首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A thermostable chitosanase, purified 156-fold to homogeneity in an overall yield of 12.4%, has a molecular weight of about 29,000±2,000, and is composed of monomer. The enzyme degraded soluble chitosan, colloidal chitosan, and glycol chitosan, but did not degrade chitin or other β-linked polymers. The enzyme activity was increased about 2.5-fold by the addition of 10 mM Co2+ and 1.4-fold by Mn2+. However, Cu2+ ion strongly inhibited the enzyme. Optimum temperature and pH were 60°C and 6.5, respectively. The enzyme was stable after heat treatment at 80°C for 30 min or 70°C for 60 min and fairly stable in protein denaturants as well. Chitosan was hydrolyzed to (GlcN)4 as a major product, by incubation with the purified enzyme. The effects of ammonium sulfate and organic solvents on the action pattern of the thermostable chitosanase were investigated. The amounts of (GlcN)3-(GlcN)6 were increased about 30% (w/w) in DAC 99 soluble chitosan containing 10% ammonium sulfate, and (GlcN)1 was not produced. The monophasic reaction system consisted of DAC 72 soluble chitosan in 10% EtOH also showed no formation of (GlcN)1, however, the yield of (GlcN)3 ~ (GlcN)6 was lower than DAC 99 soluble chitosan-10% ammonium sulfate. The optimal concentration of ammonium sulfate to be added was 20%. At this concentration, the amount of hexamer was increased by over 12% compared to the water-salt free system.  相似文献   

2.
Characterization and kinetics of 45 kDa chitosanase from Bacillus sp. P16   总被引:1,自引:0,他引:1  
An extracellular 45 kDa endochitosanase was purified and characterized from the culture supernatant of Bacillus sp. P16. The purified enzyme showed an optimum pH of 5.5 and optimum temperature of 60 degrees C, and was stable between pH 4.5-10.0 and under 50 degrees C. The Km and Vmax were measured with a chitosan of a D.A. of 20.2% as 0.52 mg/ml and 7.71 x 10(-6) mol/sec/mg protein, respectively. The enzyme did not degrade chitin, cellulose, or starch. The chitosanase digested partially N-acetylated chitosans, with maximum activity for 15-30% and lesser activity for 0-15% acetylated chitosan. The chitosanase rapidly reduced the viscosity of chitosan solutions at a very early stage of reaction, suggesting the endotype of cleavage in polymeric chitosan chains. The chitosanase hydrolyzed (GlcN)7 in an endo-splitting manner producing a mixture of (GlcN)(2-5). Time course studies showed a decrease in the rate of substrate degradation from (GlcN)7 to (GlcN)6 to (GlcN)5, as indicated by the apparent first order rate constants, k1 values, of 4.98 x 10(-4), 2.3 x 10(-4), and 9.3 x 10(-6) sec(-1), respectively. The enzyme hardly catalyzed degradation of chitooligomers smaller than the pentamer.  相似文献   

3.
The advantage of usingStreptomyces griseus HUT 6037 in the production of chitinase or chitosanase is that the organism is capable of hydrolyzing amorphous or crystal-line chitin and chitosan according to the type of the substrate used. We investigated the effects of the enzyme induction time and chitin sources, CM-chitosan and deacetylated chitosan (degree of deacetylation 75–99%), on production of chitosanase. We found that this strain accumulated chitosanase when cells were grown in the culture medium containing chitosanaceous substrates instead of chitinaceous substrates. The highest chitosanase activity was obtained at 4 days of cultivation with 99% deacetylated chitosan. Soluble chitosan (53% deacetylated chitosan) was found to induce chitinase as well as chitosanase. The specific activities of chitinase and chitosanase were 0.91 and 1.33 U/mg protein at 3 and 5 days, respectively. From the study of the enzymatic digestibility of various degrees of deacetylated chitosan, it was found that (GlcN)3, (GlcN)4 and (GlcN)5 were produced during the enzymatic hydrolysis reaction. The results of this study suggested that the sugar composition of (GlcN)3 was homogeneous and those of (GlcN)4 and (GlcN)5 were heterogeneous.  相似文献   

4.
Chitosan-degrading activities induced by glucosamine (GlcN) or N-acetylglucosamine (GlcNAc) were found in a culture filtrate of Trichoderma reesei PC-3-7. One of the chitosan-degrading enzymes was purified to homogeneity by precipitation with ammonium sulfate followed by anion-exchange and hydrophobic-interaction chromatographies. The enzyme was monomeric, and its molecular mass was 93 kDa. The optimum pH and temperature of the enzyme were 4.0 and 50 degrees C, respectively. The activity was stable in the pH range 6.0 to 9.0 and at a temperature below 50 degrees C. Reaction product analysis from the viscosimetric assay and thin-layer chromatography and H nuclear magnetic resonance spectroscopy clearly indicated that the enzyme was an exo-type chitosanase, exo-beta-d-glucosaminidase, that releases GlcN from the nonreducing end of the chitosan chain. H nuclear magnetic resonance spectroscopy also showed that the exo-beta-d-glucosaminidase produced a beta-form of GlcN, demonstrating that the enzyme is a retaining glycanase. Time-dependent liberation of the reducing sugar from partially acetylated chitosan with exo-beta-d-glucosaminidase and the partially purified exo-beta-d-N-acetylglucosaminidase from T. reesei PC-3-7 suggested that the exo-beta-d-glucosaminidase cleaves the glycosidic link of either GlcN-beta(1-->4)-GlcN or GlcN-beta(1-->4)-GlcNAc.  相似文献   

5.
Extracellular chitosanase produced by Amycolatopsis sp. CsO-2 was purified to homogeneity by precipitation with ammonium sulfate followed by cation exchange chromatography. The molecular weight of the chitosanase was estimated to be about 27,000 using SDS-polyacrylamide gel electrophoresis and gel filtration. The maximum velocity of chitosan degradation by the enzyme was attained at 55°C when the pH was maintained at 5.3. The enzyme was stable over a temperature range of 0–50°C and a pH range of 4.5–6.0. About 50% of the initial activity remained after heating at 100°C for 10 min, indicating a thermostable nature of the enzyme. The isoelectric point of the enzyme was about 8.8. The enzyme degraded chitosan with a range of deacetylation degree from 70% to 100%, but not chitin or CM-cellulose. The most susceptible substrate was 100% deacetylated chitosan. The enzyme degraded glucosamine tetramer to dimer, and pentamer to dimer and trimer, but did not hydrolyze glucosamine dimer and trimer.  相似文献   

6.
Chitosanase II was purified from the culture filtrate of Aspergillus fumigatus ATCC13073. The purified enzyme had a molecular mass of 23.5 kDa. The N-terminal amino acid sequence of chitosanase II was identical to those of other Aspergillus chitosanases belonging to glycoside hydrolase family 75. The optimum pH and temperature were pH 6.0 and 40 °C. Chitosanase II hydrolyzed 70% deacetylated chitosan faster than fully deacetylated chitosan. Analysis of the degradation products generated from partially N-acetylated chitosan showed that chitosanase II split GlcN-GlcN and GlcNAc-GlcN bonds but not GlcNAc-GlcNAc or GlcN-GlcNAc, suggesting that it is a subclass I chitosanase. It degraded (GlcN)(6) to produce (GlcN)(3) as main product and small amounts of (GlcN)(2) and (GlcN)(4). Reaction rate analyses of mono-N-acetylated chitohexaose suggested that the (+3) site of chitosanase II recognizes the GlcNAc residue rather than the GlcN residue of its substrate.  相似文献   

7.
A Bacillus subtilis strain was isolated from the intestine of Sebastiscus marmoratus (scorpion fish) that was identified as Bacillus subtilis CH2 by morphological, biochemical, and genetic analyses. The chitosanase of Bacillus subtilis CH2 was best induced by fructose and not induced with chitosan, unlike other chitosanases. The strain was incubated in LB broth, and the chitosanase secreted into the medium was concentrated with ammonium sulfate precipitation and purified by gel permeation chromatography. The molecular mass of the purified chitosanase was detected as 29 kDa. The optimum pH and temperature of the purified chitosanase were 5.5 and 60°C, respectively. The purified chitosanase was continuously thermostable at 40°C. The specific acitivity of the purified chitosanase was 161 units/mg. The N-terminal amino acid sequence was analyzed for future study.  相似文献   

8.
A species of bacterium with high chitosanase activity was isolated from soil samples in Haiyan City, China, and identified as an Acinetobacter species. This strain, named Acinetobacter sp. strain C-17, produced a chitosanase that was inducible and secreted into the medium. The optimal conditions for enzyme production were cells used to inoculate a medium containing 1% chitosan (pH 7.0) followed by culture at 30 degrees C. The chitosanase activity reached 1.7 U/ml when strain C-17 was incubated in a 250-ml flask under the optimal conditions for 24 h, and reached 2.8 U/ml when cells were incubated in a 3-l fermentor. The optimal pH and temperature for hydrolysis of chitosanase were 7.0 and 36 degrees C, respectively. The chitosanase activity was stable in the pH range of 5-8 and temperature range of 30-40 degrees C. The chitosanase of the strain was extracted by zinc acetate and ammonium sulfate precipitation. The molecular mass was estimated to be 35.4 kDa by SDS-PAGE.  相似文献   

9.
An extracellular 45 kDa endochitosanase was purified and characterized from the culture supernatant of Bacillus sp. P16. The purified enzyme showed an optimum pH of 5.5 and optimum temperature of 60°C, and was stable between pH 4.5-10.0 and under 50°C. The K m and V max were measured with a chitosan of a D.A. of 20.2% as 0.52 mg/ml and 7.71×10?6 mol/sec/mg protein, respectively. The enzyme did not degrade chitin, cellulose, or starch. The chitosanase digested partially N-acetylated chitosans, with maximum activity for 15-30% and lesser activity for 0-15% acetylated chitosan. The chitosanase rapidly reduced the viscosity of chitosan solutions at a very early stage of reaction, suggesting the endotype of cleavage in polymeric chitosan chains. The chitosanase hydrolyzed (GlcN)7 in an endo-splitting manner producing a mixture of (GlcN)2-5. Time course studies showed a decrease in the rate of substrate degradation from (GlcN)7 to (GlcN)6 to (GlcN)5, as indicated by the apparent first order rate constants, k 1 values, of 4.98×10?4, 2.3×10?4, and 9.3×10?6 sec?1, respectively. The enzyme hardly catalyzed degradation of chitooligomers smaller than the pentamer.  相似文献   

10.
A quantitative fluorometric assay for chitosanase activity in bacterial and plant tissues was developed. The assay can be conducted with either finely milled preparations of chitosan in suspension or dissolved chitosan; activity is based on measurements of glucosamine (GlcN) or oligomers of GlcN. GlcN is detected fluorometrically after reaction with fluorescamine with detection in the nanomole range. Fluorescence measurements of chitosanase activity and radioassay of chitinase in commercial preparations of chitinase from Streptomyces griseus revealed that both activities were present. Specific activities for the S. griseus chitosanase using suspended and soluble chitosans were respectively 1.24 and 6.4 mumol GlcN.min-1.mg protein-1. Specific activity of the S. griseus chitinase was 0.98 mumol GlcN.min-1.mg protein-1. Sweet orange callus tissue was tested for chitosanase and chitinase activity. It was necessary to remove small amine-containing molecules from the callus preparations before chitosanase activity could be assayed. The specific activity for chitinase and chitosanase in desalted extracts of nonembryogenic Valencia sweet orange callus tissue was determined to be 18.6 and 89.4 nmol GlcN.min-1.mg protein-1, respectively.  相似文献   

11.
Chitosan raises a great interest among biotechnologists due to its potential for applications in biomedical or environmental fields. Enzymatic hydrolysis of chitosan is a recognized method allowing control of its molecular size, making possible its optimization for a given application. During the industrial hydrolysis process of chitosan, viscosity is a major problem; which can be circumvented by raising the temperature of the chitosan solution. A thermostable chitosanase is compatible with enzymatic hydrolysis at higher temperatures thus allowing chitosan to be dissolved at higher concentrations. Following an extensive micro-plate screening of microbial isolates from various batches of shrimp shells compost, the strain 1794 was characterized and shown to produce a thermostable chitosanase. The isolate was identified as a novel member of the genus Paenibacillus, based on partial 16S rDNA and rpoB gene sequences. Using the chitosanase (Csn1794) produced by this strain, a linear time course of chitosan hydrolysis has been observed for at least 6 h at 70 °C. Csn1794 was purified and its molecular weight was estimated at 40 kDa by SDS-PAGE. Optimum pH was about 4.8, the apparent K m and the catalytic constant kcat were 0.042 mg/ml and 7,588 min?1, respectively. The half-life of Csn1794 at 70 °C in the presence of chitosan substrate was >20 h. The activity of chitosanase 1794 varied little with the degree of N-acetylation of chitosan. The enzyme also hydrolyzed carboxymethylcellulose but not chitin. Chitosan or cellulose-derived hexasaccharides were cleaved preferentially in a symmetrical way (“3?+?3”) but hydrolysis rate was much faster for (GlcN)6 than (Glc)6. Gene cloning and sequencing revealed that Csn1794 belongs to family 8 of glycoside hydrolases. The enzyme should be useful in biotechnological applications of chitosan hydrolysis, dealing with concentrated chitosan solutions at high temperatures.  相似文献   

12.
The hydrolyzate of partially N-acetylated chitosan by Bacillus sp. No. 7-M chitosanase was separated by gel filtration on Bio-Gel P-2. Sugar compositions and sequences of the oligosaccharides were identified by exo-splitting with beta-GlcNase, fast atom bombardment mass spectroscopy, and proton NMR spectroscopy. In addition to chitooligosaccharides, (GlcN)2, (GlcN)3, and (GlcN)4, hetero-chitooligosaccharides such as (GlcN)2.GlcNAc.(GlcN)2, GlcN.GlcNAc.(GlcN)3, (GlcN)2.GlcNAc.(GlcN)3, and GlcN.GlcNAc.(GlcN)4 were detected. These results indicate that Bacillus sp. No. 7-M chitosanase is absolutely specific toward the GlcN.GlcN bonds in partially N-acetylated chitosan and at least three GlcN residues were necessary to the hydrolysis of chitosan by chitosanase.  相似文献   

13.
从来自拟青霉属真菌Paecilomyces sp.CS-Z的发酵液中获得一种壳聚糖酶,该酶被纯化了9.4倍,产率为48.2%。经SDS-PAGE分析确定为单一条带,分子量为29kDa,其最适pH为6.0–6.5,最适温度为55℃,在80℃处理60min后,能保持较好的热稳定性,Hg2+完全抑制了酶活,对脱乙酰度85%–95%的壳聚糖具有较高的水解活性,而对几丁质和羧甲基纤维素无活性。薄层层析和质谱分析表明该酶是一种内切酶,其水解产物为聚合度大于6的壳寡糖,其理化性质与至今报道的壳聚糖酶有所不同,为壳聚糖酶的开发提供了重要的实验依据。  相似文献   

14.
The advantages of the organismStreptomyces griseus HUT 6037 is that the chitinase and chitosanase using chitinaceouse substrate are capable of hydrolyzing both amorphous and crystalline chitin and chitosan. We attempted to investigate the optimization of induction protocol for high-level production and secretion of chitosanase and the influence of chitin and partially deacetylated chitosan sources (75–99% deactylation). The maximum specific activity of chitinase has been found at 5 days cultivation with the 48 hours induction time using colloidal chitin as a carbon source. To investigate characteristic of chitosan activity according to substrate, we used chitosan with various degree of deacetylation as a carbon source and found that this strain accumulates chitosanase in the culture medium using chitosanaceous substrates rather than chitinaceous substrates. The highest chitosanase activity was also presented on 4 days with 99% deacetylated chitosan. The partially 53% deacetylated chitosan can secrete both chitinase and chitosanase which was defined as a soluble chitosan. The specific activities of chitinase and chitosanase were 0.89 at 3 days and 1.33 U/mg protein at 5 days, respectively. It indicate that chitosanase obtained fromS. griseus HUT 6037 can hydrolyze GlcNAc-GlcN and GlcN-GlcN linkages by exo-splitting manner. This activity increased with increasing degree of deacetylation of chitosan. It is the first attempt to investigate the effects of chitosanase on various degrees of deacetylations of chitosan byS. griseus HUT 6037. The highest specific activity of chitosanase was obtained with 99% deacetylated chitosan.  相似文献   

15.
Chitosanase from the culture filtrate of Nocardia orientalis was purified to apparent homogeneity by precipitation with ammonium sulfate followed by CM-Sephadex chromatography, biospecific affinity chromatography on a Sepharose CL-4B with immobilized chitotriose and by gel filtration on Sephadex G-75. The enzyme specifically acted on chitooligosaccharides and chitosan to yield chitobiose and chitotriose as final products. The mode of action of the chitosanase on chitooligosaccharides and their corresponding alcohols suggests that the enzyme requires substrates with four or more glucosamine residues for the expression of activity and its shows maximum activity on chitohexaose and chitoheptaose. In the hydrolysis of chitosans of varying N-acetyl content, the enzyme cleaved about 30% acetylated chitosan with maximum activity and the enzyme activity decreased with increasing the degree of deacetylation of chitosans tested. The analysis of products formed from 33% acetylated chitosan shows the chitosanase is capable of cleaving between glucosamine and glucosamine or N-acetylglucosamine, but not cleaving between N-acetylglucosamine and glucosamine. On the basis of the results, the whole pathway of enymatic degradation of partially acetylated chitosan by a combination of chitosanase, exo-beta-D-glucosaminidase and beta-N-acetylhexosaminidase is proposed.  相似文献   

16.
球孢白僵菌Beauveria bassiana 1316-V1的培养上清液经硫酸铵分级沉淀,Sephadex G-75凝胶过滤,Chitosan-bead亲和层析,第二次Sephadex G-75凝胶过滤, 得到电泳纯的一种胞外壳聚糖酶,比活力达到45u/mg 。此酶的分子量为36 kD; 最适酶反应温度为60℃;最适pH为4.0;最适离子强度为 0.25mol/L NaCl; 37℃以下,pH 2.0~5.0之间稳定性好; Cu2+、Hg2+、Pb2+、Ni2+ 对该酶有强烈抑制作用;Ag+、Mn2+也有较强抑制作用;Fe2+有轻微激活作用。该壳聚糖酶是一种糖蛋白,含糖约为12.6%。酶的最适底物为脱乙酰度为90%的胶体壳聚糖;也能轻微水解CMC、DEAE-Cellulose和胶体几丁质;但不能水解片状的壳聚糖和几丁质。  相似文献   

17.
Properties of Chitosanase from Bacillus cereus S1   总被引:3,自引:0,他引:3  
Chitosanase from Bacillus cereus S1 was purified, and the enzymatic properties were investigated. The molecular weight was estimated to 45,000 on SDS-PAGE. Optimum pH was about 6, and stable pH in the incubation at 40°C for 60 min was 6–11. This chitosanase was stable in alkaline side. Optimum temperature was around 60°C, and enzyme activity was relatively stable below 60°C. The degradations of colloidal chitosan and carboxymethyl cellulose (CMC) were about 30 and 20% relative to the value of soluble chitosan, respectively, but colloidal chitin and crystalline cellulose were not almost hydrolyzed. On the other hand, S1 chitosanase adsorbed on colloidal chitin completely and by about 50% also on crystalline cellulose, in contrast to colloidal chitosan, which it did not adsorb. S1 chitosanase finally hydrolyzed 100% N-deacetylated chitosan (soluble state) to chitobiose (27.2%), chitotriose (40.6%), and chitotetraose (32.2%). In the hydrolysis of various chitooligosaccharides, chitobiose and chitotriose were not hydrolyzed, and chitotetraose was hydrolyzed to chitobiose. Chitobiose and chitotriose were released from chitopentaose and chitohexaose. From this specificity, it was hypothesized that the active site of S1 chitosanase recognized more than two glucosamine residues posited in both sides against splitting point for glucosamine polymer. Received: 8 June 1999 / Accepted: 20 July 1999  相似文献   

18.
重组大肠杆菌热稳定性过氧化氢酶的纯化及性质研究   总被引:12,自引:0,他引:12  
将产热稳定性过氧化氢酶的重组大肠杆菌培养后菌体破碎得到的粗酶液经热处理、硫酸铵分级沉淀、DEAE\|Sephadex A\|50离子交换层析、HiPrep16/10 Phenyl疏水作用层析、Superdex200 HR 10/30凝胶层析提纯后得到电泳纯的酶,比酶活达到15629U/mg。此酶的最适温度为70℃,最适pH70,在60℃保温60min酶活力基本不变,在pH3~8的范围内比较稳定。此酶的Km和Vmax分别为775mmol/L和278mmol\5min\+\{-1\}·mg-1。1mmol/L的Zn2+、Ba2+、Mn2+可使该酶完全失活,KCN、NaN\-3、Na\-2S\-2O\-4、巯基乙醇对酶活力有抑制作用,50mmol/L的EDTA不影响酶活性。  相似文献   

19.
Chitosan-degrading activity was detected in the culture fluid of Aspergillus oryzae, A. sojae, and A. flavus among various fungal strains belonging to the genus Aspergillus. One of the strong producers, A. oryzae IAM2660 had a higher level of chitosanolytic activity when N-acetylglucosamine (GlcNAc) was used as a carbon source. Two chitosanolytic enzymes, 40 kDa and 135 kDa in molecular masses, were purified from the culture fluid of A. oryzae IAM2660. Viscosimetric assay and an analysis of reaction products by thin-layer chromatography clearly indicated the endo- and exo-type cleavage manner for the 40-kDa and 135-kDa enzymes, respectively. The 40-kDa enzyme, designated chitosanase, catalyzed a hydrolysis of glucosamine (GlcN) oligomers larger than pentamer, glycol chitosan, and chitosan with a low degree of acetylation (0-30%). The 135-kDa exo-beta-D-glucosaminidase,enzyme,named released a single GlcN residue from the GlcN oligomers and chitosan, but did not release GlcNAc residues from either GlcNAc oligomer or colloidal chitin.  相似文献   

20.
嗜热栖热菌HB8耐热α—葡萄糖苷酶的提纯和性质   总被引:4,自引:0,他引:4  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号