首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Action of pig pancreatic phospholipase A2 on vesicles and micelles of homologous anionic phospholipids is examined in the absence of additives. As shown elsewhere (Jain et al. (1986) Biochim. Biophys. Acta 860, 435-447), hydrolysis of anionic vesicles occurs by interfacial catalysis in the scooting mode, i.e., the catalytic turnover is fast relative to the off-rate of the enzyme from the interface. When the rate of intervesicle exchange of the enzyme is negligibly slow, it hydrolyses only the substrate molecules in the outer monolayer of the vesicle to which it is bound. Interfacial catalysis in the scooting mode with a high processivity occurs on vesicles of anionic phospholipids, and under these conditions the dynamics and order of the substrate in the interface influences the catalytic turnover only moderately, i.e., about 2- to 10-fold. Similarly, anomalous kinetic effects of the thermotropic gel-fluid phase transition or of a change in the general disorder of the bilayer organization (fluidity) has a minor effect on the kinetics of hydrolysis in the scooting mode. Similarly, higher unsaturation and shorter acyl chains in the substrate modestly increase the rate of catalytic turnover by the low-calcium form of the enzyme without noticeably influencing the affinity of the enzyme for the interface. On the other hand, perturbation of the charge distribution in the substrate interface can shift the proportion of the bound enzyme by several orders of magnitude. For example, the membrane perturbing amphiphiles (e.g., mepacrine, indomethacin, compound 48/80, aristolochic acid, local anesthetics, and the products of hydrolysis) do not influence the catalytic turnover of the bound enzyme but the proportion of the bound enzyme. Short-chain anionic phospholipids are readily hydrolyzed by phospholipase A2. Now no anomalous increase in the rate of hydrolysis is observed at the critical micelle as is the case with the zwitterionic analogs. This is because with anionic (but not with zwitterionic) substrates the enzyme forms an aggregated complex below the cmc of the monomer. The stability of these micellar complexes does not appear to change noticeably with the acyl chain length of the monomers. These observations show that the factors regulating the quality of interface substantially influence the binding of the enzyme, but not the catalytic turnover in the interface.  相似文献   

2.
Action of pig pancreatic phospholipase A2 on the ternary codispersions of diacylphosphatidylcholine, 1-acyllysophosphatidylcholine and fatty acids is examined. The binding and kinetic constants are found to be the same under a variety of conditions. These parameters and the catalytic turnover number change with the phase-transition temperature of the ternary codispersions, and optimal binding, kinetic and catalytic constants are seen in the phase-transition range where an equilibrium exists between laterally separated phases. The effect of changing the structure of any of the three components is also via a change in the phase-transition temperature of their ternary codispersions. These observations suggest that the binding of pig pancreatic phospholipase A2 to the defect sites on the substrate interface determines the substrate concentration dependence of the initial rate of hydrolysis, and the catalytic turnover by the bound enzyme also depends upon the phase state of the bilayer. An additive-induced stabilization of the defects in the substrate bilayer is postulated to account for the enhanced binding of the enzyme to the bilayer.  相似文献   

3.
The effect of anions and deuterated water on the kinetics of action of pig pancreatic phospholipase A2 is examined to elaborate the role of ionic interactions in binding of the enzyme to the substrate interface. Anions and deuterated water have no significant effect on the hydrolysis of monomeric substrates. Hydrolysis of vesicles of DMPMe (ester) is completely inhibited in deuterated water. The shape of the reaction progress curve is altered in the presence of anions. The nature and magnitude of the effect of anions depends upon the nature of the substrate as well as of the anion. Substantial effects of anions on the reaction progress curve are observed even at concentrations below 0.1 M and the sequence of effectiveness for DMPMe vesicles is sulfate greater than chloride greater than thiocyanate. Apparently, anions in the aqueous phase bind to the enzyme, and thus compete with the anionic interface for binding to the enzyme. Binding of the enzyme to anionic groups on the interface results in activation and increased accessibility of the catalytic site possibly via hydrogen bonding network involving water molecule. In order to elaborate the role of the N-terminus region in interfacial anchoring, the action of several semisynthetic pancreatic phospholipase A2s is examined on vesicles of anionic and zwitterionic phospholipids. The first-order rate constant for the hydrolysis of DMPMe in the scooting mode by the various semisynthetic enzymes is in a narrow range: 0.7 +/- 0.15 per min for phospholipase A2 derived from pig pancreas and 0.8 +/- 0.4 per min for the enzymes derived from bovine pancreas. In all cases a maximum of about 4300 substrate molecules are hydrolyzed by each phospholipase A2 molecule. If anions are added at the end of the first-order reaction progress curve, a pseudo-zero-order reaction progress curve is observed due to an increased intervesicle exchange of the bound enzyme. These rates are found to be considerably different for different enzymes in which one or more amino acids in the N-terminus region have been substituted. Steady-state and fluorescence life-time data for these enzymes in water, 2H2O and in the presence of lipids is also reported. The kinetic and binding results are interpreted to suggest that the N-terminus region of phospholipase A2 along with some other cationic residues are involved in anchoring of phospholipase A2 to the interface, and the catalytically active enzyme in the interface is monomeric.  相似文献   

4.
Manoalogue, a synthetic analogue of the sea sponge-derived manoalide, has been previously shown to partially inactivate the phospholipase A2 from cobra venom (Reynolds, L. J., Morgan, B. P., Hite, E. D., Mihelich, E. D., & Dennis, E. A. (1988) J. Am. Chem. Soc. 110, 5172) by reacting with enzyme lysine residues. In the present study, the inactivation of the phospholipases A2 from pig pancreas, bee venom, and cobra (Naja naja naja) venom by manoalogue was studied in detail. Manoalogue-treated enzymes were examined in the scooting mode on vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphomethanol. Here the native enzymes bound irreversibly to the vesicles and hydrolyzed all of the phospholipids in the outer monolayer without leaving the surface of the interface. All three manoalogue-treated enzymes showed reduced catalytic turnover for substrate hydrolysis in the scooting mode, and the modified enzymes did not hop from one vesicle to another. Thus, inactivation by manoalogue is not due to the decrease in the fraction of enzyme bound to the substrate interface. This result was also confirmed by fluorescence studies that directly monitored the binding of phospholipase A2 to vesicles. A chemically modified form of the pig pancreatic phospholipase A2 in which all of the lysine epsilon-amino groups have been amidinated was not inactivated by manoalogue, indicating that the modification of lysine residues and not the amino-terminus is required for the inactivation. Several studies indicated that the manoalogue-modified enzymes contain a functional active site. For example, studies that monitored the protection by ligands of the active site from attack by a alkylating agent showed that manoalogue-modified pig phospholipase A2 was capable of binding calcium, a substrate analogue, lipolysis products, and a competitive inhibitor. Furthermore, relative to native enzymes, manoalogue-modified enzymes retained significantly higher catalytic activities when acting on water-soluble substrates than when acting on vesicles in the scooting mode. Intact manoalogue had no affinity for the catalytic site on the enzyme as it did not inhibit the enzyme in the scooting mode and it did not protect the active site from alkylation. Pig pancreatic phospholipase A2 bound to micelles of 2-hexadecyl-sn-glycero-3-phosphocholine was resistant to inactivation by manoalogue, suggesting that the modification of lysine residues on the interfacial recognition surface of the enzyme was required for inactivation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
In this and the following three papers we examine the kinetics of action of pig pancreatic phospholipase A2 on vesicles of anionic phospholipids without any additives. The results provide the first unequivocal demonstration of interfacial catalysis in intravesicle scooting mode. In this paper we describe the conditions in which the action of pig pancreatic phospholipase A2 on DMPMe (ester) vesicles in the absence of any additive commences without a latency. Under these conditions the free monomer substrate concentration is insignificant; the bilayer enclosed vesicle organization remains intact even when all the substrate in the outer monolayer has been hydrolyzed; the rate of intervesicle exchange and the rate of transbilayer movement (flip-flop) of molecules is negligibly slow; and the rate of fusion of vesicles is insignificant. Thus an enzyme molecule bound to one vesicle hydrolyzes all the DMPMe molecules in the outer monolayer of the vesicle by a first-order process with a rate constant of 0.6 per min at 30°C; or viewed another way, one enzyme molecule in a DMPMe vesicle can hydrolyze all the available substrate molecules at the rate of 3000 per min. At low anion concentrations excess substrate vesicles are not hydrolyzed unless the rate of intervesicle exchange of the bound enzyme is stimulated by anions in the aqueous phase. Higher calcium concentrations promote not only homofusion of DMPMe vesicles but also heterofusion of DMPMe and DMPC vesicles. It is proposed that calcium-induced isothermal lateral phase separation in DMPMe vesicles induces defects in the bilayer organization, and such defects are the sites for phospholipase A2 binding and for heterofusion with DMPC (ester) vesicles which do not have such sites.  相似文献   

6.
F Ghomashchi  B Z Yu  O Berg  M K Jain  M H Gelb 《Biochemistry》1991,30(29):7318-7329
The binding equilibrium of phospholipase A2 (PLA2) to the substrate interface influences many aspects of the overall kinetics of interfacial catalysis by this enzyme. For example, the interpretation of kinetic data on substrate specificity was difficult when there was a significant kinetic contribution from the interfacial binding step to the steady-state catalytic turnover. This problem was commonly encountered with vesicles of zwitterionic phospholipids, where the binding of PLA2 to the interface was relatively poor. The action of PLA2 on phosphatidylcholine (PC) vesicles containing a small amount of anionic phospholipid, such as phosphatidic acid (PA), was studied. It was shown that the hydrolysis of these mixed lipid vesicles occurs in the scooting mode in which the enzyme remains tightly bound to the interface and only the substrate molecules present on the outer monolayer of the target vesicle became hydrolyzed Thus the phenomenon of scooting mode hydrolysis was not restricted to the action of PLA2 on vesicles of pure anionic phospholipids, but it was also observed with vesicles of zwitterionic lipids as long as a critical amount of anionic compound was present. Under such conditions, the initial rate of hydrolysis of PC in the mixed PC/PA vesicles was enhanced more than 50-fold. Binding studies of PLA2 to vesicles and kinetic studies in the scooting mode demonstrated that the enhancement of PC hydrolysis in the PC/PA covesicles was due to the much higher affinity of the enzyme toward covesicles compared to vesicles of pure PC phospholipids. A novel and technically simple protocol for accurate determination of the substrate specificity of PLA2 at the interface was also developed by using a double-radiolabel approach. Here, the action of PLA2 in the scooting mode was studied on vesicles of the anionic phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphomethanol that contained small amounts of 3H- and 14C-labeled phospholipids. From an analysis of the 3H and 14C radioactivity in the released fatty acid products, the ratio of substrate specificity constants (kcat/KMS) was obtained for any pair of radiolabeled substrates. These studies showed that the PLA2s from pig pancreas and Naja naja naja venom did not discriminate between phosphatidylcholine and phosphatidylethanolamine phospholipids or between phospholipids with saturated versus unsaturated acyl chains and that the pig enzyme had a slight preference for anionic phospholipids (2-3-fold). The described protocol provided an accurate measure of the substrate specificity of PLA2 without complications arising from the differences in binding affinities of the enzyme to vesicles composed of pure phospholipids.  相似文献   

7.
Action of pig pancreatic phospholipase A2 on vesicles of over 50 synthetic 1,2-diacylglycerol-3-phosphate derivatives and analogs is examined in the absence of any additives. In general, shorter acyl chains and small substituents on the phosphate make a better substrate, while phospholipids with large apolar substituents are not hydrolyzed. The interfacial turnover rate constant for scooting kinetics, ki, for the various phospholipids were from less than 0.1 to 1 per min. Intervesicle exchange of the bound enzyme is faster in vesicles of phospholipids with larger polar substituents, and it is promoted in the presence of anions like chloride, sulfate and thiocyanate. These factors lower the residence time of the enzyme on the bilayer and therefore effectively decrease the rate of hydrolysis. The apparent Km for the enzyme in the interface of anionic phospholipids in the presence of salts is in the 40 to 100 microM range which is 3- to 7-times larger than the dissociation constants for the bound enzyme measured by fluorescence enhancement of Trp-3. The quantum yield of the bound enzyme in vesicles of the various lipids is found to be up to 4-fold different. It is suggested that this difference is due to the E* + S to E*S equilibrium, where E*S has higher fluorescence intensity. The role of calcium in generating the enzyme binding site at the anionic interface, the role of anion anchoring site on the enzyme, and the relationship between the catalytic efficiency and the fluorescence quantum yields are discussed.  相似文献   

8.
The changes in the microenvironment of the Trp-3 on the i-face of pig pancreatic IB phospholipase A2 (PLA2) provide a measure of the tight contact (Ramirez and Jain, Protein Sci. 9, 229-239, 1991) with the substrate interface during the processive interfacial turnover. Spectral changes from the single Trp-substituent at position 1, 2, 6, 10, 19, 20, 31, 53, 56 or 87 on the surface of W3F PLA2 are used to probe the Trp-environment. Based on our current understanding only the residue 87 is away from i-face, therefore all other mutants are well suited to report modest differences along the i-face. All Trp-mutants bind tightly to anionic vesicles. Only those with Trp at 1, 2 or 3 near the rim of the active site on the i-face cause significant perturbation of the catalytic functions. Most other Trp-mutants showed < 3-fold change in the interfacial processive turnover rate and the competitive inhibition by MJ33. Binding of calcium to the enzyme in the aqueous phase had modest effect on the Trp-emission intensity. However, on the binding of the enzyme to the interface the fluorescence change is large, and the rate of oxidation of the Trp-substituent with N-bromosuccinimide depends on the location of the Trp-substituent. These results show that the solvation environment of the Trp-substituents on the i-face is shielded in the enzyme bound to the interface. Additional changes are noticeable if the active site of the bound enzyme is also occupied, however, the catalytically inert zymogen of PLA2 (proPLA2) does not show such changes. Significance of these results in relation to the changes in the solvent accessibility and desolvation of the i-face of PLA2 at the interface is discussed.  相似文献   

9.
The changes in the microenvironment of the Trp-3 on the i-face of pig pancreatic IB phospholipase A2 (PLA2) provide a measure of the tight contact (Ramirez and Jain, Protein Sci. 9, 229-239, 1991) with the substrate interface during the processive interfacial turnover. Spectral changes from the single Trp-substituent at position 1, 2, 6, 10, 19, 20, 31, 53, 56 or 87 on the surface of W3F PLA2 are used to probe the Trp-environment. Based on our current understanding only the residue 87 is away from i-face, therefore all other mutants are well suited to report modest differences along the i-face. All Trp-mutants bind tightly to anionic vesicles. Only those with Trp at 1, 2 or 3 near the rim of the active site on the i-face cause significant perturbation of the catalytic functions. Most other Trp-mutants showed < 3-fold change in the interfacial processive turnover rate and the competitive inhibition by MJ33. Binding of calcium to the enzyme in the aqueous phase had modest effect on the Trp-emission intensity. However, on the binding of the enzyme to the interface the fluorescence change is large, and the rate of oxidation of the Trp-substituent with N-bromosuccinimide depends on the location of the Trp-substituent. These results show that the solvation environment of the Trp-substituents on the i-face is shielded in the enzyme bound to the interface. Additional changes are noticeable if the active site of the bound enzyme is also occupied, however, the catalytically inert zymogen of PLA2 (proPLA2) does not show such changes. Significance of these results in relation to the changes in the solvent accessibility and desolvation of the i-face of PLA2 at the interface is discussed.  相似文献   

10.
Tissue-specific (intestinal) and tissue-nonspecific (kidney) rat alkaline phosphatases are released from their respective brush border membranes by different enzymes. To elucidate the mechanism underlying their membrane attachment, we tested the ability of these enzymes to partition into lipid or aqueous phases both before and after treatment with phospholipases and proteases. Interaction with Triton X-114 micelles was eliminated or decreased by treatment of intestinal enzyme with phospholipase A2 or papain, while only phosphatidylinositol (PI)-specific phospholipase C (PIPLC) and subtilisin were effective with the kidney enzyme. Binding to octyl Sepharose for the intestinal enzyme was decreased by phospholipase A2 more than by PIPLC, whereas the reverse was true for the kidney enzyme. Treatment with phospholipases decreased the apparent mass of the phosphatases by 50-80 kDa, presumably due to loss of bound lipid and detergent. PIPLC treatment of the kidney, but not the intestinal enzyme, prevented binding of the phosphatase to phospholipid vesicles. These results show that both enzymes are bound to respective membranes by hydrophobic anchor peptides to which phospholipids are bound. However, their sensitivity to phospholipases is different. The data are consistent with the hypothesis that, in the kidney enzyme, the PI is bound covalently, while with the intestinal enzyme, binding of PI appears to be tight but not covalent.  相似文献   

11.
M K Jain  B Z Yu  J Rogers  G N Ranadive  O G Berg 《Biochemistry》1991,30(29):7306-7317
Interpretation of the kinetics of interfacial catalysis in the scooting mode as developed in the first paper of this series [Berg et al. (1991) Biochemistry 30 (first paper of six in this issue)], was based on the binding equilibrium for a ligand to the catalytic site of phospholipase A2. In this paper, we describe direct methods to determine the value of the Michaelis-Menten constant (KMS) for the substrate, as well as the equilibrium dissociation constants for ligands (KL) such as inhibitors (KI), products (KP), calcium (KCa), and substrate analogues (KS) bound to the catalytic site of phospholipase A2 at the interface. The KL values were obtained by monitoring the susceptibility to alkylation of His-48 at the catalytic site of pig pancreatic PLA2 bound to micellar dispersions of the neutral diluent 2-hexadecyl-sn-glycero-3-phosphocholine. The binding of the enzyme to dispersions of this amphiphile alone had little effect on the inactivation rate. The half-time for inactivation of the enzyme bound to micelles of the neutral diluent depended not only on the nature of the alkylating agent but also on the structure and the mole fraction of other ligands at the interface. The KL values for ligands obtained from the protection studies were in excellent accord with those obtained by monitoring the activation or inhibition of hydrolysis of vesicles of 1,2-dimyristoyl-sn-glycerophosphomethanol. Since only calcium, competitive inhibitors, and substrate analogues protected phospholipase A2 from alkylation, this protocol offered an unequivocal method to discern active-site-directed inhibitors from nonspecific inhibitors of PLA2, such as local anesthetics, phenothiazines, mepacrine, peptides related to lipocortin, 7,7-dimethyleicosadienoic acid, quinacrine, and aristolochic acid, all of which did not have any effect on the kinetics of alkylation nor did they inhibit the catalysis in the scooting mode.  相似文献   

12.
Several cellular processes are regulated by interfacial catalysis on biomembrane surfaces. Phospholipases A(2) (PLA(2)) are interesting not only as prototypes for interfacial catalysis, but also because they mobilize precursors for the biosynthesis of eicosanoids and platelet activating factor, and these agents ultimately control a wide range of secretory and inflammatory processes. Since PLA(2) carry out their catalytic function at membrane surfaces, the kinetics of these enzymes depends on what the enzyme 'sees' at the interface, and thus the observed rate is profoundly influenced by the organization and dynamics of the lipidwater interface ('quality of the interface'). In this review we elaborate the advantages of monitoring interfacial catalysis in the scooting mode, that is, under the conditions where the enzyme remains bound to vesicles for several thousand catalytic turnover cycles. Such a highly processive catalytic turnover in the scooting mode is useful for a rigorous and quantitative characterization of the kinetics of interfacial catalysis. This analysis is now extended to provide insights into designing strategy for PLA(2) assays and screens for their inhibitors.  相似文献   

13.
M K Jain  W Yuan  M H Gelb 《Biochemistry》1989,28(10):4135-4139
Kinetic studies with phospholipase A2 are complicated by the fact that binding of the enzyme to the interface precedes catalytic turnover. This difficulty can be overcome by monitoring interfacial catalysis in the scooting mode where the enzyme does not leave the interface. The kinetics of inhibition by transition-state analogues shows that specific competitive inhibition is the result of competition between inhibitor and substrate for the binding to the active site of the enzyme in the interface. Several lipophilic compounds, including alkanols, substituted butyrophenones, aristolochic acid, and mepacrine apparently reduce the rate of lipolysis by promoting the desorption of phospholipase A2 from the interface.  相似文献   

14.
Lipase from the fungi Thermomyces (formerly Humicola) lanuginosa (TlL) is widely used in industry. This interfacial enzyme is inactive under aqueous conditions, but catalytic activation is induced on binding to a lipid-water interface. In order for protein engineering to design more efficient mutants of TlL for specific applications, it is important to characterize its interfacial catalysis. A complete analysis of steady-state kinetics for the hydrolysis of a soluble substrate by TlL has been developed using an interface different from the substrate. Small vesicles of 1-palmitoyl-2-oleoylglycero-sn-3-phosphoglycerol (POPG) or other anionic phospholipids are a neutral diluent interface for the partitioning of substrate and enzyme. TlL binds to these interfaces in an active or open form, thus implying a displacement of the helical lid away from the active site. A study of the influence of substrate and diluent concentration dependence of the rate of hydrolysis provides a basis for the determination of the primary interfacial catalytic parameters. The interfacial activation is not supported by zwitterionic vesicles or by large anionic vesicles of 100 nm diameter, although TlL binds to these interfaces. Using a combination of fluorescence-based techniques applied to several mutants of TlL with different tryptophan residues we have shown that TlL binds to phospholipid vesicles in different forms rendering different catalytic activities, and that the open lid conformation is achieved and stabilized by a combination of electrostatic and hydrophobic interactions between the enzyme's lipid-binding face and the interface.  相似文献   

15.
16.
The reaction progress curve for the action of pig-pancreatic phospholipase A2 on dimyristoylphosphatidylcholine vesicles is characterized under a variety of conditions. The factors that regulate the rate of hydrolysis during the presteady-state phase determine the latency period. The results demonstrate that the accelerated hydrolysis following the latency phase of the reaction progress curve is due to the product-assisted binding of the enzyme to the substrate bilayer by chaning the number of bindings sites and therefore the binding equilibrium. A critical mole fraction of products appears to be formed in the substrate bilayers before the steady-state phase of hydrolysis begins. The latency phase shows a minimum at the phase-transition temperature of the substrate vesicles; however, we did not observe a significant binding of the enzyme to pure substrate bilayers even at the phase-transition temperature. The rate of binding of the enzyme is found to be fast and the rate of desorption of the bound enzyme is very slow compared to the latency phase. The rate of redistribution of products between substrate bilayers is rather slow. These observations demonstrate that during the latency phase of the action of phospholipase A2, a critical mole fraction of products is formed in the substrate bilayer.  相似文献   

17.
Theaction of pig pancreatic phospholipase A2 (EC 3.1.1.4) on phosphatidylcholine bilayer is studied under a variety of substrate modification conditions including the incorporation of long chain alcohols (hexanol and several isomeric octanols) into the bilayer. The rate of hydrolysis shows a biphasic dependence upon the concentration of the activating alcohol. The hexanol to lipid molar ratio in the bilayer is approximately 1.4:1 at the optimal alkanol concentration. The lag phase at the beginning of hydrolysis has been shown to depend upon the nature of the bilayer as modified by different alkanols and by intrinsic differences in the unilamellar vesicles (approximate diameter approximately 250 A) compared to the multilamellar vesicles. The rate constant for the activation process responsible for the lag period is first order and does not depend upon the concentration of the enzyme, substrate, alkanol, and calcium. These and other experiments are interpreted in terms of a hypothesis that the pancreatic phospholipase interacts with the bilayer by a catalytic and a recognition site. The data suggest that the packing of the interface regulates the interaction of both the catalytic and the recognition site. It is postulated that the biphasic activation profile as a function of hexanol concentration may be a consequence of two-site interactions between the enzyme and the substrate interface.  相似文献   

18.
M K Jain  W J Tao  J Rogers  C Arenson  H Eibl  B Z Yu 《Biochemistry》1991,30(42):10256-10268
More than 100 amphiphilic phosphoesters, possible tetrahedral transition-state analogues capable of coordinating to the calcium ion at the active site of phospholipase A2, were designed, synthesized, and tested as inhibitors for the hydrolysis of 1,2-dimyristoyl-sn-glycero-3-phosphomethanol vesicles in the scooting mode. This assay system permits the study of structurally diverse inhibitors with phospholipase A2S from different sources, and it is not perturbed by factors that change the quality of the interface. As a prototype, 1-hexadecyl-3-trifluoroethylglycero-2-phosphomethanol (MJ33) was investigated in detail. Only the (S)-(+) analogue of MJ33 is inhibitory, and it is as effective as the sn-2 phosphonate or the sn-2 amide analogues of sn-3 phospholipids. The inhibitory potencies of the various phosphoesters depended strongly on the stereochemical and structural features, and the mole fractions of inhibitors required for 50% inhibition, X1(50), ranged from more than 1 to less than 0.001 mole fraction. The affinity of certain inhibitors for enzymes from different sources differed by more than 200-fold. The inhibitors protected the catalytic site residue His-48 from alkylation in the presence of calcium but not barium as expected if the formation of the EI complex is supported only by calcium. The equilibrium dissociation constant for the inhibitor bound to the enzyme at the interface was correlated with the XI(50) values, which were different if the inhibition was monitored in the pseudo-zero-order or the first-order region of the progress curve. These results show that the inhibitors described here interfered only with the catalytic turnover by phospholipase A2's bound to the interface, their binding to the enzyme occurred through calcium, and the inhibitors did not have any effect on the dissociation of the enzyme bound to the interface.  相似文献   

19.
The mechanism of ATP hydrolysis by the solubilized mitochondrial ATPase (MF1) has been studied under conditions where catalytic turnover occurs at one site, uni-site catalysis (obtained when enzyme is in excess of substrate), or at two sites, bi-site catalysis (obtained when substrate is in excess of enzyme). Pulse-chase experiments support the conclusion that the sites which participate in bi-site catalysis are the same as those which participate in uni-site catalysis. Upon addition of ATP in molar excess to MF1, label that was bound under uni-site conditions dissociates at a rate equal to the rate of bi-site catalysis. Similarly, when medium ATP is removed, label that was bound under bi-site conditions dissociates at a rate equal to the rate of uni-site catalysis. Evidence that a high affinity catalytic site equivalent to the one observed under uni-site conditions participates as an intermediate in bi-site catalysis includes the demonstration of full occupancy of a catalytically competent site during steady-state turnover at nanomolar concentrations of ATP. Improved measurements of the interaction of ADP at a high affinity catalytic site have lead to the revision of several of the rate constants that define uni-site catalysis. The rate constant for unpromoted dissociation of ADP is equal to that for Pi (4 X 10(-3) s-1). The rate of binding ADP at a high affinity chaseable site (Kd = 1 nM) is equal to the rate of binding ATP (4 X 10(6) M-1 s-1). The rate of catalysis obtained when substrate binding at one site promotes product release from an adjacent site (bi-site catalysis) is up to 100,000-fold faster than unpromoted product release (uni-site catalysis).  相似文献   

20.
In the intravesicle scooting mode of interfacial catalysis, the interfacial complex E*S is formed by the interaction of the membrane bound phospholipase A2 (E*) with the substrate monomer (S) in the interface. In the presence of nonhydrolyzable substrate analogs (I) the kinetics of interfacial catalysis is modified. If phospholipase A2 is added to a mixture of the vesicles of L-DMPMe ester and of DTPMe ether or D-DMPMe ester, the extent of hydrolysis, A, decreases and the interfacial scooting rate constant, ki, remains unchanged. On the other hand, when the enzyme is added to the vesicles prepared from premixed L-DMPMe ester with D-DMPMe ester or L-DTPMe ether, ki decreases but A remains constant. Qualitatively, these results are in excellent accord with the Scheme I for interfacial catalysis. However, a quantitative departure has been noted, which suggests that the interfacial dissociation constant for E*S is larger than that for E*I. These results are interpreted to suggest that the catalytic rate constant for decomposition of E*S to E* + P is larger than the rate constant for decomposition of E*S to E* + S. Broader implications of the scooting mode of interfacial catalysis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号