首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Amiloride and analogs decrease the initial rate of 22Na+ uptake by dispersed acini from guinea pig pancreas in a dose-dependent manner. The initial rate of amiloride-sensitive 22Na+ uptake depends on external Na+ and H+ concentrations and on internal pH. These results provide evidence for the existence of a Na+/H+ antiport in pancreatic acinar cells. Caerulein, a cholecystokinin analog, stimulates the activity of the Na+/H+ antiport.  相似文献   

2.
The role of Ca2+/calmodulin-dependent processes in the activation of the Na+/H+ antiport of primary cultures of rat aortic smooth muscle was studied using 22Na+ uptake and measurement of intracellular pH (pHi) with the fluorescent pH dye 2',7'-bis-(2-carboxyethyl)-5(and 6)-carboxyfluorescein. Antiport activation following exposure to serum and by the induction of an intracellular acidosis could be markedly attenuated by calmodulin antagonists. Ionomycin also transiently elevated pHi and 5-(N-ethyl-N-isopropyl) amiloride-sensitive 22Na+ influx, effects consistent with activation of the antiport; these effects were abolished in cells exposed to calmodulin antagonists or [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. Activation of the antiport following intracellular acidosis was markedly affected by cellular ATP depletion. A comparison of the abilities of control and 2-deoxy-D-glucose-treated cells to increase 5-(N-ethyl-N-isopropyl)amiloride-sensitive 22Na+ influx in response to graded acidifications indicated that attenuation of Na+/H+ antiport activity was due to both a shift of its pHi dependence and to a reduction in maximal activity. The results suggest that the Na+/H+ antiport of rat aortic smooth muscle is dependent on Ca2+/calmodulin-dependent processes, presumably phosphorylation, which influences its activity by modulating (i) an intracellular proton dependent regulatory mechanism (allosteric site) and (ii) the maximum activity of the antiport.  相似文献   

3.
22Na+ flux and cytoplasmic pH (pHi) determinations were used to study the reversibility, symmetry, and mechanism of activation of the Na+/H+ exchange system in rat thymic lymphocytes. In acid-loaded cells, the antiport can be detected as an Na+-induced, amiloride-sensitive alkalinization. At pHi greater than or equal to 7.0, amiloride- sensitive net H+ fluxes are not detectable. To investigate whether at this pHi the transporter is operative in a different mode, e.g., Na+/Na+ exchange, 22Na+ uptake was measured as a function of pHi. The results indicate that the antiport is relatively inactive at pHi greater than or equal to 7.0. Comparison of the rates of H+ efflux (or equivalent OH- uptake) and Na+ uptake indicate that Na+/Na+ countertransport through this system is negligible at all values of pHi and that the Na+:H+ stoichiometry is 1:1. Measurements of pHi in Na+- loaded cells suspended in Na+-free medium revealed an amiloride- sensitive cytoplasmic acidification, which is indicative of exchange of internal Na+ for external H+. The symmetry of the system was analyzed by measuring the effect of extracellular pH (pHo) on Na+ efflux. Unlike cytoplasmic acidification, lowering pHo failed to activate the antiport. The results indicate that the amiloride-sensitive Na+/H+ exchanger is reversible but asymmetric. The system is virtually inactive at pHi greater than or equal to 7.0 but can be activated by protonation of a modifier site on the cytoplasmic surface. Activation can also occur by depletion of cellular Na+. It is proposed that Na+ may also interact with the modifier site, stabilizing the unprotonated (inactive) form.  相似文献   

4.
Growth factors (alpha-thrombin and insulin) activate a Na+/H+ antiport in G0/G1-arrested Chinese hamster lung fibroblasts (CCL39). In this report, we have examined the influence of intracellular pH on this exchange activity, measured by initial rates of amiloride-sensitive 22Na+ uptake, in the absence and presence of growth factors. Our results indicate the following. 1) In quiescent as in mitogen-stimulated cells, Na+/H+ antiport is regulated by internal H+ in an allosteric way, whereas, in contrast, interactions with external H+ and Na+ obey simple saturation kinetics. 2) The growth factor-induced activation of Na+/H+ exchange, which, under physiological conditions, is responsible for a sustained cytoplasmic alkalinization, is due to an increased affinity for internal H+ (the apparent pK is shifted by approximately 0.3 pH unit towards alkaline pH values). Therefore, we propose that growth factors promote a conformational change of the Na+/H+ antiporter, possibly at the level of an internal modifier site(s).  相似文献   

5.
The cytoplasmic pH (pHi) of human blood neutrophils was measured using trapped carboxyfluorescein derivatives. Cells were acid-loaded using propionate or by pretreatment with NH4+. Acid-loaded cells were found to regain near-normal pHi by means of a Na+-dependent process. A concomitant Na+ uptake was recorded as a change in cell volume. Both events were amiloride-sensitive, indicating involvement of a Na+/H+ antiport. Activation of Na+/H+ exchange was also observed with chemotactic factors. Studies of the pHi-dependence of the H+ extrusion rate indicate that chemotactic factors increase the [H+i] sensitivity of the antiport.  相似文献   

6.
The Na+ transport pathways of normal rat thymocytes were investigated. Na+ conductance was found to be lower than K+ conductance, which is consistent with reported values of membrane potential. In contrast, the isotopically measured Na+ permeability was greater than 10-fold higher than that of K+, which indicates that most of the flux is electroneutral. Cotransport with Cl- (or K+ and Cl-) and countertransport with Ca2+ were ruled out by ion substitution experiments and use of inhibitors. Countertransport for Na+ or H+ through the amiloride-sensitive antiport accounts for only 15-20% of the resting influx. In the presence of amiloride, 22Na+ uptake was increased in Na+-loaded cells, which suggests the existence of Na+/Na+ countertransport. Cytoplasmic pH determinations using fluorescent probes indicated that under certain conditions this amiloride-resistant system will also exchange Na+ for H+, as evidenced by an internal Na+- dependent acidification is proportional to internal [Na+] but inversely related to extracellular [Na+]. Moreover, 22Na+ uptake is inhibited by increasing external [H+]. The results support the existence of a substantial amiloride-insensitive, electroneutral cation exchange system capable of transporting Na+ and H+.  相似文献   

7.
Properties of the Na+/H+ exchange system in synaptosomes have been studied primarily by using acridine orange fluorescence to follow H+ efflux. Results obtained from 22Na+ uptake experiments and [3H]ethylpropylamiloride binding experiments are also presented for comparison. The basal properties of the Na+/H+ antiport in synaptosomes are similar to those found in other systems; (i) the stoichiometry of Na+/H+ exchange is 1:1; (ii) Li+ can be successfully substituted for Na+; its affinity for the exchanger (KLi+ = 3 mM) is higher than that of Na+ (KNa+ = 12 mM), but the maximal rate of H+ efflux in the presence of Li+ is about 3 times lower than the maximal rate of H+ efflux in the presence of Na+; and (iii) the Na+/H+ antiport is inhibited by amiloride derivatives with the rank order:ethylisopropylamiloride greater than ethylpropylamiloride greater than amiloride greater than benzamil. The most important finding of this paper is that the external pH dependence of the synaptosomal Na+/H+ antiport is controlled by the value of internal pH and vice versa. For example apparent pHo values for half-maximum activation of the Na+/H+ exchanger are pHo = 7.12 when pHi = 6.4 and pHo = 7.95 when pHi = 7.3. Therefore, a 0.9 pH unit increase in internal pH produces a shift of at least a 0.83 pH unit in the external pH dependence. In addition, changing pHo from 7.75 to 8.50 also shifts the half-maximum pHi value for activation of the Na+/H+ antiport from 6.67 to 7.54.  相似文献   

8.
P Vigne  C Frelin    M Lazdunski 《The EMBO journal》1984,3(8):1865-1870
The internal pH (pHi) of chick muscle cells is determined by the transmembrane Na+ gradient. Li+, but not K+, Rb+ or Cs+, can substitute for Na+ for regulating the internal pH of chick muscle cells. Pharmacological evidence using amiloride and amiloride analogs has shown that the Na+/H+ exchange system is the membrane mechanism that couples the pHi to the transmembrane Na+ gradient. The pHi dependence of the amiloride-sensitive Na+/H+ exchange mechanism was defined. Internal H+ interacts cooperatively with the Na+/H+ exchange system, in contrast with external H+, thus indicating an asymmetrical behaviour of this exchanger. The half-maximum effect for the activation by the internal H+ of the Na+ transporting activity of the amiloride-sensitive Na+/H+ exchange was observed at pH 7.4. The Hill coefficient of the H+ concentration dependence is higher than 3. Insulin was shown to have no effect on the pHi of chick muscle cells.  相似文献   

9.
The Na+/H+ antiport is an important regulator of cellular volume, pH and Na+ concentration in mammalian cells. The stoichiometry of this antiporter has previously been shown to be a 1:1 exchange of internal H+ for external Na+. We have investigated this stoichiometry in human leucocytes by using a novel intracellular pH-clamping technique and measuring 22Na+ influx and H+ efflux in the same cells. As internal pH was lowered, the stoichiometry of H+/Na+ exchange rose to a mean +/- S.D. of 2.23 +/- 0.69. This mechanism allows a higher H+ efflux in the face of intracellular acid stress without causing excessive intracellular Na+ overload.  相似文献   

10.
The effect of matrix pH (pHi) on the activity of the mitochondrial Na+/Ca2+ antiport has been studied using the fluorescence of SNARF-1 to monitor pHi and Na(+)-dependent efflux of accumulated Ca2+ to follow antiport activity. Heart mitochondria respiring in a KCl medium maintain a large delta pH (interior alkaline) and show optimal Na+/Ca2+ antiport only when the pH of the medium (pH0) is acid. Addition of nigericin to these mitochondria decreases delta pH and increases the membrane potential (delta psi). Nigericin strongly activates Na+/Ca2+ antiport at values of pH0 near 7.4 but inhibits antiport activity at acid pH0. When pHi is evaluated in these protocols, a sharp optimum in Na+/Ca2+ antiport activity is seen near pHi 7.6 in the presence or absence of nigericin. Activity falls off rapidly at more alkaline values of pHi. The effects of nigericin on Na+/Ca2+ antiport are duplicated by 20 mM acetate and by 3 mM phosphate. In each case the optimum rate of Na+/Ca2+ antiport is obtained at pHi 7.5 to 7.6 and changes in antiport activity do not correlate with changes in components of the driving force of the reaction (i.e., delta psi, delta pH, or the steady-state Na+ gradient). It is concluded that the Na+/Ca2+ antiport of heart mitochondria is very sensitive to matrix [H+] and that changes in pHi may contribute to the regulation of matrix Ca2+ levels.  相似文献   

11.
Chinese hamster lung fibroblasts (CCl39) possess in their plasma membrane an amiloride-sensitive Na+/H+ antiport, activated by growth factors. Measurements of intracellular pH (pHi), using equilibrium distribution of benzoic acid, provide evidence for a major role of this antiport in 1) regulation of cytoplasmic pH, in response to an acute acid load or to varying external pH values, and 2) the increase in cytoplasmic pH (by 0.2-0.3 pH unit) upon addition of growth factors (alpha-thrombin and insulin) to G0/G1-arrested cells. Indeed, these two processes are Na+-dependent and amiloride-sensitive; furthermore, CCl39-derived mutant cells, lacking the Na+/H+ exchange activity, are greatly impaired in pHi regulation and present no cytoplasmic alkalinization upon growth factor addition. In wild type G0-arrested cells, the amplitude of the mitogen-induced alkalinization reflects directly the activity of the Na+/H+ antiport, and is tightly correlated with the magnitude of DNA synthesis stimulation. Therefore, we conclude that cytoplasmic pH, regulated by the Na+/H+ antiport, is of crucial importance in the mitogenic response.  相似文献   

12.
We previously reported that, in a HCO3(-)-free medium, cytoplasmic pH (pHi) of hamster fibroblasts (CCL39) is primarily regulated by an amiloride-sensitive Na+/H+ antiport (L'Allemain, G., Paris, S., and Pouysségur, J. (1984) J. Biol. Chem. 259, 5809-5815). Here we demonstrate the existence of an additional pHi-regulating mechanism in CCL39 cells, namely a Na+-dependent HCO3-/Cl- exchange. Evidence for this system is based on 36Cl- influx studies and on pHi measurements in PS120, a CCL39-derived mutant lacking the Na+/H+ antiport activity. 36Cl- influx rate is a saturable function of external [Cl-] (apparent Km approximately equal to 7 mM), is competitively inhibited by external HCO3- (KI approximately equal to 3 mM), and by stilbene derivatives (KI approximately equal to 20 microM for 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid). Measurements of pHi recovery after an acute acid load indicate that PS120 cells possess an acid-extruding mechanism dependent on external HCO3-, which is inhibited by stilbene derivatives and requires external Na+. Since 22Na+ influx is stimulated upon addition of HCO3- to acid-loaded cells and this effect is completely abolished by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, we conclude that Na+ is co-transported with HCO3-, in exchange for intracellular Cl-. In a HCO3(-)-containing medium, this pHi-regulating mechanism appears to have two essential physiological functions for the Na+/H+ antiport-deficient mutant: protection of the cells against excessive cytoplasmic acidification and establishment of a steady-state pHi permissive for growth, at neutral or slightly acidic pHo values (6.6-7.2).  相似文献   

13.
Amiloride is a potent inhibitor of the Na+/H+ antiport. Inhibition is generally competitive with extracellular Na+ and therefore believed to result from binding to the outward-facing transport site. It is not known whether amiloride can interact with the internal aspect of the antiport. This question was addressed by trapping the drug inside resealed dog red cell ghosts. The antiport, which is quiescent in resting ghosts, was activated by acid-loading the cytoplasm. This was accomplished by exchanging extracellular Cl- for internal HCO-3 through capnophorin, the endogenous anion exchanger. The activity of the Na+/H+ antiport was detected as an increase in cell volume, resulting from the net osmotic gain associated with coupled Na+/H+ and Cl-/HCO-3 exchange, or as the uptake of 22Na+. Intracellular amiloride, at concentrations in excess of 100 microM, failed to inhibit Na+/H+ exchange. This is approximately 10 times higher than the concentration required for half-maximal inhibition when amiloride is added externally. Independent experiments demonstrated that failure of internal amiloride to inhibit exchange was not due to leakage of the inhibitor, to differences in pH, or to binding or inactivation of amiloride by the soluble contents. It was concluded that the antiport is functionally asymmetric with respect to amiloride. This implies that the transport site undergoes a conformational change upon translocation across the membrane or, alternatively, that a second site required for amiloride binding is only accessible from the outside.  相似文献   

14.
The amiloride-sensitive and nonelectrogenic Na+-H+ exchange system of eucaryotic cells is currently a topic of great interest. The results of membrane transport in the presence of protons are shown to be similar in two cases: when H+ is transferred in one direction or OH- -in the opposite direction. Therefore, in principle Na+-H+ exchange can be performed by two different mechanisms: Na+/H+ antiport or Na+/OH- symport. However, the kinetic properties of these mechanisms turn out to be quite different. The present study analyses the simplest models of antiport and symport and delineates their important differences. For this purpose the Lineweaver-Burk plot presented as Na+ reverse flow entering a cell 1/JNa (or H+ leaving a cell) versus the reverse concentration of Na+ outside 1/[Na+]0 is most useful. If a series of lines with external pH as a parameter have a common point of intersection placed on the ordinate, it indicates the availability of Na+/H+ antiport. In case of Na+/OH- symport a point of intersection is shifted to the left of the ordinate axis. According to data available in the literature, Na+/H+ antiport manifests itself in dog kidney cells and in hamster lung fibroblasts. In the skeletal muscles of chicken and in rat thymus lymphocytes however, a Na+/OH- symport is apparently present.  相似文献   

15.
A new method based on the toxicity of low intracellular pH (pHi) was developed to isolate fibroblast variants overexpressing Na+/H+ antiport activity. Chinese hamster lung fibroblasts (CCL39) were incubated for 60 min in medium containing 50 mM NH4Cl. Removal of external NH+4 induced a rapid and lethal intracellular acidification when the Na+/H+ antiporter was inhibited during the 60 min of the pHi recovery phase. The inhibition was provoked either by adding 5-(N-methyl,N-propyl)amiloride (MPA, LD50 = 0.3 microM) or by reducing external [Na+] (LD50 = 25 mM). Progressively increasing the MPA concentration during the acid-load selection led to the isolation of two stable variants: AR40 and AR300, resistant, respectively, to 40 and 300 microM MPA. In response to an acid-load, these variants display a much higher rate of pHi recovery due to an overexpression of Na+/H+ antiport activity. In addition, AR40 and AR300 have an altered Na+/H+ antiporter: in AR300 cells K0.5 of MPA for inhibiting Na+/H+ exchange is shifted from 5 X 10(-8) to 1.5 X 10(-6) M, Km (Na+) is decreased 2-fold, and Vmax is increased 4.5-fold. Alternatively reducing Na+ concentration of the pHi recovery saline medium in a stepwise manner led to the selection of another class of variants (DD8 and DD12) also characterized by an altered Na+/H+ antiporter and an increased expression level. The 10-fold increased rate of amiloride-sensitive Na+ influx of DD12 is accounted for by a 4-fold increase in Vmax and a 2.5-fold increase in affinity for Na+ or Li+ at the external site. Interestingly, the affinity for the amiloride analog MPA and for external H+ is unchanged in DD12. In conclusion, the genetic approach presented here: provides a general and specific method for selecting variants of the Na+/H+ antiporter with increased expression levels and/or with structural alterations and demonstrates that the external Na+- and amiloride-binding sites are not identical, since they can be genetically altered independently of each other.  相似文献   

16.
The properties of the Na+/H+ exchange system in the glial cell lines C6 and NN were studied from 22Na+ uptake experiments and measurements of the internal pH (pHi) using intracellularly trapped biscarboxyethyl-carboxyfluorescein. In both cell types, the Na+/H+ exchanger is the major mechanism by which cells recover their pHi after an intracellular acidification. The exchanger is inhibited by amiloride and its derivatives. The pharmacological profile (ethylisopropylamiloride greater than amiloride greater than benzamil) is identical for the two cell lines. Both Na+ and Li+ can be exchanged for H+. Increasing the external pH increases the activity of the exchanger in the two cell lines. In NN cells the external pH dependence of the exchanger is independent of the pHi. In contrast, in C6 cells, changing the pHi value from 7.0 to 6.5 produces a pH shift of 0.6 pH units in the external pH dependence of the exchanger in the acidic range. Decreasing pHi activates the Na+/H+ exchanger in both cell lines. Increasing the osmolarity of the external medium with mannitol produces an activation of the exchanger in C6 cells, which leads to a cell alkalinization. Mannitol action on 22Na+ uptake and the pHi were not observed in the presence of amiloride derivatives. Mannitol produces a modification of the properties of interaction of the antiport with both internal and external H+. It shifts the pHi dependence of the system to the alkaline range and the external pH (pHo) dependence to the acidic range. It also suppresses the interdependence of pHi and pHo controls of the exchanger's activity. NN cells that possess an Na+/H+ exchange system with different properties do not respond to mannitol by an increased activity of the Na+/H+ exchanger. The action of mannitol on C6 cells is unlikely to be mediated by an activation of protein kinase C.  相似文献   

17.
M Kitada  K Onda    K Horikoshi 《Journal of bacteriology》1989,171(4):1879-1884
The pH homeostasis and the sodium/proton antiport system have been studied in the newly isolated alkalophilic Bacillus sp. strain N-6, which could grow on media in a pH range from 7 to 10, and in its nonalkalophilic mutant. After a quick shift in external pH from 8 to 10 by the addition of Na2CO3, the delta pH (inside acid) in the cells of strain N-6 was immediately established, and the pH homeostatic state was maintained for more than 20 min in an alkaline environment. However, under the same conditions, the pH homeostasis was not observed in the cells of nonalkalophilic mutant, and the cytoplasmic pH immediately rose to pH 10. On the other hand, the results of the rapid acidification from pH 9 to 7 showed that the internal pH was maintained as more basic than the external pH in a neutral medium in both strains. The Na+/H+ antiport system has been characterized by either the effect of Na+ on delta pH formation or 22Na+ efflux in Na+-loaded right-side-out membrane vesicles of strain N-6. Na+- or Li+-loaded vesicles exhibited a reversed delta pH (inside acid) after the addition of electron donors (ascorbate plus tetramethyl-p-phenylenediamine) at both pH 7 and 9, whereas choline-loaded vesicles generated delta pHs of the conventional orientation (inside alkaline). 22Na+ was actively extruded from 22Na+-loaded vesicles whose potential was negative at pH 7 and 9. The inclusion of carbonyl cyanide m-chlorophenylhydrazone inhibited 22Na+ efflux in the presence of electron donors. These results indicate that the Na+/H+ antiport system in this strain operates electrogenically over a range of external pHs from 7 to 10 and plays a role in pH homeostasis at the alkaline pH range. The pH homeostasis at neutral ph was studied in more detail. K+ -depleted cells showed no delta pH (acid out) in the neutral conditions in the absence of K+, whereas these cells generated a delta pH if K+ was present in the medium. This increase of internal pH was accompanied by K+ uptake from the medium. These results suggest that electrogenic K+ entry allows extrusion of H+ from cells by the primary proton pump at neutral pH.  相似文献   

18.
The effect of serum, phorbol-12-myristate-13-acetate (TPA), and forskolin on the activity Na+/H+ antiport and the Na(+)-coupled and Na(+)-independent Cl-/HCO3- antiport was studied in Vero cells by measuring 22Na+ and 36Cl- fluxes and changes in cytosolic pH (pHi). The Na(+)-independent Cl-/HCO3- antiport, which acts as an acidifying mechanism, is strongly pH-sensitive. In serum-starved cells it is activated at alkaline cytosolic pH, with a half-maximal activity at pHi approximately 7.20. Incubation with serum increased the activity of the Na(+)-independent Cl-/HCO3- antiport at pHi values from 6.8 to 7.2. Thus serum appeared to alter the pHi sensitivity of this antiporter such that the threshold value for activation of the antiport was shifted to a more acidic value. Na+/H+ antiport was somewhat stimulated initially by addition of serum, but further incubation with serum (greater than 45 min) decreased its activity. The activity of the Na(+)-coupled Cl-/HCO3- antiport, which is the major alkalinizing antiport in Vero cells, was not altered by short-term incubation with serum (less than 10 min) but decreased after prolonged incubation (greater than 45 min). Our findings with TPA and forskolin indicate that the effect of serum is partly mediated by the protein kinase C pathway, whereas the cyclic adenosine monophosphate pathway does not appear to play an important role. The net effect of serum on the pHi-regulating antiports was a slight decrease in intracellular pH.  相似文献   

19.
Chick skeletal muscle cells in culture have an amiloride-sensitive Na+-transporting system that has the following properties. Na+ uptake is dependent on the extracellular Na+ concentration. The Km value for Na+ is 25 mM and remains constant between pH 7.5 and 8.5. The maximal rate of Na+ transport is higher at alkaline pH. An ionizable group with a pK of 7.6 is essential for the system to be functional. The activity of the amiloride-sensitive Na+ uptake system is controlled by internal Na+ and H+ concentrations. Amiloride inhibition of Na+ uptake is competitively antagonized by increasing Na+ concentration. The dissociation constant for amiloride is 5 microM in Na+-free conditions and is constant between pH 7.5 and 8.5. The Km value for Na+ found from competition experiments is 13 mM. The amiloride-sensitive Na+ influx occurs in parallel with an amiloride-sensitive H+ efflux. This H+ efflux is stimulated by increasing external Na+ concentrations, the Km for Na+ being 15 mM. It is inhibited by amiloride with the same concentration dependence as Na+ influx.  相似文献   

20.
The fluorescence of internalized fluorescein isothiocyanate dextran has been used to monitor the intravesicular pH of submitochondrial particles (SMP). Respiring SMP maintain a steady-state delta pH (interior acid) that results from the inwardly directed H+ flux of respiration and an opposing passive H+ leak. Addition of K+, Na+, or Li+ to SMP results in a shift to a more alkaline interior pH (pHi) in both respiring and nonrespiring SMP. The K+-dependent change in pHi, like the K+/H+ antiport in intact mitochondria, is inhibited by quinine and by dicyclohexylcarbodiimide. The Na+-dependent reaction is only partially inhibited by these reagents. Both the Na+- and the K+-dependent pH changes are sensitive to amiloride derivatives. The Km for both Na+ and K+ is near 20 mM whereas that for Li+ is closer to 10 mM. The K+/H+ exchange reaction is only slightly inhibited by added Mg2+, but abolished when A23187 is added with Mg2+. The passive exchange is optimal at pHi 6.5 with either Na+ or K+, and cannot be detected above pHi of 7.2. Both the Na+/H+ and the K+/H+ exchange reactions are optimal at an external pH of 7.8 in respiring SMP (pHi 7.1). Valinomycin stimulates the K+-dependent pH change in nonrespiring SMP, as does nigericin. It is concluded that SMP show K+/H+ antiport activity with properties distinct from those of Na+/H+ antiport. However, the properties of the K+/H+ exchange do not correspond in all respects to those of the antiport in intact mitochondria. Donnan equilibria and parallel uniport pathways for H+ and cations appear to contribute to cation-dependent pH changes in SMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号