首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundADAR enzymes convert adenosines to inosines within double-stranded RNAs, including microRNA (miRNA) precursors, with important consequences on miRNA retargeting and expression. ADAR2 activity is impaired in glioblastoma and its rescue has anti-tumoral effects. However, how ADAR2 activity may impact the miRNome and the progression of glioblastoma is not known.ResultsBy integrating deep-sequencing and array approaches with bioinformatics analyses and molecular studies, we show that ADAR2 is essential to edit a small number of mature miRNAs and to significantly modulate the expression of about 90 miRNAs in glioblastoma cells. Specifically, the rescue of ADAR2 activity in cancer cells recovers the edited miRNA population lost in glioblastoma cell lines and tissues, and rebalances expression of onco-miRNAs and tumor suppressor miRNAs to the levels observed in normal human brain. We report that the major effect of ADAR2 is to reduce the expression of a large number of miRNAs, most of which act as onco-miRNAs. ADAR2 can edit miR-222/221 and miR-21 precursors and decrease the expression of the corresponding mature onco-miRNAs in vivo and in vitro, with important effects on cell proliferation and migration.ConclusionsOur findings disclose an additional layer of complexity in miRNome regulation and provide information to better understand the impact of ADAR2 editing enzyme in glioblastoma. We propose that ADAR2 is a key factor for maintaining edited-miRNA population and balancing the expression of several essential miRNAs involved in cancer.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0575-z) contains supplementary material, which is available to authorized users.  相似文献   

2.
RNA editing by adenosine deaminases generates RNA and protein diversity   总被引:8,自引:0,他引:8  
Schaub M  Keller W 《Biochimie》2002,84(8):791-803
  相似文献   

3.
Lehmann KA  Bass BL 《Biochemistry》2000,39(42):12875-12884
Adenosine deaminases that act on RNA (ADARs) deaminate adenosines to produce inosines within RNAs that are largely double-stranded (ds). Like most dsRNA binding proteins, the enzymes will bind to any dsRNA without apparent sequence specificity. However, once bound, ADARs deaminate certain adenosines more efficiently than others. Most of what is known about the intrinsic deamination specificity of ADARs derives from analyses of Xenopus ADAR1. In addition to ADAR1, mammalian cells have a second ADAR, named ADAR2; the deamination specificity of this enzyme has not been rigorously studied. Here we directly compare the specificity of human ADAR1 and ADAR2. We find that, like ADAR1, ADAR2 has a 5' neighbor preference (A approximately U > C = G), but, unlike ADAR1, also has a 3' neighbor preference (U = G > C = A). Simultaneous analysis of both neighbor preferences reveals that ADAR2 prefers certain trinucleotide sequences (UAU, AAG, UAG, AAU). In addition to characterizing ADAR2 preferences, we analyzed the fraction of adenosines deaminated in a given RNA at complete reaction, or the enzyme's selectivity. We find that ADAR1 and ADAR2 deaminate a given RNA with the same selectivity, and this appears to be dictated by features of the RNA substrate. Finally, we observed that Xenopus and human ADAR1 deaminate the same adenosines on all RNAs tested, emphasizing the similarity of ADAR1 in these two species. Our data add substantially to the understanding of ADAR2 specificity, and aid in efforts to predict which ADAR deaminates a given editing site adenosine in vivo.  相似文献   

4.
Hepatitis delta virus (HDV) is a subviral human pathogen that uses specific RNA editing activity of the host to produce two essential forms of the sole viral protein, hepatitis delta antigen (HDAg). Editing at the amber/W site of HDV antigenomic RNA leads to the production of the longer form (HDAg-L), which is required for RNA packaging but which is a potent trans-dominant inhibitor of HDV RNA replication. Editing in infected cells is thought to be catalyzed by one or more of the cellular enzymes known as adenosine deaminases that act on RNA (ADARs). We examined the effects of increased ADAR1 and ADAR2 expression on HDV RNA editing and replication in transfected Huh7 cells. We found that both ADARs dramatically increased RNA editing, which was correlated with strong inhibition of HDV RNA replication. While increased HDAg-L production was the primary mechanism of inhibition, we observed at least two additional means by which ADARs can suppress HDV replication. High-level expression of both ADAR1 and ADAR2 led to extensive hyperediting at non-amber/W sites and subsequent production of HDAg variants that acted as trans-dominant inhibitors of HDV RNA replication. Moreover, we also observed weak inhibition of HDV RNA replication by mutated forms of ADARs defective for deaminase activity. Our results indicate that HDV requires highly regulated and selective editing and that the level of ADAR expression can play an important role: overexpression of ADARs inhibits HDV RNA replication and compromises virus viability.  相似文献   

5.
RNA editing by A-to-I modification has been recognized as an important molecular mechanism for generating RNA and protein diversity. In mammals, it is mediated by a family of adenosine deaminases that act on RNAs (ADARs). The large version of the editing enzyme ADAR1 (ADAR1-L), expressed from an interferon-responsible promoter, has a Z-DNA/Z-RNA binding domain at its N-terminus. We have tested the in vitro ability of the enzyme to act on a 50 bp segment of dsRNA with or without a Z-RNA forming nucleotide sequence. A-to-I editing efficiency is markedly enhanced in presence of the sequence favoring Z-RNA. In addition, an alteration in the pattern of modification along the RNA duplex becomes evident as reaction times decrease. These results suggest that the local conformation of dsRNA molecules might be an important feature for target selectivity by ADAR1 and other proteins with Z-RNA binding domains.  相似文献   

6.
7.
Tuning of RNA editing by ADAR is required in Drosophila   总被引:1,自引:0,他引:1  
  相似文献   

8.
Jayan GC  Casey JL 《Journal of virology》2002,76(23):12399-12404
Hepatitis delta virus (HDV) requires host RNA editing at the viral RNA amber/W site. Of the two host genes responsible for RNA editing via deamination of adenosines in double-stranded RNAs, short inhibitory RNA-mediated knockdown of host ADAR1 expression but not that of ADAR2 led to decreased HDV amber/W editing and virus production. Despite substantial sequence and structural variation among the amber/W sites of the three HDV genotypes, ADAR1a was primarily responsible for editing all three. We conclude that ADAR1 is primarily responsible for editing HDV RNA at the amber/W site during HDV infection.  相似文献   

9.
Rho GTPase activating protein 26 (ARHGAP26) is a negative regulator of the Rho family that converts the small G proteins RhoA and Cdc42 to their inactive GDP-bound forms. It is essential for the CLIC/GEEC endocytic pathway, cell spreading, and muscle development. The present study shows that ARHGAP26 mRNA undergoes extensive A-to-I RNA editing in the 3′ UTR that is specifically catalyzed by ADAR1. Furthermore, the mRNA and protein levels of ARHGAP26 were decreased in cells in which ADAR1 was knocked down. Conversely, ADAR1 overexpression increased the abundance of ARHGAP26 mRNA and protein. In addition, we found that both miR-30b-3p and miR-573 target the ARHGAP26 gene and that RNA editing of ARHGAP26 mediated by ADAR1 abolished the repression of its expression by miR-30b-3p or miR-573. When ADAR1 was overexpressed, the reduced abundance of ARHGAP26 protein mediated by miR-30b-3p or miR-573 was rescued. Importantly, we also found that knocking down ADAR1 elevated RhoA activity, which was consistent with the reduced level of ARHGAP26. Conversely, when ADAR1 was overexpressed, the amount of RhoA-GTP decreased. The similar expression patterns of ARHGAP26 and ADAR1 in human tissue samples further confirmed our findings. Taken together, our results suggest that ADAR1 regulates the expression of ARHGAP26 through A-to-I RNA editing by disrupting the binding of miR-30b-3p and miR-573 within the 3′ UTR of ARHGAP26. This study provides a novel insight into the mechanism by which ADAR1 and its RNA editing function regulate microRNA-mediated modulation of target genes.  相似文献   

10.
  1. Download : Download high-res image (57KB)
  2. Download : Download full-size image
  相似文献   

11.
In mammalian cells two active enzymes, ADAR1 and ADAR2, carry out A-to-I RNA editing. These two editases share many common features in their protein structures, catalytic activities, and substrate requirements. However, the phenotypes of the knockout animals are remarkably different, which indicate the distinct functions they play. The most striking effect of ADAR1 knockout is cell death and interruption of embryonic development that are not observed in ADAR2 knockout. Evidences have shown that ADAR1 plays critical roles in the differentiating cells in embryo and adult tissues to support the cell’s survival and permit their further differentiation and maturation. However, our knowledge in understanding of the mechanism by which ADAR1 exerts its unique effects is very limited. Many efforts had been made trying to understand why ADAR1 is so important that it is indispensible for animal survival, including studies that identify the RNA editing substrates and studies on non-editing mechanisms. The interest of this review is focused on the question why ADAR1 and not ADAR2 is required for cell survival. Therefore, only the data, published and unpublished, potentially connecting ADAR1 to its cell death effect is selectively cited and discussed here. The features of cell death caused by ADAR1 deletion are summarized. Potential involvement of interferon and protein kinase RNA-activated (PKR) pathways is proposed, but obviously more experimental evaluations are needed.  相似文献   

12.
13.
Adenosine deaminases acting on RNA (ADARs) hydrolytically deaminate adenosines (A) in a wide variety of duplex RNAs and misregulation of editing is correlated with human disease. However, our understanding of reaction selectivity is limited. ADARs are modular enzymes with multiple double-stranded RNA binding domains (dsRBDs) and a catalytic domain. While dsRBD binding is understood, little is known about ADAR catalytic domain/RNA interactions. Here we use a recently discovered RNA substrate that is rapidly deaminated by the isolated human ADAR2 deaminase domain (hADAR2-D) to probe these interactions. We introduced the nucleoside analog 8-azanebularine (8-azaN) into this RNA (and derived constructs) to mechanistically trap the protein–RNA complex without catalytic turnover for EMSA and ribonuclease footprinting analyses. EMSA showed that hADAR2-D requires duplex RNA and is sensitive to 2′-deoxy substitution at nucleotides opposite the editing site, the local sequence and 8-azaN nucleotide positioning on the duplex. Ribonuclease V1 footprinting shows that hADAR2-D protects ∼23 nt on the edited strand around the editing site in an asymmetric fashion (∼18 nt on the 5′ side and ∼5 nt on the 3′ side). These studies provide a deeper understanding of the ADAR catalytic domain–RNA interaction and new tools for biophysical analysis of ADAR–RNA complexes.  相似文献   

14.
15.
Adenosine deaminases acting on RNA (ADAR) convert adenosine residues into inosines in double-stranded RNA. Three vertebrate ADAR gene family members, ADAR1, ADAR2, and ADAR3, have been identified. The catalytic domain of all three ADAR gene family members is very similar to that of Escherichia coli cytidine deaminase and APOBEC-1. Homodimerization is essential for the enzyme activity of those cytidine deaminases. In this study, we investigated the formation of complexes between differentially epitope-tagged ADAR monomers by sequential affinity chromatography and size exclusion column chromatography. Both ADAR1 and ADAR2 form a stable enzymatically active homodimer complex, whereas ADAR3 remains as a monomeric, enzymatically inactive form. No heterodimer complex formation among different ADAR gene family members was detected. Analysis of HeLa and mouse brain nuclear extracts suggested that endogenous ADAR1 and ADAR2 both form a homodimer complex. Interestingly, endogenous ADAR3 also appears to form a homodimer complex, indicating the presence of a brain-specific mechanism for ADAR3 dimerization. Homodimer formation may be necessary for ADAR to act as active deaminases. Analysis of dimer complexes consisting of one wild-type and one mutant monomer suggests functional interactions between the two subunits during site-selective RNA editing.  相似文献   

16.
17.
Adenosine deaminase acting on RNA 1 (ADAR1) is a double-stranded RNA binding protein and RNA-editing enzyme that modifies cellular and viral RNAs, including coding and noncoding RNAs. This interferon (IFN)-induced protein was expected to have an antiviral role, but recent studies have demonstrated that it promotes the replication of many RNA viruses. The data from these experiments show that ADAR1 directly enhances replication of hepatitis delta virus, human immunodeficiency virus type 1, vesicular stomatitis virus, and measles virus. The proviral activity of ADAR1 occurs through two mechanisms: RNA editing and inhibition of RNA-activated protein kinase (PKR). While these pathways have been found independently, the two mechanisms can act in concert to increase viral replication and contribute to viral pathogenesis. This novel type of proviral regulation by an IFN-induced protein, combined with some antiviral effects of hyperediting, sheds new light on the importance of ADAR1 during viral infection and transforms our overall understanding of the innate immune response.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号