural source of soluble F3, also stimulated neurite extension, and this effect was partially blocked by anti-F3 antibodies. Our results suggest that the soluble forms of adhesive proteins with neurite outgrowth-promoting properties could act at a distance from their site of release in a way reminiscent of growth and trophic factors.  相似文献   

16.
Murine embryonal carcinoma (EC) cells can be stimulated to differentiate by several chemical inducers. Since the response of EC cells to induction is likely to occur shortly after exposure to the inducer, we report here the changes that occur in polyamine levels in a number of EC cell lines shortly after exposure to two chemical stimuli, alpha-difluoromethylornithine (DFMO) and retinoic acid (RA). Our results suggest that polyamine levels are important in determining the state of EC cell differentiation, but that reduction in these levels alone is not sufficient to induce differentiation in all the EC cell lines tested. Also, it is apparent that RA does influence levels of polyamines. However, this influence does not seem to be mediated through direct interaction with ODCase.  相似文献   

17.
Retinoic acid (RA) inhibits growth, increases the cytokeratin content, and alters the cytoskeleton of the human cervical cell line NHIK 3025. Using RA-treated NHIK 3025 cells as immunogen we prepared murine monoclonal antibodies (IgG1) which recognized an RA-induced cell-surface antigen which could not be detected in untreated NHIK 3025 cells. Analysis of the Triton soluble proteins by SDS-gel electrophoresis and immunoblotting revealed that the cell-surface antigen is a 140-kDa glycoprotein (gp140). gp140 was also shown to be induced by RA in HeLa S3 cells and constitutively expressed in the human trophoblast cell line BeWo. gp140 was also detected in other human epithelial cell lines, but not in human hematopoietic cells. Expression of gp140 was induced in HeLa S3 cells by nanomolar concentrations of RA, and in NHIK 3025 cells by micromolar amounts (1-10 microM). The glycoprotein was detectable 3-6 h following exposure to RA and its expression was reversible upon removal of RA from the medium. Our results indicate that gp140 is a newly identified RA-inducible epithelial membrane glycoprotein which may represent a phenotypic differentiation marker for epithelial cells.  相似文献   

18.
Abstract. A new clone of the mouse embryonal carcinoma cell line 1003 (EC 1003.16) can be maintained in an undifferentiated state in serum-containing medium. Shifting these cells to serum-free, hormonally defined medium causes them to differentiate morphologically and acquire a number of molecular properties characteristic of neurons. Whereas undifferentiated cells lack the NILE/L1 glycoprotein, expression of this neuronal cell adhesion niolecule is induced in the differentiating cells. Message for NILE/L1 becomes detectable after 5 days in serum-free medium, and cell-surface NILE/L1 can first be seen at this same time. Changes in two other cell adhesion molecules occur in parallel with the induction of NILE/L1. Fibronectin receptor is present on un- differentiated cells, but is down-regulated by the differentiating neurons. The neural cell adhesion molecule (N- CAM) undergoes a shift from the very adhesive adult form to the less adhesive, highly sialylated embryonic form. These changes would appear to emphasize the role of NILE/L1 in adhesive interactions involving differentiating neurons. Some changes in ganglioside expression also occur during EC 1003.16 differentiation. Undifferentiated cells express the D 1.1 ganglioside but lack gangliosides that are reactive with the monoclonal antibody A,B, Differentiating cells lose D 1.1 and become A,B,-positive. Since D 1.1 is characteristic of undifferentiated neuroepithelial cells and A,B, reactivity is a marker for several types of differentiated neurons, these changes in vitro appear to mimic events that occur in vivo.  相似文献   

19.
Analysis of a nontumorigenic embryonal carcinoma cell line   总被引:1,自引:0,他引:1  
Embryonal carcinoma (EC) cells have proven to be of particular value in studies of both oncogenesis and mammalian development as well as in evaluating the relationship between these two phenomena. We have infected EC cells with a retrovirus in an effort to obtain by insertional mutagenesis cell lines defective in either differentiative or oncogenic potentials. One such cell line, identified originally by its unique morphological phenotype, is abnormal with respect to both parameters. These cells do not differentiate along typical EC cell lineages, possibly having lost their ability to elaborate endodermal derivatives. They do, however, retain certain cell surface markers characteristic of EC cells and lose these markers after exposure to retinoic acid. Most significantly, they also fail to form tumors in vivo in syngeneic mice, although they grow as well as the parental cells in vitro. Southern blot analysis indicates that this variant cell line has a single viral insert and the original cell was probably hemizygous for the insertion site, suggesting that a single gene may regulate both the tumorigenic and differentiative capacities of the cell.  相似文献   

20.
Summary A human cell line has been established from a transplantable xenografted human testicular tumor, which, both in the original tumor and in the xenograft, exhibited the histological characteristics of an undifferentiated malignant teratoma (embryonal cell carcinoma). The cells in culture were undifferentiated by biochemical, morphological, and ultrastructural criteria, growing as small islands of cells that tended to form aggregates at high density. The cells showed some variation in chromosome number with 30 to 40% of the cells having a normal human karyotype. The cells expressed high levels of alkaline phosphatase, which by heat inactivation and inhibition studies was 40 to 50% placental type alkaline phosphatase. None of the cultures produced human chorionic gonadotrophin, alphafetoprotein, carcinoembryonic antigen, or fibronectin, although at high cell densities plasminogen activator could be detected at low levels. Cell surface studies showed that the cells shared antigens with the murine embryonal carcinoma cell line F9, expressedβ 2-microglobulin at very low and variable levels, and bound the lectin peanut agglutinin. These studies suggest that this cell line has some of the characteristics described for murine embryonal carcinoma cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号