首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The uptake of intraperitoneally injected 125I-labeled rat growth hormone into brain and peripheral tissues was measured in normal and hypophysectomized adult rats. A significant level of radioactivity was observed in the seven brain regions examined -- the telencephalon, diencephalon, midbrain, pons-medulla, cerebellum, pineal and pituitary glands. The pineal and pituitary glands, which are outside the blood-brain barrier, contained three to four times the concentration of radioactivity of the other brain regions. Compared to brain, the level of radioactivity was much higher in peripheral tissues (the diaphragm, kidney, serum and liver). For example, the serum contained ten times the level of radioactivity of most brain regions. For a given tissue, however, the normal and hypophysectomized rats showed a comparable amount of 125I-growth hormone. Trichloroacetic acid precipitates from each tissue sample showed that peripheral tissues had a higher proportion of radioactivity (35-48% of total tissue radioactivity) than the brain samples (13-26%). The data support the view that growth hormone, or a metabolite can enter the central nervous system and may directly affect on-going metabolic processes.  相似文献   

2.
Thyroid hormone is an important regulator of mammalian brain maturation. By differential display PCR, we isolated a cDNA clone (S2) that is specifically up-regulated in the striatum of neonatal hypothyroid rats. S2 was identified as KIAA0719, the first human gene distantly homologous to the fungal Tom70, which encodes a member of the translocase mitochondrial outer membrane complex involved in the import of preproteins into the mitochondria. By northern and in situ hybridization studies, KIAA0719 was found to be up-regulated in the striatum, nucleus accumbens, and discrete cortical layers of 15-day-old hypothyroid rats. In contrast, lower expression was found in the olfactory tubercle, whereas no differences were detected in other brain regions. Significantly, treatment of hypothyroid animals with single injections of thyroxine restored the normal levels of KIAA0719 expression. Moreover, treatment of control animals with thyroxine led to a reduced expression, demonstrating a negative hormonal regulation in vivo. Thus, KIAA0719 gene expression is regulated by thyroid hormone in the neonatal rat brain in a region-specific fashion. Given the role of the homologous Tom70 gene, the alteration of KIAA0719 expression may contribute to the changes in mitochondrial morphology and physiology caused by hypothyroidism in the developing rat brain.  相似文献   

3.
The present study was undertaken to define effects of thyrotropin-releasing hormone (TRH) on formation of cyclic AMP (cAMP) and inositol phosphates (IPs) in rat brain regions. The brain of male Wistar rats was dissected into seven discrete regions, and each region was sliced. The slices were incubated in Krebs-Henseleit glucose buffer containing varying doses of TRH. TRH caused a significant and consistent increase in cAMP level, but not in formation of IPs, in the hypothalamus, striatum, and midbrain. TRH stimulated formation of IPs in the cerebellum, where the tripeptide did not change the cAMP level. In contrast, formation of neither cAMP nor IPs was affected by TRH in the cortex, hippocampus, or pons-medulla. These data suggest that TRH possesses two distinct types of brain intracellular signaling systems, which vary with brain regions.  相似文献   

4.
The developmental pattern of citrate synthase activity has been studied in the liver and several brain areas of hypothyroid rats during the 4 first weeks of life. While citrate synthase activity in the liver showed a rise during the 2 first weeks of life, different patterns of enzyme activity were found in the brain regions of euthyroid animals. Citrate synthase activity increased in the cerebellum, decreased in the cerebral cortex and did not change significantly in the brain stem during the period studied. In the liver and brain areas, too, a decrease in citrate synthase activity was observed during hypothyroidism. From the 2nd week of birth, the citrate synthase activity in the brain but not in the liver was found to have recovered. The newly elevated citrate synthase activity coincided with a slight increase in thyroid hormone serum levels.  相似文献   

5.
The degradation of thyrotropin-releasing hormone in rat brain homogenates was studied in the presence of N-benzyloxycarbonyl-prolyl-prolinal and pyroglutamyl diazomethyl ketone, specific and potent active-site-directed inhibitors of prolyl endopeptidase and pyroglutamyl peptide hydrolase, respectively. Substantial TRH degradation was observed, suggesting the presence of another thyrotropin-releasing hormone-degrading enzyme(s). Reports of a thyrotropin-releasing hormone-degrading enzyme with narrow specificity that cleaves the pGlu-His bond of this tripeptide led us to develop a coupled assay using pGlu-His-Pro-2NA as the substrate to measure this activity. Cleavage of the pGlu-His bond of this substrate under conditions in which pyroglutamyl peptide hydrolase is not expressed occurred in the particulate fraction of a rat brain homogenate. This particulate pyroglutamyl-peptide cleaving enzyme was not inhibited by pyroglutamyl diazomethyl ketone but was inhibited by metal chelators such as EDTA and o-phenanthroline. The particulate pyroglutamyl-peptide cleaving enzyme was found predominantly in the brain. Activity in brain regions varied widely with highest levels present in cortex and hippocampus and very low levels in pituitary. The data suggest that degradation of thyrotropin-releasing hormone by the particulate fraction of a brain homogenate is catalyzed mainly by an enzyme that cleaves the pGlu-His bond of thyrotropin-releasing hormone but is distinct from pyroglutamyl peptide hydrolase.  相似文献   

6.
Concentrations of 11 amino acids, including the neurotransmitters GABA, glutamate, aspartate, glycine and taurine, were determined in 12 brain regions of female rats during different stages of the estrous cycle. In addition, amino acids and sex hormone levels were determined in plasma. All sample collections were done in the forenoon between 9 and 11 a.m. Most regional amino acid levels measured did not change signficantly during estrous cycle, but significant alterations were found for GABA and glutamate in hypothalamus. Both amino acids were slightly decreased in hypothalamus during proestrus, which might reflect an alteration of GABA turnover in response to the high estrogen levels during this stage. A decreased glutamate level during proestrus was also found in thalamus, while both glutamate and GABA did not vary throughout estrous cycle in any of the other examined regions, including substantia nigra, amygdala, striatum, cortex and hippocampus. When diestrus was subdivided according to progesterone levels, high levels of this hormone seemed to be associated with effects on metabolism of certain amino acids, including glycine in substantia nigra, alanine in thalamus and threonine in pons/medulla. However, the few changes in regional amino acid concentrations found during the estrous cycle were so small that the functional significance of these changes cannot be ascertained without further determination of the cellular or subcellular compartments of brain tissue involved.  相似文献   

7.
The localization of thyrotropin releasing hormone (TRH) in rat brain determined by use of avidin-biotin immunoperoxidase histochemistry was compared with the distribution and quantitation by radioimmunoassay (RIA). Male Sprague-Dawley rats received intracisternal injections of 100 micrograms of colchicine or saline and were sacrificed 24 hours later. Brains were either perfused with lysine-periodate fixative and processed for TRH immunohistochemistry or were dissected into 9 brain regions for TRH RIA. In colchicine pretreated rats. TRH immunoreactive perikarya were observed only in nuclei of the hypothalamus and brain stem. No cell body staining was observable in non-colchicine treated rats. With the exception of the olfactory bulb, brain regions exhibiting dense TRH staining contained high concentrations of TRH as measured by RIA. Colchicine pretreatment did not alter the concentration of TRH in most brain regions, however, there was a significant increase in brain stem TRH content 24 hours following colchicine administration. These findings indicate that immunohistochemical localization of TRH corresponds well with endogenous concentrations of TRH determined by RIA.  相似文献   

8.
9.
Beta-endorphin-like immunoreactivity was measured in the pituitary and brain areas of rats and mice bearing tumors which secrete different pituitary hormones. The DCCXLIIId tumor secretes both luteinizing hormone and follicle stimulating hormone, and the AtT20 tumor secretes corticotropin, beta-lipotropin and beta-endorphin. Beta-endorphin concentrations in the pituitary and brain areas of rats or mice bearing these tumors are similar to those present in the respective controls, but for a decrease in the hindbrain of AtT20 tumor bearing mice. We conclude that peripheral concentrations of gonadotropins, corticotropins, beta-lipotropin and beta-endorphin do not affect the pituitary and brain concentrations of beta-endorphin.  相似文献   

10.
The steroid hormone estradiol decreases meal size by increasing the potency of negative-feedback signals involved in meal termination. We used c-Fos immunohistochemistry, a marker of neuronal activation, to investigate the hypothesis that estradiol modulates the processing of feeding-induced negative-feedback signals within the nucleus of the solitary tract (NTS), the first central relay of the neuronal network controlling food intake, and within other brain regions related to the control of food intake. Chow-fed, ovariectomized rats were injected subcutaneously with 10 microg 17-beta estradiol benzoate or sesame oil vehicle on 2 consecutive days. Forty-eight hours after the second injections, 0, 5, or 10 ml of a familiar sweet milk diet were presented for 20 min at dark onset. Rats were perfused 100 min later, and brain tissue was collected and processed for c-Fos-like immunoreactivity. Feeding increased the number of c-Fos-positive cells in the NTS, the paraventricular nucleus of the hypothalamus (PVN), and the central nucleus of the amygdala (CeA) in oil-treated rats. Estradiol treatment further increased this response in the caudal, subpostremal, and intermediate NTS, which process negative-feedback satiation signals, but not in the rostral NTS, which processes positive-feedback gustatory signals controlling meal size. Estradiol treatment also increased feeding-induced c-Fos in the PVN and CeA. These results indicate that modest amounts of food increase neuronal activity within brain regions implicated in the control of meal size in ovariectomized rats and that estradiol treatment selectively increases this activation. They also suggest that estradiol decreases meal size by increasing feeding-related neuronal activity in multiple regions of the distributed neural network controlling meal size.  相似文献   

11.
In previous metrifonate (MTF) studies, there has been evidence for a preferential functional effect of the drug in cortical but not in striatal regions. In the present study we investigated the kinetics of brain cholinesterase (ChE) inhibition following an acute administration of MTF (100 mg/kg) in various brain regions of young and old Fischer 344 rats. The main objective was to test the hypothesis that the functional regional selectivity, observed in previous studies, was correlated with the extent of ChE inhibition. Using Karnovsky's method for histochemical staining, the highest staining intensity in control rats was found in the striatum and hippocampus, compared to a low basal activity in the frontal and frontoparietal cortices. In the striatum of drug treated old rats, enzyme inhibition was somewhat greater than that found in young rats. However, in the hippocampus, four to eight hours following MTF administration, the inhibition was greater in young compared to old rats. The differences in the sensitivity of various brain regions towards MTF induced ChE inhibition could not be correlated with the regional variation of MTF functional effects.  相似文献   

12.
Adrenergic receptor agonists and antagonists were employed to establish (a) which receptor subtypes mediate the cyclic AMP response to norepinephrine in hypothalamic and preoptic area slices from gonadectomized female rats and (b) which receptor subtypes might be modulated by the steroid hormone estradiol. Slice cyclic AMP levels were elevated by the beta receptor agonist isoproterenol, but not by alpha 1 (phenylephrine, methoxamine) or alpha 2 (clonidine) agonists. However, the alpha agonist phenylephrine potentiated the effect of the beta agonist isoproterenol on slice cyclic AMP accumulation. In slices from rats given no hormone treatment, the beta antagonist propranolol inhibited norepinephrine-stimulated cyclic AMP production, while the alpha 1 antagonist prazosin was without effect. In contrast, the cyclic AMP response to norepinephrine in slices from estradiol-treated rats was blocked more effectively by prazosin than by propranolol. Estradiol treatment also attenuated the production of cyclic AMP by the beta agonist isoproterenol. The data suggest (a) that norepinephrine induction of cyclic AMP accumulation in hypothalamic and preoptic area slices is mediated by beta receptors and potentiated by alpha receptor activation and (b) that estradiol depresses beta and increases alpha 1 receptor function in slices from brain regions associated with reproductive physiology.  相似文献   

13.
Nucleic acid probes derived from the 3' noncoding region of five tubulin cDNAs were used to study the effects of thyroid hormone deficiency on the expression of the mRNAs encoding two alpha (alpha 1 and alpha 2)- and three beta (beta 2, beta 4, and beta 5)-tubulin isotypes in the developing cerebral hemispheres and cerebellum. The content of alpha 1, which markedly declines during development in both brain regions, is maintained at high levels in the hypothyroid cerebellum, whereas it is decreased in the cerebral hemispheres. The alpha 2 level also declines during development and is decreased in both regions by thyroid hormone deficiency, but only during the two first postnatal weeks. Thyroid hormone deficiency slightly increases at all stages the beta 2 level in the cerebellum, whereas a decrease is observed at early stages in the cerebral hemispheres. The beta 5 level seems to be independent of thyroid hormone in the cerebral hemispheres, whereas it decreases at early stages in the hypothyroid cerebellum. Finally, the expression of the brain-specific beta 4 isotype is markedly depressed by thyroid hormone deficiency, particularly in the cerebellum. These data suggest that the genes encoding the tubulin isotypes are, directly or not, differently regulated by thyroid hormone during brain development. This might contribute to abnormal neurite outgrowth seen in the hypothyroid brain and therefore to impairment in brain functions produced by thyroid hormone deficiency.  相似文献   

14.
High-fluoride (100 and 200?ppm) water was administered to rats orally to study the fluoride-induced changes on the thyroid hormone status, the histopathology of discrete brain regions, the acetylcholine esterase activity, and the learning and memory abilities in multigeneration rats. Significant decrease in the serum-free thyroxine (FT4) and free triiodothyronine (FT3) levels and decrease in acetylcholine esterase activity in fluoride-treated group were observed. Presence of eosinophilic Purkinje cells, degenerating neurons, decreased granular cells, and vacuolations were noted in discrete brain regions of the fluoride-treated group. In the T-maze experiments, the fluoride-treated group showed poor acquisition and retention and higher latency when compared with the control. The alterations were more profound in the third generation when compared with the first- and second-generation fluoride-treated group. Changes in the thyroid hormone levels in the present study might have imbalanced the oxidant/antioxidant system, which further led to a reduction in learning memory ability. Hence, presence of generational or cumulative effects of fluoride on the development of the offspring when it is ingested continuously through multiple generations is evident from the present study.  相似文献   

15.
Knoll J  Miklya I  Knoll B  Dalló J 《Life sciences》2000,67(7):765-773
The amount of dopamine released from the striatum, substantia nigra and tuberculum olfactorium, noradrenaline from locus coeruleus and serotonin from the raphe, was significantly higher in four and five weeks old rats than in three month old ones, proving that the catecholaminergic/serotoninergic activity enhancer (CAE/SAE) regulation works unrestrained during developmental longevity and is restricted thereafter. As the dampening of the CAE/SAE regulation (end to the second month of age) coincided temporally with the appearance of sexual hormones, we castrated three weeks old male and female rats and measured at the end of the third month of their life the release of catecholamines and serotonin from selected discrete brain regions. The amount of catecholamines and serotonin released from the neurons was significantly higher in castrated than in untreated or sham operated rats, signalting that sexual hormones inhibit the CAE/SAE regulation in the brain. We therefore treated male and female rats s.c. with oil (0.1 ml/rat), testosterone, (0.1 mg/rat), estrone (0.01 mg/rat) and progesterone (0.5 mg/rat), respectively, and measured their effect on the CAE/SAE regulation. Twenty-four hours after a single injection with the hormones, the release of noradrenaline, dopamine and serotonin was significantly inhibited in the testosterone or estrone treated rats, but remained unchanged after progesteron treatment. In rats treated with a single hormone injection, testosterone in the male and estrone in the female was the significantly more effective inhibitor. Remarkably, the reverse order of potency was found in rats treated with daily hormone injections for 7 or 14 days. After two-week treatment with the hormones estrone was in the male and testosterone in the female the significantly more potent inhibitor of the CAE/SAE regulation. The data indicate that sexual hormones terminate the hyperactive phase of adolescence by dampening the impulse propagation mediated release of catecholamines and serotonin in the brain.  相似文献   

16.
Relative levels of hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) have been determined in 16 discrete regions of adult rat brain by a quantitative immunofluorescence method. The distribution of immunofluorescence in brain sections was determined by interactive laser cytometry and related to hexokinase content by comparison with standard sections containing known amounts of the enzyme. In many of these regions, referred to here as group I regions, hexokinase content was correlated with previously reported basal rates of glucose utilization. However, several regions (group II regions) in which hexokinase content exceeded that expected from basal rates of glucose utilization were also detected. Compared with the corresponding regions from albino rat brain, higher hexokinase levels were found in the dorsal and ventral lateral geniculate (group I regions) of pigmented Norway rats, a result reflecting previously reported increased glucose utilization by these regions in pigmented rats. There was no difference in hexokinase levels in the superior colliculus, a group II structure, from albino and pigmented rats, a finding implying that a reported increase in rate of glucose utilization in the superior colliculus of pigmented rats is effected without an increase in hexokinase content. It is suggested that group II regions may be adapted to sustain increases in rates of glucose utilization that are, relative to basal rates, considerably greater than those experienced by group I regions.  相似文献   

17.
Abstract: Alterations in the catecholaminergic neurotransmitter systems have been shown to occur in hepatic failure and may contribute to development of hepatic encephalopathy. In the present study we used the rat after complete hepatectomy as a model for study of changes that occur in brain in acute liver failure. We attempted to identify processes in the synthesis, storage, and metabolism of catecholamine neurotransmitters that might be changed during liver failure by measuring levels of, together with those of norepinephrine and dopamine, the precursor (3,4-dihydroxyphenylalanine) and the neuronal metabolites of dopamine and norepinephrine (3,4-dihydroxyphenylacetic acid and 3,4-dihydroxyphenylglycol, respectively) in different regions of brains of control rats and of rats after hepatectomy. We found that in most brain regions of hepatectomized rats there were increases in the concentration of 3,4-dihydroxyphenylalanine or of dopamine but decreases in the concentrations of norepinephrine or of 3,4-dihydroxyphenylglycol. The particulate/supernatant ratios of catecholamines are indices of retention of neurotransmitters in storage sites. These ratios were not different in brain regions between control rats and hepatectomized rats, suggesting that vesicular retention of catecholamines in brain was not impaired after hepatectomy. The data suggest that inhibition of dopamine-β-hydroxylase might be a characteristic of hepatic failure.  相似文献   

18.
The stress-related corticotropin-releasing hormone (CRH) was first identified by isolation of its cDNA from the brain of the Japanese eel Anguilla japonica. CRH cDNA encodes a signal peptide, a cryptic peptide and CRH (41 amino acids). The sequence homology to mammalian CRH is high. Next, the distribution of CRH-immunoreactive (ir) cell bodies and fibers in the brain and pituitary were examined by immunohistochemistry. CRH-ir cell bodies were detected in several brain regions, e.g., nucleus preopticus pars magnocellularis, nucleus preopticus pars gigantocellularis and formatio reticularis superius. In the brain, CRH-ir fibers were distributed not only in the hypothalamus but also in various regions. Some CRH-ir fibers projected to adrenocorticotropic hormone (ACTH) cells in the rostral pars distalis of the pituitary and also the α-melanocyte-stimulating hormone (α-MSH) cells in the pars intermedia of the pituitary. Finally, the neuroanatomical relationship between the CRH neurons and gonadotropin-releasing hormone (GnRH) neurons was examined by dual-label immunohistochemistry. CRH-ir fibers were found to be in close contact with GnRH-ir cell bodies in the hypothalamus and in the midbrain tegmentum and GnRH-ir fibers were in close contact with CRH-ir cell bodies in the nucleus preopticus pars magnocellularis. These results suggest that CRH has some physiological functions other than the stimulation of ACTH and α-MSH secretion and that reciprocal connections may exist between the CRH neurons and GnRH neurons in the brain of the Japanese eel.  相似文献   

19.
Effect of latent iron deficiency on metal levels of rat brain regions   总被引:1,自引:0,他引:1  
Seven different metals (iron, copper, zinc, calcium, manganese, lead, and cadmium) were studied in eight different brain regions (cerebral cortex, cerebellum, corpus striatum, hypothalamus, hippocampus, midbrain, medulla oblongata, and pons) of weaned rats (21-d-old) maintained on an iron-deficient (18-20 mg iron/kg) diet for 8 wk. Iron was found to decrease in all the brain regions, except medulla oblongata and pons, in comparison to their respective levels in control rats, receiving an iron-sufficient (390 mg iron/kg) diet. Brain regions showed different susceptibility toward iron deficiency-induced alterations in the levels of various metals, such as zinc, was found to increase in hippocampus (19%, p less than 0.05) and midbrain (16%, p less than 0.05), copper in cerebral cortex (18%, p less than 0.05) and corpus striatum (16% p less than 0.05), calcium in corpus striatum (22%, p less than 0.01) and hypothalamus (17%, p less than 0.02), and manganese in hypothalamus (18%, p less than 0.05) only. Toxic metals lead and cadmium also increased in cerebellum (19%, p less than 0.05) and hippocampus (17%, p less than 0.05) regions, respectively. Apart from these changes, liver (64%, p less than 0.001) and brain (19%, p less than 0.01) nonheme iron contents were found to decrease significantly, but body, liver, and brain weights, packed cell volume, and hemoglobin content remained unaltered in these experimental rats. Rehabilitation of iron-deficient rats with an iron-sufficient diet for 2 wk recovered the values of zinc in both the hippocampus and mid-brain regions and calcium in the hypothalamus region only. Liver nonheme iron improved significantly; however, no remarkable effect was noticed in brain nonheme iron following rehabilitation. It may be concluded that latent iron deficiency produced alterations in various metal levels in different brain regions, and corpus striatum was found to be the most vulnerable region for such changes. It is also evident that brain regions were resistant for any recovery in their altered metallic levels in response to rehabilitation for 2 wk.  相似文献   

20.
Abstract: A survey of the regional distribution of binding of 1 nM [3H](3-MeHis2)thyrotropin-releasing hormone ([3H]MeTRH) to TRH receptors in the brains of eight mammalian species revealed major species differences in both the absolute and relative values of TRH receptor binding in different brain regions. Several brain regions exhibited binding equal to or exceeding that in the anterior pituitary gland of the same species, including the amygdaia in the guinea pig and rat, the hypothalamus in the guinea pig, the nucleus accumbens in the rabbit, and all these and other regions in the cat and dog, for which pituitary binding was exceptionally low. Species could be divided into two groups according to which brain region appeared highest in binding: rabbits, sheep, and cattle had highest binding in the nucleus accumbens/septal area, whereas guinea pigs, rats, dogs, cats, and pigs had highest binding in the amygdala/temporal cortex area. The nucleus accumbens consistently exceeded the caudate-putamen in receptor binding. For most brain regions, rabbits, rodents, and sheep tended to be higher than carnivores, cattle, or pigs. Further regions that exhibited appreciable binding in most species included the olfactory bulb and tubercle, hippocampus, and various cortical and brain stem areas. In fact, essentially all brain regions appeared to have detectable levels of TRH receptors in at least some species, but no rat peripheral tissues have yet shown detectable receptor binding. The species differences appeared to reflect largely if not entirely differences in receptor density, although this was not tested in every species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号