首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Insertion element IS5 contains a third gene.   总被引:27,自引:6,他引:21       下载免费PDF全文
We have previously shown that IS5 contains two genes encoded on opposite DNA strands within the same stretch of DNA. Here we present evidence that a third gene and its promoter are present on IS5. The newly discovered gene, ins5C , is contained within the longest gene of IS5, ins5A , but encoded by the complementary DNA strand. The three genes comprise a total of 519 codons present on the 1195-bp element. The arrangement of these genes represents a coding structure of unprecedented compactness.  相似文献   

2.
Translational frameshifting, a ubiquitous mechanism used to produce alternative proteins for different biological purposes, appears in a variety of genes in probably all organisms. In the past, the combinational use of sophisticated expression vectors, specific endopeptidases, and Edman degradation has been the main approach for identification of the translational frameshift sites. Although Edman degradation is highly reliable, it is also time-consuming and costly. In this article, we report a new liquid chromatography-tandem mass spectrometric (LC-MS/MS) approach for identifying the -1 translational frameshift sites. The approach consists of three steps: (i) LC-MS/MS analysis of the protein digests, (ii) primary data analysis using the known mRNA sequence, and (iii) advanced data analysis using a new database containing distinct mRNA sequences with single insertion at particular positions. We first validated our approach by analyzing the previously documented slippery sequence, A4G, from IS3. With this approach, we further determined whether the TTTTTTG (T6G) sequence of IS1372 from Streptomyces lividans had the -1 translational frameshifting potential. The identified amino acid sequence of the transframe peptide indicated that the -1 frameshifting occurred at the T6G motif, as predicted previously. The results on IS3 (A4G) and IS1372 (T6G) suggested that this approach is effective for the translational frameshifting studies.  相似文献   

3.
4.
5.
An insertion sequence (IS) element from Lactobacillus johnsonii was isolated, characterized, and exploited to construct an IS-based integration vector. L. johnsonii NCK61, a high-frequency conjugal donor of bacteriocin production (Laf+) and immunity (Lafr), was transformed to erythromycin resistance (Emr) with the shuttle vector pSA3. The NCK61 conjugative functions were used to mobilize pSA3 into a Laf- Lafs EMs recipient. DNA from the Emr transconjugants transformed into Escherichia coli MC1061 yielded a resolution plasmid with the same size as that of pSA3 with a 1.5-kb insertion. The gram-positive replication region of the resolution plasmid was removed to generate a pSA3-based suicide vector (pTRK327) bearing the 1.5-kb insert of Lactobacillus origin. Plasmid pTRK327 inserted randomly into the chromosomes of both Lactobacillus gasseri ATCC 33323 and VPI 11759. No homology was detected between plasmid and total host DNAs, suggesting a Rec-independent insertion. The DNA sequence of the 1.5-kb region revealed the characteristics of an IS element (designated IS1223): a length of 1,492 bp; flanking, 25-bp, imperfect inverted repeats; and two overlapping open reading frames (ORFs). Sequence comparisons revealed 71.1% similarity, including 35.7% identity, between the deduced ORFB protein of the E. coli IS element IS150 and the putative ORFB protein encoded by the Lactobacillus IS element. A putative frameshift site was detected between the overlapping ORFs of the Lactobacillus IS element. It is proposed that, similar to IS150, IS1223 produces an active transposase via translational frameshifting between two tandem, overlapping ORFs.  相似文献   

6.
We have used bioinformatics approaches to identify a potential case of -1 ribosomal frame shifting in the mRNAs of the three variants of human SEMA6C protein. The mRNAs contain a heptanucleotide slippery sequence followed by a compact H-type pseudoknot. Unlike -1 frameshifting signals in viral or viral-like mRNAs, the slippery sequence and downstream pseudoknot in SEMA6C mRNAs locate 423 nucleotides (encoding 141 amino acids) upstream of the stop codon. The potential -1 frameshifting event would produce a polypeptide of 238 residues encoded by the -1 reading frames. Sequence similarity searches using BLAST indicate that ~90% of the 238 residues match actual protein sequences annotated as SEMA6C proteins in the database. We propose that the mRNAs of human SEMA6C utilize a pseudoknot dependent -1 ribosomal frameshifting mechanism to express novel SEMA6C isoforms.  相似文献   

7.
Haas M  Rak B 《Journal of bacteriology》2002,184(21):5833-5841
IS150, a member of the widespread IS3 family, contains two consecutive out-of-phase open reading frames, orfA and orfB, that partially overlap. These open reading frames encode three proteins, InsA, InsB, and the InsAB protein, which is jointly encoded by both open reading frames by means of programmed translational frameshifting. We demonstrate that the InsAB protein represents the IS150 element's transposase. In vivo, the wild-type IS150 element generates circular excision products and linear IS150 molecules. Circular and linear species have previously been detected with mutant derivatives of other members of the IS3 family. Our finding supports the assumption that these products represent true transposition intermediates of members of this family. Analysis of the molecular nature of these two species suggested that the circular forms are precursors of the linear molecules. Elimination of InsA synthesis within the otherwise intact element led to accumulation of large amounts of the linear species, indicating that the primary role of InsA may be to prevent abortive production of the linear species and to couple generation of these species to productive insertion events.  相似文献   

8.
Twelve populations of Escherichia coli B all lost D-ribose catabolic function during 2,000 generations of evolution in glucose minimal medium. We sought to identify the population genetic processes and molecular genetic events that caused these rapid and parallel losses. Seven independent Rbs(-) mutants were isolated, and their competitive fitnesses were measured relative to that of their Rbs(+) progenitor. These Rbs(-) mutants were all about 1 to 2% more fit than the progenitor. A fluctuation test revealed an unusually high rate, about 5 x 10(-5) per cell generation, of mutation from Rbs(+) to Rbs(-), which contributed to rapid fixation. At the molecular level, the loss of ribose catabolic function involved the deletion of part or all of the ribose operon (rbs genes). The physical extent of the deletion varied between mutants, but each deletion was associated with an IS150 element located immediately upstream of the rbs operon. The deletions apparently involved transposition into various locations within the rbs operon; recombination between the new IS150 copy and the one upstream of the rbs operon then led to the deletion of the intervening sequence. To confirm that the beneficial fitness effect was caused by deletion of the rbs operon (and not some undetected mutation elsewhere), we used P1 transduction to restore the functional rbs operon to two Rbs(-) mutants, and we constructed another Rbs(-) strain by gene replacement with a deletion not involving IS150. All three of these new constructs confirmed that Rbs(-) mutants have a competitive advantage relative to their Rbs(+) counterparts in glucose minimal medium. The rapid and parallel evolutionary losses of ribose catabolic function thus involved both (i) an unusually high mutation rate, such that Rbs(-) mutants appeared repeatedly in all populations, and (ii) a selective advantage in glucose minimal medium that drove these mutants to fixation.  相似文献   

9.
The IS911 bacterial transposable element uses -1 programmed translational frameshifting to generate the protein required for its mobility: translation initiated in one gene (orfA) shifts to the -1 frame and continues in a second overlapping gene (orfB), thus generating the OrfAB transposase. The A-AAA-AAG frameshift site of IS911 is flanked by two stimulatory elements, an upstream Shine-Dalgarno sequence and a downstream stem-loop. We show here that, while they can act independently, these stimulators have a synergistic effect when combined. Mutagenic analyses revealed features of the complex stem-loop that make it a low-efficiency stimulator. They also revealed the dual role of the upstream Shine-Dalgarno sequence as (i) a stimulator of frameshifting, by itself more potent than the stem-loop, and (ii) a mandatory determinant of initiation of OrfB protein synthesis on an AUU codon directly preceding the A6G motif. Both roles rely on transient base pairing of the Shine-Dalgarno sequence with the 3' end of 16S rRNA. Because of its effect on frameshifting, the Shine-Dalgarno sequence is an important determinant of the level of transposase in IS911-containing cells, and hence of the frequency of transposition.  相似文献   

10.
Programmed -1 ribosomal frameshifting is employed in the expression of a number of viral and cellular genes. In this process, the ribosome slips backwards by a single nucleotide and continues translation of an overlapping reading frame, generating a fusion protein. Frameshifting signals comprise a heptanucleotide slippery sequence, where the ribosome changes frame, and a stimulatory RNA structure, a stem-loop or RNA pseudoknot. Antisense oligonucleotides annealed appropriately 3' of a slippery sequence have also shown activity in frameshifting, at least in vitro. Here we examined frameshifting at the U(6)A slippery sequence of the HIV gag/pol signal and found high levels of both -1 and -2 frameshifting with stem-loop, pseudoknot or antisense oligonucleotide stimulators. By examining -1 and -2 frameshifting outcomes on mRNAs with varying slippery sequence-stimulatory RNA spacing distances, we found that -2 frameshifting was optimal at a spacer length 1-2 nucleotides shorter than that optimal for -1 frameshifting with all stimulatory RNAs tested. We propose that the shorter spacer increases the tension on the mRNA such that when the tRNA detaches, it more readily enters the -2 frame on the U(6)A heptamer. We propose that mRNA tension is central to frameshifting, whether promoted by stem-loop, pseudoknot or antisense oligonucleotide stimulator.  相似文献   

11.
The transposase of the bacterial insertion sequence IS1 is normally expressed by inefficient translational frameshifting between an upstream reading frame which itself specifies a transposition inhibitor, InsA, and a second consecutive reading frame located immediately downstream. A fused-frame mutant which carries an additional base pair inserted at the point of frameshifting was constructed. This mutant exhibits high transposition activity and should express the transposase, InsAB', constitutively without frameshifting. Unexpectedly, a second protein species was observed to be expressed from this mutant. We demonstrate here that this protein, InsA*, results from continued frameshifting on the modified frameshift motif. The protein retains the activities of the repressor InsA. Its elimination, by further modification of the frameshift motif, results in a further increase in various transposition activities of IS1. These results support the hypothesis that a single IS1-encoded protein, InsAB', is necessary for transposition.  相似文献   

12.
Nearly all members of a widespread family of bacterial transposable elements related to insertion sequence 3 (IS3), therefore called the IS3 family, very likely use programmed -1 ribosomal frameshifting to produce their transposase, a protein required for mobility. Comparative analysis of the potential frameshift signals in this family suggested that most of the insertion sequences from the IS51 group contain in their mRNA an elaborate pseudoknot that could act as a recoding stimulator. It results from a specific intramolecular interaction between an apical loop and an internal loop from two stem-loop structures. Directed mutagenesis, chemical probing, and gel mobility assays of the frameshift region of one element from the IS51 group, IS3411, provided clear evidences of the existence of the predicted structure. Modeling was used to generate a three-dimensional molecular representation of the apical loop-internal loop complex. We could demonstrate that mutations affecting the stability of the structure reduce both frameshifting and transposition, thus establishing the biological importance of this new type of RNA structure for the control of transposition level.  相似文献   

13.
An Escherichia coli strain, ECOR28, was found to have insertions of an identical sequence (1,279 bp in length) at 10 loci in its genome. This insertion sequence (named IS621) has one large open reading frame encoding a putative protein that is 326 amino acids in length. A computer-aided homology search using the DNA sequence as the query revealed that IS621 was homologous to the piv genes, encoding pilin gene invertase (PIV). A homology search using the amino acid sequence of the putative protein encoded by IS621 as the query revealed that the protein also has partial homology to transposases encoded by the IS110/IS492 family elements, which were known to have partial homology to PIV. This indicates that IS621 belongs to the IS110/IS492 family but is most closely related to the piv genes. In fact, a phylogenetic tree constructed on the basis of amino acid sequences of PIV proteins and transposases revealed that IS621 belongs to the piv gene group, which is distinct from the IS110/IS492 family elements, which form several groups. PIV proteins and transposases encoded by the IS110/IS492 family elements, including IS621, have four acidic amino acid residues, which are conserved at positions in their N-terminal regions. These residues may constitute a tetrad D-E(or D)-D-D motif as the catalytic center. Interestingly, IS621 was inserted at specific sites within repetitive extragenic palindromic (REP) sequences at 10 loci in the ECOR28 genome. IS621 may not recognize the entire REP sequence in transposition, but it recognizes a 15-bp sequence conserved in the REP sequences around the target site. There are several elements belonging to the IS110/IS492 family that also transpose to specific sites in the repeated sequences, as does IS621. IS621 does not have terminal inverted repeats like most of the IS110/IS492 family elements. The terminal sequences of IS621 have homology with the 26-bp inverted repeat sequences of pilin gene inversion sites that are recognized and used for inversion of pilin genes by PIV. This suggests that IS621 initiates transposition through recognition of their terminal regions and cleavage at the ends by a mechanism similar to that used for PIV to promote inversion at the pilin gene inversion sites.  相似文献   

14.
Programmed -1 ribosomal frameshifting, involving tRNA re-pairing from an AAG codon to an AAA codon, has been reported to occur at the sequences CGA AAG and CAA AAG. In this study, using the recoding region of insertion sequence IS3, we have investigated the influence on frameshifting in Escherichia coli of the first codon of this type of motif by changing it to all other NNA codons. Two classes of NNA codons were distinguished, depending on whether they favor or limit frameshifting. Their degree of shiftiness is correlated with wobble propensity, and base 34 modification, of their decoding tRNAs. A more flexible anticodon loop very likely makes the tRNAs with extended wobble more prone to liberate the third codon base, A, for re-pairing of tRNALys in the -1 frame.  相似文献   

15.
Programmed -1 ribosomal frameshifting has become the subject of increasing interest over the last several years, due in part to the ubiquitous nature of this translational recoding mechanism in pathogenic animal and plant viruses. All cis-acting frameshift signals encoded in mRNAs are minimally composed of two functional elements: a heptanucleotide "slippery sequence" conforming to the general form X XXY YYZ, followed by an RNA structural element, usually an H-type RNA pseudoknot, positioned an optimal number of nucleotides (5 to 9) downstream. The slippery sequence itself promotes a low level ( approximately 1 %) of frameshifting; however, downstream pseudoknots stimulate this process significantly, in some cases up to 30 to 50 %. Although the precise molecular mechanism of stimulation of frameshifting remains poorly understood, significant advances have been made in our knowledge of the three-dimensional structures, thermodynamics of folding, and functional determinants of stimulatory RNA pseudoknots derived from the study of several well-characterized frameshift signals. These studies are summarized here and provide new insights into the structural requirements and mechanism of programmed -1 ribosomal frameshifting.  相似文献   

16.
Programmed ribosomal frameshifting allows one mRNA to encode regulate expression of, multiple open reading frames (ORFs). The polymerase encoded by ORF 2 of Barley yellow dwarf virus (BYDV) is expressed via minus one (-1) frameshifting from the overlapping ORF 1. Previously, this appeared to be mediated by a 116 nt RNA sequence that contains canonical -1 frameshift signals including a shifty heptanucleotide followed by a highly structured region. However, unlike known -1 frameshift signals, the reporter system required the zero frame stop codon and did not require a consensus shifty site for expression of the -1 ORF. In contrast, full-length viral RNA required a functional shifty site for frameshifting in wheat germ extract, while the stop codon was not required. Increasing translation initiation efficiency by addition of a 5' cap on the naturally uncapped viral RNA, decreased the frameshift rate. Unlike any other known RNA, a region four kilobases downstream of the frameshift site was required for frameshifting. This included an essential 55 base tract followed by a 179 base tract that contributed to full frameshifting. The effects of most mutations on frameshifting correlated with the ability of viral RNA to replicate in oat protoplasts, indicating that the wheat germ extract accurately reflected control of BYDV RNA translation in the infected cell. However, the overall frameshift rate appeared to be higher in infected cells, based on immunodetection of viral proteins. These findings show that use of short recoding sequences out of context in reporter constructs may overlook distant signals. Most importantly, the remarkably long-distance interaction reported here suggests the presence of a novel structure that can facilitate ribosomal frameshifting.  相似文献   

17.
A 1,442-base-pair (bp) insertion sequence (IS861) was identified in the type III group B streptococcal (GBS) strain COH-1. It is flanked by 26-bp imperfect inverted repeats and contains two open reading frames, 1 and 2, encoding 141- and 277-amino-acid proteins, respectively. A 3-bp target sequence, ACA, is duplicated and flanks each inverted repeat. IS861 shares greater than 30% homology with IS3 and IS150 of Escherichia coli, primarily in the region of their putative transposases. Northern (RNA) analysis revealed that RNA is actively transcribed in vivo by IS861 and 17- and 36-kilodalton proteins were synthesized in E. coli maxicell assays. Multiple copies of IS861 were observed throughout the chromosome of COH-1, and one of the copies is located near genes involved in GBS capsule synthesis. IS861 is the first insertion sequence identified in GBS. Its role in GBS and the significance of its relationship to the phylogenetically similar insertion sequences typified by IS150 and IS3 of E. coli are unknown.  相似文献   

18.
S T Hu  L C Lee    G S Lei 《Journal of bacteriology》1996,178(19):5652-5659
The genome of the transposable element IS2 contains five open reading frames that are capable of encoding proteins greater than 50 amino acids; however, only one IS2 protein of 14 kDa had been detected. By replacing the major IS2 promoter located in the right terminal repeat of IS2 with the T7 promoter to express IS2 genes, we have detected another IS2 protein of 46 kDa. This 46-kDa protein was designated InsAB'. Analyses of the InsAB' sequence revealed motifs that are characteristic of transposases of other transposable elements. InsAB' has the ability to bind both terminal repeat sequences of IS2. It was shown to bind a 27-bp sequence (5'-GTTAAGTGATAACAGATGTCTGGAAAT-3', positions 1316 to 1290 by our numbering system [16 to 42 by the previous numbering system]) located at the inner end of the right terminal repeat and a 31-bp sequence (5'-TTATTTAAGTGATATTGGTTGTCTGGAGATT-3', positions 46 to 16 [1286 to 1316]), including the last 27 bp of the inner end and the adjacent 4 bp of the left terminal repeat of IS2. This result suggests that InsAB' is a transposase of IS2. Since there is no open reading frame capable of encoding a 46-kDa protein in the entire IS2 genome, this 46-kDa protein is probably produced by a translational frameshifting mechanism.  相似文献   

19.
The Mycobacterium tuberculosis-specific insertion sequence IS6110/986 has been widely used as a probe because of the multiple polymorphism observed among different strains. To investigate transposition of IS6110, a series of artificially constructed composite transposons containing IS6110 and a kanamycin resistance marker were constructed. The composite transposons were inserted into a conditionally replicating, thermosensitive, Escherichia coli-mycobacterial shuttle vector and introduced into M. smegmatis mc2155. Lawns of transformants were grown at the permissive temperature on kanamycin-supplemented agar and subsequently prevented from further growth by shifting to the non-permissive temperature. Under normal atmospheric conditions, kanamycin-resistant papillae appeared after only about 5-6 weeks of incubation. However, these events were not associated with transposon mobilization. In contrast, lawns that were exposed to a 48 h microaerobic shock generated kanamycin-resistant papillae after only 6-14 days. These events were generated by conservative transposition of the IS6110 composite transposon into the M. smegmatis chromosome, with loss of the shuttle vector. In common with other IS3 family elements, transposition of IS6110 is thought to be controlled by translational frameshifting. However, we were unable to detect any significant frameshifting within the putative frameshifting site of IS6110, and the level of frameshifting was not affected by microaerobic incubation. The finding that transposition of IS6110 is stimulated by incubation at reduced oxygen tensions may be relevant to transposition of IS6110 in M. tuberculosis harboured within TB lesions.  相似文献   

20.
Several signals are required for the programmed frameshifting in translation of IS911 mRNA. These include a Shine Dalgarno (SD)-like sequence, a slippery sequence of six adenine residues and a guanine residue (A6G) and a 3' secondary structure. The structure of the mRNA containing these elements was investigated using chemical and enzymatic probing. The probing data show that the 3' structure is a three-way junction of stems. The function of the three-way junction was investigated by mutagenesis. Disrupting the stability of the structure greatly affects frameshifting and transposition levels as tested by separate in vivo assays. Structural probing and thermal melting profiles indicate that the disrupted three-way junctions have altered structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号