首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Swine granulosa cells respond to follicle-stimulating hormone (FSH) and the insulin-like growth factor, IGF-I (somatomedin C), with synergistic increases in progesterone production. This facilitative interaction was not attributable to decreased catabolism of progesterone to 20 alpha-hydroxypregn-4-en-3-one, but rather to enhanced pregnenolone biosynthesis observed in response to provision of 25-hydroxycholesterol as exogenous sterol substrate. The latter evidence of increased functional cholesterol side-chain cleavage activity was accompanied by augmented incorporation of [35S]methionine into specific immunoisolated components of the cholesterol side-chain cleavage apparatus, viz. cytochrome P-450scc and adrenodoxin. The synergism between FSH and IGF-I could be sustained over 4 days of serum-free monolayer culture. Under these conditions, compactin, a competitive inhibitor of de novo endogenous cholesterol biosynthesis, suppressed stimulated progesterone production by approximately equal to 50%. However, synergism was not expressed at the levels of [14C]acetate incorporation into nonsaponifiable lipids or endogenous 3-hydroxy-3-methylglutaryl coenzyme A reductase activity per se. Conversely, exogenous sterol substrate provided in the form of low-density lipoprotein (LDL)-borne cholesterol increased the absolute magnitude of the combined actions of IGF-I and FSH by 3-6-fold. This increase in steroidogenesis in response to LDL was associated with enhanced surface binding, internalization, and degradation of [125I] iodo-LDL. In addition, when granulosa cells were incubated with [3H]cholesteryl linoleate-labeled LDL, FSH and IGF-I synergistically augmented the intracellular accumulation of [3H]cholesterol and [3H]cholesteryl ester and the production of [3H]progesterone. Moreover, FSH and IGF-I coordinately increased the total mass of free and esterified cholesterol contained in granulosa cells. We conclude that FSH and IGF-I can augment absolute rates of progestin biosynthesis by granulosa cells by activating dual mechanisms: stimulation of functional cholesterol side chain cleavage activity and enhancement of effective cellular uptake and utilization of low-density lipoprotein-borne sterol substrate.  相似文献   

2.
Sterol synthesis by the ocular lens of the rat during postnatal development   总被引:1,自引:0,他引:1  
Great amounts of plasma membranes are formed during early postnatal development of the ocular lens as lens epithelial cells differentiate into fiber cells. Little information is available on the source of the lipids, and particularly cholesterol, required for formation of these plasma membranes. The present study measured the capacity of the lens of the rat to synthesize cholesterol during this dynamic period of growth. Incorporation by lens of (3)H(2)O into total fatty acids was also examined. Absolute rates of cholesterol synthesis per whole lens were estimated in vitro from incorporation of (3)H from (3)H(2)O into digitonide precipitable sterols (DPS) by intact lenses of 6- to 30-day old rats. Rates of cholesterol synthesis were calculated which were adequate to furnish from either 50-100% or 20-40% of the cholesterol required by the lens for growth, depending upon the animal's age and upon whether one considered NADPH to be generated by the pentose phosphate pathway or by oxidative enzymatic processes (NADPH from the pentose pathway is not labeled from (3)H(2)O). Generation of the NADPH necessary for cholesterol synthesis principally by the pentose pathway would support the higher percent contribution of synthesis to the total growth requirement. The pentose pathway was clearly active in the young rat lens, since between 7.5 to 9.0 times more [1-(14)C]glucose than [6-(14)C]glucose was oxidized in vitro to (14)CO(2) by 6- and 22-day old lenses. Incorporation of (3)H(2)O into DPS decreases sharply after 2 weeks of age in spite of a constant rate of cholesterol accumulation by the lens. These results indicate that the ocular lens of the rat can furnish most if not all of its cholesterol requirements by synthesis de novo during the first 2 weeks of life, and imply a contribution from another source at older ages. Whether lipoproteins can supply cholesterol to the lens is still unclear, although neither HDL nor LDL altered the incorporation in vitro of [U-(14)C]glucose into DPS by lens.-Cenedella, R. J. Sterol synthesis by the ocular lens of the rat during postnatal development.  相似文献   

3.
The absolute rate of cholesterol acquisition from de novo synthesis and from receptor-dependent and receptor-independent low-density lipoprotein (LDL) uptake was determined in the adrenal glands of the rat, hamster and rabbit under in vivo conditions. The rate of incorporation of [3H]water into cholesterol in the adrenal gland was much higher in the hamster (1727 nmol/h per g) and rabbit (853 nmol/h per g) than in the rat (71 nmol/h per g). Assuming that 23 atoms of 3H are incorporated into the cholesterol molecule during its biosynthesis, the absolute rates of cholesterol synthesis were then calculated to equal 59, 29 and 2.4 micrograms/h per g of adrenal gland in the hamster, rabbit and rat, respectively. Rates of LDL-cholesterol uptake were measured using a primed continuous infusion of [14C]sucrose-labeled homologous LDL (total LDL transport) and methylated human LDL (receptor-independent LDL transport). The rate of total LDL-cholesterol uptake in the adrenal gland was much higher in the rabbit (227 micrograms/h per g) than in the rat (18 micrograms/h per g) or hamster (6 micrograms/h per g). In all three species LDL uptake was mediated largely (greater than 93%) by receptor-dependent mechanisms. In terms of total cholesterol acquisition, the hamster adrenal gland derived 10-times more cholesterol from de novo synthesis than from LDL uptake, whereas the converse was true in the rabbit. Rates of de novo synthesis and LDL-cholesterol uptake were both low in the rat adrenal gland, which is known to derive cholesterol mainly from circulating high-density lipoproteins. Thus, the adrenal gland acquires cholesterol for hormone synthesis from at least three different sources and the quantitative importance of these sources varies markedly in different animal species, including man.  相似文献   

4.
This study was undertaken to develop techniques for measuring absolute rates of sterol synthesis in extrahepatic tissues in vitro and to estimate the magnitude of the errors inherent in the use of various 14C-labeled substrates for such measurements. Initial studies showed that significant errors were introduced when rates of synthesis were estimated using [3H]water since about 20 nmol of water were bound to each mg of tissue cholesterol isolated as the digitonide. This source of error could be eliminated by subtracting apparent incorporation rates obtained at 0 degrees C from those obtained at 37 degrees C or by regenerating and drying the free sterol. In a second set of experiments, the H/C incorporation ratio in cholesterol was determined in the liver by measuring the absolute rates of hydrogen and acetyl CoA flux into sterols. The ratio of 0.69 +/- 0.03 was found to be independent of the rate of hepatic cholesterol synthesis, the rate of hepatic acetyl CoA generation, or the source of the acetyl CoA. In a third set of studies, rates of incorporation of [3H]water or 14C-labeled acetate, octanoate, and glucose into digitonin-precipitable sterols were simultaneously measured in nine different extrahepatic tissues. Assuming that the H/C ratio measured in the liver also applied to these tissues, the [3H]water incorporation rates were multipled by the reciprocal of the H/C ratio to give the absolute rates of sterol synthesis in each tissue. When these were compared to the incorporation rates determined with the 14C-labeled substrates the magnitude of the errors in the rates of sterol synthesis obtained with these substrates in each tissue could be assessed. Only [14C]octanoate gave synthesis rates approaching 100% of those obtained with [3H]water and this occurred only in the intestine and kidney; in the other extrahepatic tissues this substrate gave rates of 6--66+ of the absolute rates. Rates of [14C]acetate incorporation in sterols varied from 4 to 62% of the [3H]water incorporation rates while those obtained with [14C]glucose were only 2--88% of the true rates. These studies document the large and highly variable errors inherent in estimating rates of sterol synthesis in extrahepatic tissues using 14C-labeled substrates under in vitro conditions.  相似文献   

5.
The effects of polyunsaturated, monounsaturated and saturated dietary fat on total and hepatic cholesterol synthesis were studied in the guinea-pig. Male Hartley guinea-pigs were fed semi-synthetic diets containing 7.5% (w/w) of either corn oil (CO), olive oil (OL) or lard for a period of 5 weeks and rates of endogenous cholesterol synthesis were determined from the incorporation of [3H]water into digitonin-precipitable sterols (DPS) and by measurement of sterol balance. In addition, total and expressed 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activities were determined in hepatic microsomes. Rates of whole body cholesterol synthesis determined by incorporation of [3H]water into DPS were significantly lower for guinea-pigs on the CO diet with values of 18.7 +/- 1.8 mumol/h (n = 4) vs. 26.7 +/- 4.8 and 24.6 +/- 1.8 mumol/h for animals on the OL (n = 4) and lard (n = 3) diets (P less than 0.001), respectively. Hepatic cholesterol synthesis rates were significantly decreased in animals on the OL diet, whether determined from incorporation of [3H]water into DPS or by analysis of HMG-CoA reductase activity. Hepatic total and free cholesterol levels were not different for animals on the three dietary fats; however, cholesteryl ester levels were 35% lower in guinea-pigs fed the lard diet (P less than 0.02). Sterol balance measurements indicated that whole body cholesterol synthesis rates were not affected by dietary fat quality (51.9 +/- 12.2, 42.8 +/- 7.6 and 51.2 +/- 20.2 mg/kg per day for animals on the CO, OL and lard diets, respectively). This is in striking contrast to the observed reduction in cholesterol synthesis rates for animals on the polyunsaturated CO diet as determined by incorporation of [3H]water into DPS. One possible explanation for the discrepancy between the sterol balance and [3H]water incorporation data is a polyunsaturated fat-mediated effect on energy utilization, which affects the equilibration of NADPH with the body water pool such that the [3H]NADPH has a lower specific activity than body [3H]water.  相似文献   

6.
Measurement of rates of cholesterol synthesis using tritiated water   总被引:18,自引:0,他引:18  
Rates of sterol synthesis in various tissues commonly are assessed by assaying levels of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase on isolated microsomes or by measuring the rates of incorporation of various 14C-labeled substrates or [3H]water into cholesterol by whole cell preparations in vitro or by the tissues of the whole animal in vivo. While measurement of activities of HMG-CoA reductase or rates of incorporation of 14C-labeled substrates into cholesterol give useful relative rates of sterol production, neither method yields absolute rates of cholesterol synthesis. The use of [3H]water circumvents the problem of variable and unknown dilution of the specific activity of the precursor pool encountered when 14C-labeled substrates are used and does yield absolute rates of cholesterol synthesis provided that the 3H/C incorporation ratio is known for a particular tissue. In 12 different experimental situations it has been found that from 21 to 27 micrograms atoms of 3H are incorporated into cholesterol from [3H]water in different tissues of several animal species, so that the 3H/C incorporation ratio is similar under nearly all experimental conditions and varies from 0.78 to 1.00. When administered in vivo, [3H]water rapidly equilibrates with intracellular water and is incorporated into sterols within the various organs at rates that are linear with respect to time. From such data it is possible to obtain absolute rates of cholesterol synthesis in the whole animal and in the various organs of the animal. Current data suggest, therefore, that use of [3H]water yields the most accurate rates of cholesterol synthesis both in vitro and in vivo.  相似文献   

7.
These studies were undertaken to measure rates of synthesis of digitonin-precipitable sterols in vivo and in vitro in control rabbits (New Zealand (NZ) control) and in homozygous Watanabe heritable hyperlipidemic rabbits (WHHL) that lack receptors for low density lipoproteins (LDL). The plasma cholesterol concentration in NZ control fetuses equaled 79 mg/dl, rose to 315 mg/dl 12 days after birth, and fell to 80 mg/dl in young adult animals. At these same ages, cholesterol concentrations in the WHHL animals equal 315, 625, and 715 mg/dl, respectively. The rate of whole animal sterol synthesis in vivo, expressed as the mumol of [3H]water incorporated into sterols per hr per kg of body weight, was lower in the WHHL animals than in the NZ controls both in the fetuses (108 vs 176) and in the adult animals (48 vs 66). In adult NZ controls the content of newly synthesized sterols (rate of sterol synthesis) per g of tissue was highest in the liver (538 nmol/g per hr), adrenal gland (438), small bowel (371), and ovary (225) while lower rates of synthesis were found in 15 other tissues. In the WHHL rabbits a higher content of [3H]sterols was found only in the adrenal gland (2,215) while synthesis was suppressed in the liver (310), colon, lung, and kidney, and was unchanged in the remaining organs. These findings were confirmed by measurements of rates of sterol synthesis in the same tissues in vitro. When whole organ weight was taken into consideration, the tissues that were the major contributors to whole body sterol synthesis in both types of rabbits were liver, small bowel, skin, and carcass. However, it was the lower rate of synthesis in the liver of the WHHL animals that alone accounted for the lower rate of whole animal sterol synthesis seen in these rabbits. These studies demonstrate that in WHHL animals that lack LDL receptors and that have very high levels of circulating LDL cholesterol, the rate of cholesterol synthesis in nearly all tissues is normal but in the liver is significantly suppressed. Only the adrenal gland manifested enhanced synthesis. Such findings suggest that in the WHHL rabbit where LDL receptor activity is reduced and plasma LDL levels rise, mechanisms other than receptor-mediated LDL uptake may act to deliver cholesterol to the cells of the various organs and to the liver.  相似文献   

8.
The present investigation compared plasma cholesterol levels and lipoprotein profiles, and absolute rates of sterol synthesis and low density lipoprotein (LDL) uptake in various organs of immature (4 weeks old) and mature (15 weeks) rats. The plasma cholesterol level and its distribution among the major lipoprotein density fractions were similar in both groups. Using [3H]water as a substrate for measuring sterol synthesis in vivo, the content of newly synthesized cholesterol (3H-labeled digitonin-precipitable sterols; [3H]DPS) was several fold higher in all tissues of the young, compared to the old, rats when normalized per g of tissue. In contrast, whole-body [3H]DPS content was identical at 29.5 and 29.3 mumol/hr in young and old rats, respectively, despite a 4.4-fold difference in body weight (102 vs. 453 g). The importance of different organs to total-body sterol synthesis remained similar with increasing age although the skin (11 vs. 24% of total) rather than the small bowel (15 vs. 8%) became the second most important organ after the liver (49 vs. 45%) in the older animals. When LDL uptake was determined in these same organs, using constant infusion technique, the rates of clearance were higher only in the adrenal glands, adipose tissue, and skin of the young animals; whereas these rates were essentially the same in the liver and gastrointestinal tract, the two organs that are quantitatively most important for LDL catabolism. Even when these clearance rates were normalized to the whole organ or to 100 g of body weight, the differences in LDL uptake in the two age groups were minor compared to the major decrease in rates of cholesterol synthesis that were observed with aging. Finally, calculation of absolute rates of tissue cholesterol acquisition from both sources indicated that, in most organs, the majority of tissue cholesterol was derived from local synthesis rather than from LDL uptake in both age groups and that, with increasing age, total cholesterol acquisition decreased several-fold primarily as a consequence of the diminished rate of sterol synthesis. These studies demonstrate that with growth and aging in the rat there is a dramatic decrease in the rate of tissue cholesterol synthesis while the uptake of LDL-cholesterol remains essentially unchanged.  相似文献   

9.
The origin of the cholesterol needed by the cornea for growth and cell turnover was addressed by comparing absolute rates of sterol synthesis with rates of sterol accumulation during early development of the rabbit. Linearity of incorporation of 3H2O and [14C]mevalonate into digitonin-precipitable sterols with time of incubation in vitro and a lack of accumulation of 14C in intermediates of sterol biosynthesis indicated that tritiated water can validly be used to measure rates of sterol synthesis by the cornea. The rate of sterol synthesis per unit weight of rabbit cornea was constant between 14 and 60 days of age at an average 1.03 nmol of 3H of 3H2O incorporated/mg dry cornea per 8 h. Essentially all of the synthesized cholesterol and most of the cholesterol mass was present in corneal epithelium. The cumulative sterol synthesized over the 46-day period studied exceeded the observed rate of cholesterol accumulation by sixfold. Cholesterol synthesized in excess of the growth requirement was likely used to support turnover of the epithelium which was estimated at 9 days. Removal of cholesterol from the cornea by excretion into tear fluid and clearance by high density lipoproteins are also considered.  相似文献   

10.
The current studies were undertaken to define the optimal conditions for measuring the absolute rates of cholesterol synthesis in cultured rabbit intestine and to assess whether the rate of sterol synthesis affects the esterification of locally formed or absorbed cholesterol. Using both [3H]water or [14C]octanoate (3 mM) as a precursor, sterol formation was linear during the 24 h culture, resulting in comparable estimates of the rate of synthesis equivalent to 129.5 and 118.7 nmol acetyl CoA incorporated per g per h, respectively. The presence of liposomal cholesterol or the hydroxymethylglutaryl-CoA reductase inhibitor mevinolin suppressed the rates of cholesterol synthesis by 24 and 92% of controls, respectively. Only 12% of total newly synthesized cholesterol was recovered in the medium and more than 97% was in the unesterified form, in both medium and biopsy. Even when the rate of sterol synthesis was stimulated over 90-fold by increasing concentrations of [14C]mevalonolactone, less than 8% of the label in total cholesterol was found in the sterol nucleus of the esterified cholesterol. Rather, the majority of the cholesterol ester-bound radioactivity was incorporated into the fatty acid moiety. On the other hand, there was only a limited decrease in the esterification of absorbed [3H]cholesterol both when the rate of sterol synthesis was increased with 10 mM mevalonolactone and when it was inhibited with mevinolin. The data suggest that locally synthesized and absorbed cholesterol is organized in distinct functional pools with different degrees of esterification in the mucosal epithelial cell.  相似文献   

11.
The transfer of free cholesterol from [3H]cholesterol-labelled plasma lipoproteins to cultured human lung fibroblasts was studied in a serum-free medium. The uptake of [3H]cholesterol depended upon time of incubation, concentration of lipoprotein in the medium, and temperature. Modified (reduced and methylated) low-density lipoprotein (LDL), which did not enter the cells by the receptor pathway, gave a somewhat lower transfer rate than unmodified LDL, but if the transfer values for native LDL were corrected for the receptor-mediated uptake of cholesterol the difference was eliminated. The initial rates of transfer of [3H]cholesterol from LDL and high-density lipoprotein (HDL) were of the same order of magnitude (0.67 +/- 0.05 and 0.75 +/- 0.06 nmol of cholesterol/h per mg of cell protein, respectively) while that from very-low-density lipoprotein (VLDL) was much lower (0.23 +/- 0.02 nmol of cholesterol/h per mg) (means +/- S.D., n = 5). The activation energy for transfer of cholesterol from reduced, methylated LDL to fibroblasts was determined to be 57.5 kJ/mol. If albumin was added to the incubation medium the transfer of [3H]cholesterol was enhanced, while that of [14C]dipalmitoyl phosphatidylcholine was decreased compared with the protein-free system. The results demonstrate that, in spite of its low water solubility, free cholesterol can move from lipoproteins to cellular membranes, probably by aqueous diffusion. We propose that physicochemical transfer of free cholesterol may be a significant mechanism for net uptake of the sterol into the artery during atherogenesis.  相似文献   

12.
Cultured human lung fibroblasts, incubated with cholesterol/phosphatidylcholine vesicles (cholesterol: phosphatidylcholine molar ratio 1:1) incorporated vesicle [3H]-cholesterol linearly for at least 48 h by an exchange process without gaining sterol mass. The incorporation of [3H]cholesterol by the cells was markedly enhanced in the presence of purified bovine serum albumin. A fraction of the incorporated vesicle [3H]cholesterol was esterified by the cells.  相似文献   

13.
The isoprenoid pathway provides several important products for retina function. In this study the sterol and dolichol pathways were investigated in retinas from Rana pipiens in order to assess the contribution of de novo synthesis. Levels of 5.9 +/- 2.0 (n = 13) nmol/retina for squalene, 134 +/- 27 (n = 16) nmol/retina for cholesterol, and 0.14 +/- 0.04 (n = 11) nmol/retina for dolichyl phosphate (Dol-P) were determined by high performance liquid chromatography analysis. When whole retinas were incubated with 3H2O, radioactivity was incorporated into compounds which chromatographed on reversed-phase and silica high performance liquid chromatography at the elution positions of squalene, cholesterol, lathosterol, and methyl sterols. From these results, the upper limit for the absolute rate of the sterol pathway was estimated to be 3.4 pmol/h. When retinas were incubated with [3H]acetate, the major labeled product was squalene. The relatively low level of incorporation into cholesterol was apparently due to a substantial pool of squalene which accumulated de novo incorporated [3H]acetate. Dol-P was also labeled with [3H]acetate, and by comparing the ratio of 3H incorporation into Dol-P/squalene with the absolute rate of the sterol pathway, the absolute rate of Dol-P synthesis was determined to be 0.022 pmol/h. Our calculations indicate that the retina does not synthesize sufficient quantities of cholesterol de novo to account for that which is utilized in the biogenesis of rod outer segment membranes.  相似文献   

14.
Male Wistar rats were injected intravenously with 2 mL of Intralipid containing 7.5 x 10(5) counts per minute (cpm) [14C]cholesterol and 7.5 x 10(5) cpm beta-[3H]sitosterol. Blood was withdrawn immediately and at 5, 10, 20, 60, 120, and 1440 min after injection from different animals. Plasma and red cells were separated and washed by conventional centrifugation, while lipoprotein density classes corresponding to chylomicrons, very low (VLDL), low (LDL), and high density lipoproteins (HDL) were isolated by ultracentrifugation. Total lipid and sterol compositions were determined by thin-layer chromatography in combination with gas-liquid chromatography, whereas radioactivity was measured by scintillation counting. The ratio of [14C]cholesterol/beta-[3H]sitosterol rose from 1 to 3.65 in the plasma VLDL fraction, whereas that in the LDL and HDL fractions were equilibrated at about 2, following an initial transient increase in favour of cholesterol. The appearance and disappearance of the radioactivity from LDL and HDL fractions exhibited precursor-product relationship owing probably to the conversion of the Intralipid into an intermediate lipoprotein-X-like particle, which possesses a density similar to that of LDL. The radioactive cholesterol and beta-sitosterol were incorporated into the red blood cell membranes at nearly similar initial rates, while at later times the incorporation of cholesterol was much preferred.  相似文献   

15.
The current studies demonstrate that cultured human flbroblasts utilize mevalonate for the synthesis of ubiquinone-10 as well as for the synthesis of cholesterol. Study of the regulation of this branched pathway was facilitated by incubating the cells with compactin (ML-236B), a competitive inhibitor of 3-hydroxy-3-methylglutaryI coenzyme A reductase, which blocked the formation of mevalonate within the cell. The addition of known amounts of [3H]mevalonate to the culture medium in the presence of compactin permitted the study of the relative rates of mevalonate incorporation into cholesterol and ubiquinone-10 under controlled conditions. When low concentrations of exogenous [3H]mevalonate (10 to 50 μm) were added to cells that were provided with exogenous cholesterol in the form of plasma low density lipoprotein (LDL), the cells incorporated the [3H]mevalonate into ubiquinone-10 at a rate that was two- to threefold faster than the incorporation into cholesterol. When the cells were deprived of exogenous LDL-cholesterol, the incorporation of [3H]mevalonate into ubiquinone-10 decreased and the incorporation of [3H]mevalonate into cholesterol increased. As a result, in the absence of exogenous cholesterol more than 60 times as much [3H]mevalonate was incorporated into cholesterol as into ubiquinone-10. Considered together with previous findings, the current data are compatible with a regulatory mechanism in which LDL inhibits cholesterol synthesis in fibroblasts at two points: (1) at the level of 3-hydroxy-3-methylglutaryl coenzyme A reductase, thereby inhibiting mevalonate synthesis, and (2) at one or more points distal to the last intermediate common to the cholesterol and ubiquinone-10 biosynthetic pathways. The latter inhibition allows ubiquinone-10 synthesis to continue in the presence of LDL despite a 98% reduction in mevalonate synthesis.  相似文献   

16.
The current studies were undertaken to characterize the localization and regulation of cholesterol synthesis and acyl-CoA:cholesterol acyltransferase activity in rat intestinal crypt and villus cells. Both parameters were determined in groups of animals with widely varying sterol fluxes across the intestinal mucosa. In animals on control diet the rates of cholesterol synthesis, measured by the incorporation of [3H]water per mg of protein, were similar along the villus/crypt axis in the jejunum, whereas in the ileum, villus cells were significantly more active than crypt cells. In both areas, however, the majority of total synthetic activity was found in cells from the crypts and lower villi. In contrast, the highest specific and total acyl-CoA:cholesterol acyltransferase activity was recovered in the villus cells of the jejunum and ileum. Dietary cholesterol did not affect sterol synthesis in any of the cell fractions but increased acyl-CoA:cholesterol acyltransferase activity approximately 2-fold in jejunal cell fractions. Inhibition of cholesterol absorption or sequestration of intestinal bile acids stimulated sterol synthetic activity up to 7-fold, and this occurred mainly in the lower villus and crypt cells in both jejunum and ileum. An increased demand for lipoprotein cholesterol, generated by triglyceride feeding, similarly was associated with enhanced synthetic rates. However, unlike cholesterol feeding, these manipulations did not increase acyl-CoA:cholesterol acyltransferase activity in any of the villus cell fractions. These studies suggest, therefore, that the intracellular pools of cholesterol that regulate the rate of cholesterol synthesis and the rate of cholesterol esterification are functionally distinct.  相似文献   

17.
Employing defined media conditions, the insulin sensitivities of mouse mammary gland epithelial cells in primary culture and MCF-7 human mammary epithelial cells were determined. Insulin stimulated the rates of (3H] uridine incorporation into RNA and [3H] leucine incorporation into protein in both primary mouse mammary gland epithelial cell cultures and MCF-7 cell cultures at concentrations approximating the dilution endpoint of the hormone (10-21 M). Insulin stimulated the rate of [3H] thymidine incorporation into DNA in primary mouse mammary gland epithelial cells at the dilution endpoint concentrations. However, MCF-7 cells required insulin concentrations 100-1000-times that necessary in mouse mammary epithelial cultures to elicit an increased rate of [3H] thymidine incorporation into DNA. Evidence is presented which suggests that the increased rates of uptake of 3H- uridine, [3H] thymidine and [3H] leucine into their respective precursor pools is not responsible for the apparent stimulation of RNA, DNA and protein synthesis.  相似文献   

18.
Oxysterol binding protein (OSBP) translocation between Golgi and vesicular/cytoplasmic compartments is affected by conditions that alter cholesterol and sphingomyelin homeostasis, indicating a role in lipid and sterol regulation in this organelle. In this study, we show that OSBP dissociation from the Golgi apparatus was inhibited when LDL cholesterol efflux from lysosomes was blocked in Niemann-Pick C (NPC) or U18666A [3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one]-treated fibroblasts. Dissociation of OSBP from the Golgi apparatus in response to LDL was independent of de novo cholesterol biosynthesis. OSBP did not localize with filipin-stained lysosomal cholesterol, and the NPC defect did not alter OSBP expression or phosphorylation. However, OSBP in the Golgi apparatus was progressively dephosphorylated (as assessed by a molecular mass shift on SDS-PAGE) in U18666A-treated fibroblasts or Chinese hamster ovary cells as a result of combined inhibition of LDL cholesterol transport and de novo cholesterol synthesis. In vivo phosphopeptide mapping and mutagenesis of OSBP was used to identify the cholesterol-sensitive phosphorylation sites at serines 381, 384, and 387 that were responsible for the altered mobility on SDS-PAGE. NPC-1 protein-mediated release of LDL-derived cholesterol and de novo biosynthesis regulates OSBP localization and phosphorylation. This indicates that OSBP responds to or senses altered cellular sterol content and transport.  相似文献   

19.
The incorporation and metabolism of both vesicle- and LDL (low-density lipoprotein)- derived [3H]cholesterol by LDL-receptor-negative fibroblasts were studied. Independent of the cholesterol source, free [3H]cholesterol was readily incorporated into the cells and was available for esterification. 7-Oxocholesterol stimulated both [3H]cholesterol incorporation, by increasing the exchange rate, and the subsequent esterification of it irrespective of the source of exogenous [3H]cholesterol. The 7-oxocholesterol-stimulated esterification of exogenously derived LDL free [3H]cholesterol was progesterone-sensitive and energy-requiring.  相似文献   

20.
Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the key enzyme that regulates cholesterol synthesis, lower serum cholesterol by increasing the activity of low density lipoprotein (LDL) receptors in the liver. In rat liver slices, the dose-response curves for inhibition of [14C]acetate incorporation into cholesterol were similar for the active acid forms of lovastatin, simvastatin, and pravastatin. The calculated IC50 values were approximately 20-50 nM for all three drugs. Interest in possible extrahepatic effects of reductase inhibitors is based on recent findings that some inhibitors of HMG-CoA reductase, lovastatin and simvastatin, can cause cataracts in dogs at high doses. To evaluate the effects of these drugs on cholesterol synthesis in the lens, we developed a facile, reproducible ex vivo assay using lenses from weanling rats explanted to tissue culture medium. [14C]Acetate incorporation into cholesterol was proportional to time and to the number of lenses in the incubation and was completely eliminated by high concentrations of inhibitors of HMG-CoA reductase. At the same time, incorporation into free fatty acids was not inhibited. In marked contrast to the liver, the dose-response curve for pravastatin in lens was shifted two orders of magnitude to the right of the curves for lovastatin acid and simvastatin acid. The calculated IC50 values were 4.5 +/- 0.7 nM, 5.2 +/- 1.5 nM, and 469 +/- 42 nM for lovastatin acid, simvastatin acid, and pravastatin, respectively. Thus, while equally active in the liver, pravastatin was 100-fold less inhibitory in the lens compared to lovastatin and simvastatin. Similar selectivity was observed with rabbit lens. Following oral dosing, ex vivo inhibition of [14C]acetate incorporation into cholesterol in rat liver was similar for lovastatin and pravastatin, but cholesterol synthesis in lens was inhibited by lovastatin by as much as 70%. This inhibition was dose-dependent and no inhibition in lens was observed with pravastatin even at very high doses. This tissue-selective inhibition of sterol synthesis by pravastatin was likely due to the inability of pravastatin to enter the intact lens since pravastatin and lovastatin acid were equally effective inhibitors of HMG-CoA reductase enzyme activity in whole lens homogenates. We conclude that pravastatin is tissue-selective with respect to lens and liver in its ability to inhibit cholesterol synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号