首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular wilt of carnation caused by Fusarium oxysporum f. sp. dianthi (Prill. & Delacr.) W. C. Synder & H.N. Hans inflicts substantial yield and quality loss to the crop. Mycolytic enzymes such as chitinases are antifungal and contribute significantly to the antagonistic activity of fluorescent pseudomonads belonging to plant-growth-promoting rhizobacteria. Fluorescent pseudomonads antagonistic to the vascular wilt pathogen were studied for their ability to grow and produce chitinases on different substrates. Bacterial cells grown on chitin-containing media showed enhanced growth and enzyme production with increased anti-fungal activity against the pathogen. Furthermore, the cell-free bacterial culture filtrate from chitin-containing media also significantly inhibited the mycelial growth. Both the strains and their cell-free culture filtrate from chitin-amended media showed the formation of lytic zones on chitin agar, indicating chitinolytic ability. Extracellular proteins of highly antagonistic bacterial strain were isolated from cell-free extracts of media amended with chitin and fungal cell wall. These cell-free conditioned media contained one to seven polypeptides. Western blot analysis revealed two isoforms of chitinase with molecular masses of 43 and 18.5 kDa. Further plate assay for mycelial growth inhibition showed the 43-kDa protein to be antifungal. The foregoing studies clearly established the significance of chitinases in the antagonism of fluorescent pseudomonads, showing avenues for possible exploitation in carnation wilt management.  相似文献   

2.
3.
4.
Pseudobactin production by Pseudomonas putida WCS358 significantly improves biological control of fusarium wilt caused by nonpathogenic Fusarium oxysporum Fo47b10 (P. Lemanceau, P. A. H. M. Bakker, W. J. de Kogel, C. Alabouvette, and B. Schippers, Appl. Environ. Microbiol. 58:2978-2982, 1992). The antagonistic effect of Fo47b10 and purified pseudobactin 358 was studied by using an in vitro bioassay. This bioassay allows studies on interactions among nonpathogenic F. oxysporum Fo47b10, pathogenic F. oxysporum f. sp. dianthi WCS816, and purified pseudobactin 358, the fluorescent siderophore produced by P. putida WCS358. Both nonpathogenic and pathogenic F. oxysporum reduced each other's growth when grown together. However, in these coinoculation experiments, pathogenic F. oxysporum WCS816 was relatively more inhibited in its growth than nonpathogenic F. oxysporum Fo47b10. The antagonism of nonpathogenic F. oxysporum against pathogenic F. oxysporum strongly depends on the ratio of nonpathogenic to pathogenic F. oxysporum densities: the higher this ratio, the stronger the antagonism. This fungal antagonism appears to be mainly associated with the competition for glucose. Pseudobactin 358 reduced the growth of both F. oxysporum strains, whereas ferric pseudobactin 358 did not; antagonism by pseudobactin 358 was then related to competition for iron. However, the pathogenic F. oxysporum strain was more sensitive to this antagonism than the nonpathogenic strain. Pseudobactin 358 reduced the efficiency of glucose metabolism by the fungi. These results suggest that pseudobactin 358 increases the intensity of the antagonism of nonpathogenic F. oxysporum Fo47b10 against pathogenic F. oxysporum WCS816 by making WCS816 more sensitive to the glucose competition by Fo47b10.  相似文献   

5.
The accumulation of dianthramides, dianthalexin and other phenolic compounds in carnation cells at different times before and after inoculation of plants with Fusarium oxysporum f. sp. dianthi, and the development of wilt symptoms were compared for eleven carnation cultivars. Untreated and water-treated controls contained only a little acetone-extractable phenolics. Upon inoculation with F. oxysporum f. sp dianthi, all cultivars accumulated the same range of phenolic compounds, including several dianthramides and dianthalexin, but in different proportions. The total amount of accumulated phenolic compounds per fresh material weight of the extracted stem segments could not be related to the disease resistance level of the different cultivars. However, the accumulation of dianthramides and dianthalexin in the cultivars was positively correlated to resistance, while the accumulation of two other, as yet unidentified, compounds was inversely related to resistance.  相似文献   

6.
Xylem fluids from white lupin cv. Neuland, susceptible to wilt causes by Fusarium oxysporum f. sp. lupini , promoted germination of conidia and chlamydospores of he pathogen, and the production of micro-conidia, to a greater extent than did xylem fluids from the resistant cv. Primorskij No sugars, organic acids or phenolic compounds were detected in the xylem fluids, but a number of amino acids were found, and the concentration of some differed in xylem fluids from the two cultivars; on the whole, concentrations were greater in the susceptible cv. Neuland. Synthetic amino acids were supplied to the fungus in vitro and both stimulatory and inhibitory effects (according to the compound and its concentration) were noted upon the germination of conidia and chlamydospores and on mycelial growth and the production of conidia. The role of amino acids and other compounds in the susceptibility of white lupin to wilt is discussed.  相似文献   

7.
The vascular colonization of cotton plants by Fusarium oxysporum f. sp. vasinfectum was determined by examining growth of the fungus from free-hand cross sections taken from 0 to six days after inoculation at various distances above the points of root inoculation. Fungal spread in both longitudinal and lateral directions in the susceptible cultivar Rowden was evident four days after inoculation, whereas fungal spread in the resistant cultivar Seabrook Sea Island was restricted. The quantity of viable fungus in infected tissues was determined from macerated tissues plated on Czapek- Dox agar. The colony counts declined within six days after inoculation in resistant Seabrook Sea Island, but not in susceptible Rowden, implying that an inhibition of fungal growth in vascular tissues occurred in resistant Seabrook Sea Island. This inhibition could contribute to the restriction of fungal spread and thus be a factor in the resistance of cotton plants to F. oxysporum f. sp. vasinfectum .  相似文献   

8.
The fungitoxic flavonol triglycoside, kaempferide 3‐O‐[2Gβ‐d ‐glucopyranosyl]‐β‐rutinoside, is a constituent of the carnation cultivar ‘Novada’, known as one of the most resistant cultivar to Fusarium oxysporum f. sp. dianthi, causative agent of Fusarium wilt. Due to its constitutive presence within the carnation tissues, this antifungal flavonol should be considered as a phytoanticipin; its biosynthesis, however, is stimulated by the inoculation with F. oxysporum f. sp. dianthi, just as is the rule for a typical phytoalexin. The results seem to indicate that in carnation the concentration of some preformed antifungal flavonoids may be significantly increased by a fungal presence: owing to their fungitoxic properties, these molecules could cooperate, together with the unconstitutive and postinfectional anthranilic acid‐derivative phytoalexins, to the plant defensive response against Fusarium attacks.  相似文献   

9.
Interactions between watermelon and a green fluorescent protein (GFP)‐tagged isolate of Fusarium oxysporum f.sp. niveum race 1 (Fon‐1) were studied to determine the differences in infection and colonization of watermelon roots in cultivars resistant to and susceptible to Fusarium wilt. The roots of watermelon seedlings were inoculated with a conidial suspension of the GFP‐tagged isolate, and confocal laser scanning microscopy was used to visualize colonization, infection and disease development. The initial infection stages were similar in both the resistant and susceptible cultivars, but the resistant cultivar responded differentially after the pathogen had penetrated the root. The pathogen penetrated and colonized resistant watermelon roots, but further fungal advance appeared to be halted, and the fungus did not enter the taproot, suggesting that resistance is initiated postpenetration. However, the tertiary and secondary lateral roots of resistant watermelon also were colonized, although not as extensively as susceptible roots, and the hyphae had penetrated into the central cylinder of lateral roots forming a dense hyphal mat, which was followed by a subsequent collapse of the lateral roots. The initial infection zone for both the wilt‐susceptible and wilt‐resistant watermelon roots appeared to be the epidermal cells within the root hair zone, which the fungus penetrated directly after forming appressoria. Areas where secondary roots emerged and wounded root tissue also were penetrated preferentially.  相似文献   

10.
The phenol compositions of two cultivars of carnation (Dianthus caryophyllus) namely "Gloriana" and "Roland", which are partially and highly resistant, respectively, to Fusarium oxysporum f. sp. dianthi have been investigated with the aim of determining if endogenous phenols could have an anti-fungal effect against the pathogen. Analyses were performed on healthy and F. oxysporum-inoculated in vitro tissues, and on in vivo plants. Two benzoic acid derivatives, protocatechuic acid (3,4-dihydroxybenzoic acid) and vanillic acid (4-hydroxy-3-methoxybenzoic acid), were found within healthy and inoculated tissues of both cultivars, together with the flavonol glycoside peltatoside (3-[6-O-(alpha-L-arabinopyranosyl)-beta-D-glucopyranosyl] quercetin). These molecules proved to be only slightly inhibitory towards the pathogen. 2,6-Dimethoxybenzoic acid was detected in small amounts only in the inoculated cultivar "Gloriana", while the highly resistant cultivar "Roland" showed the presence of the flavone datiscetin (3,5,7,2'-tetrahydroxyflavone). The latter compound exhibited an appreciable fungitoxic activity towards F. oxysporum f. sp. dianthi.  相似文献   

11.
12.
The fusion of protoplasts from the cycloheximide-resistant mutant FOL(C) of Fusarium oxysporum f. sp. lycopersici (FOL) and the mycostatin-resistant mutant FORL(M) of F. oxysporum f. sp. radicis-lycopersici (FORL), produced hybrids which expressed significant differences from the parents in their pathogenicity and growth and in the electrophoretic separation patterns of their proteins, enzymes and isoenzymes. The results suggest a transformed genetic basis for these altered expressions and the feasibility of using protoplast fusion technology for examining the biology of pathogenicity genes and for elucidating the disease and virulence potential for new races from within hybridisable taxa of Fusarium spp. Such information would be useful for the design and development of long-term control systems for Fusarium diseases, particularly in breeding programs for disease resistance in crops.  相似文献   

13.
The vascular colonisation of resistant and susceptible hot chilli (Capsicum annuum) cultivars by Ralstonia solanacearum was examined using transmission electron microscopy. Tap roots of artificially-inoculated plants, grown in sterilised soil were investigated to observe the morphological barriers involved in the restriction of bacterial spread. In the resistant cultivar, several responses induced in response to bacterial infection, were observed. First, a cell wall coating material developed together with swelling of the primary wall of the xylem vessels, limiting the bacterial spread. Second, formation of various types of vesicles in the vascular parenchyma cells, which enveloped the bacterial mass and also partly restricted the pathogen spread. Third, induction of hypersensitive reaction in the xylem vessels resulted in the distortion and lysis of the bacteria. In the susceptible cultivar, vascular coating, production of vesicle and induction of hypersensitive reaction were not observed and bacterial spread was not limited. Rapid vascular colonisation of the susceptible cultivar seemed to be generalised which resulted in the rapid wilting of affected plants. Other reactions involved in both resistant and susceptible cultivars include disorganisation of cytoplasm of parenchyma cells, disintegration of nuclei, and rupturing of xylem vessel walls. The restriction of pathogen spread associated with the resistance in C. annuum to bacterial wilt was mainly attributed to some induced, morphological and physical barriers.  相似文献   

14.
AIMS: The aim of this work was to study the effect of high temperatures generated during composting process, on the phytopathogen fungus Fusarium oxysporum f.sp. melonis. This investigation was achieved by both in vivo (semipilot-scale composting of horticultural wastes) and in vitro (lab-scale thermal treatments) assays. METHODS AND RESULTS: Vegetable residues infected with F. oxysporum f.sp. melonis were included in compost piles. Studies were conducted in several compost windrows subjected to different treatments. Results showed an effective suppression of persistence and infective capacity, as this process caused complete fungal elimination after 2-3 days of composting. In order to confirm the effect of high temperature during this process, in vitro experiments were carried out. Temperature values of 45, 55 and 65 degrees C were tested. All three treatments caused the elimination of fungal persistence. Treatment at 65 degrees C was especially effective, whereas 45 degrees C eliminated fungal persistence only after 10 days. CONCLUSIONS: The composting process is an excellent alternative for the management of plant wastes after harvesting, as this procedure is able to suppress infective capacity of several harmful phytopathogens such as F. oxysporum f.sp. melonis. SIGNIFICANCE AND IMPACT OF THE STUDY: Fusarium oxysporum f.sp. melonis is a plant pathogen fungus specially important in the province of Almería (south-east Spain), where intensive greenhouse horticulture is very extended. High temperatures reached during composting of horticultural plant wastes ensure the elimination of phytopathogen microorganisms such as F. oxysporum f.sp. melonis from vegetable material, providing an adequate hygienic quality in composts obtained.  相似文献   

15.
A method for growing Fusarium oxysporum, a mycelial fungus, and a technique for its use in mineral uptake studies have been described. Some general characteristics of the uptake process were determined. The fungus, grown for 54 hours, was found to take up as much K as 15 to 20 meq/100 g dry weight in 2 to 4 hours from a solution of 5 meq/l KCl. Approximately 3 to 5 meq of this uptake was readily removed by a CaCl2 rinse. The uptake was only slightly sensitive to pH over the range of 4 to 9. Below pH 4 uptake dropped rapidly. The age of the culture appeared to be the dominant factor in determining the rate of uptake. In contrast to other fungi, the presence of glucose during uptake was detrimental to K uptake. Conditions unfavorable for metabolic activity as low temperature, anaerobiosis, or the presence of DNP markedly reduced the uptake rate. Although the fungus took up Na from single salt solutions nearly as well as K, the latter ion was much preferred in mixtures of the two ions. The organism showed no significant metabolic uptake of Ca or Cl. During uptake from KCl solutions, the organic acid content increased. The increase, chiefly in succinic acid and to a lesser extent in acetic and citric acids, amounted to about half the K uptake. The remainder of the K taken up was correlated with a roughly equivalent efflux of cellular Mg.  相似文献   

16.
The genomes of many filamentous fungi consist of a ‘core’ part containing conserved genes essential for normal development as well as conditionally dispensable (CD) or lineage‐specific (LS) chromosomes. In the plant‐pathogenic fungus Fusarium oxysporum f. sp. lycopersici, one LS chromosome harbours effector genes that contribute to pathogenicity. We employed flow cytometry to select for events of spontaneous (partial) loss of either the two smallest LS chromosomes or two different core chromosomes. We determined the rate of spontaneous loss of the ‘effector’ LS chromosome in vitro at around 1 in 35 000 spores. In addition, a viable strain was obtained lacking chromosome 12, which is considered to be a part of the core genome. We also isolated strains carrying approximately 1‐Mb deletions in the LS chromosomes and in the dispensable core chromosome. The large core chromosome 1 was never observed to sustain deletions over 200 kb. Whole‐genome sequencing revealed that some of the sites at which the deletions occurred were the same in several independent strains obtained for the two chromosomes tested, indicating the existence of deletion hotspots. For the core chromosome, this deletion hotspot was the site of insertion of the marker used to select for loss events. Loss of the core chromosome did not affect pathogenicity, whereas loss of the effector chromosome led to a complete loss of pathogenicity.  相似文献   

17.
Abstract

In the present study the effect of flavonoid compounds on the germination and fungal growth of the soil-borne tomato pathogen Fusarium oxysporum f. sp. lycopersici was studied. Out of 12 flavonoid compounds only myricetin and luteolin exhibited a low stimulating activity on microconidia germination of Fusarium oxysporum f. sp. lycopersici, whereas the other flavonoids tested were inactive when applied at five different concentrations. In our study the tested flavonoids affect fungal growth differently to microconidia germination. Individual flavonoid concentrations resulted in a small increase of fungal growth, but the lowest flavonoid concentrations showed an inhibiting effect on fungal growth for all flavonoids tested. There is evidence to suggest, that low flavonoid concentrations exhibit slight antimicrobial properties against Fusarium oxysporum f. sp. lycopersici.  相似文献   

18.
The pathogenicity of different isolates of Fusarium oxysporum obtained from plants of Gerbera (Gerbera jamesonii), Chrysanthemum (Chrysanthemum morifolium), Paris daisy (Argyranthemum frutescens) and African daisy (Osteospermum sp.), all in the family Asteraceae, was tested on different cultivars of these hosts, to assess their pathogenicity. The reactions were compared with those of isolates of F. oxysporum f. sp. chrysanthemi and of f.sp. tracheiphilum obtained from the American Type Culture Collection. We found that isolates of F. oxysporum f. sp. chrysanthemi can be distinguished as three physiological races on the basis of their pathogenicity to the panel of differential cultivars. Sequencing of the intergenic spacer (IGS) region of ribosomal DNA (rDNA) and phylogenetic analysis showed that the Fusarium races fell into three phylogenetic groups, which coincided with those observed in pathogenicity tests. Analysis of the IGS sequences revealed a high degree of similarity among strains from Italy and Spain from different host species, suggesting that recent outbreaks in these ornamentals were probably caused by introduction of infected nursery material from a common origin.  相似文献   

19.
20.
韭菜对香蕉枯萎病菌生长及香蕉枯萎病发生的抑制作用   总被引:3,自引:0,他引:3  
结合实验室抑菌试验和大棚人工接菌盆栽试验,研究韭菜对香蕉枯萎病菌4号生理小种(Foc4)的拮抗作用及其对香蕉枯萎病发生的防控效果.结果显示:离体条件下,韭菜粗提取液显著抑制Foc4菌丝的生长,造成菌丝变形、细胞的解体;也能显著抑制孢子的萌发并导致孢子失去活性.大棚盆栽试验中,韭菜处理的巴西香蕉苗枯萎病发病率降低70%,病情指数降低86.9%;韭菜处理的广粉1号粉蕉苗枯萎病的发病率降低76.7%,病情指数降低93.4%.研究表明,韭菜对Foc4有很高拮抗效果,而且对香蕉枯萎病有很高的防控作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号