首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary I evaluate habitat matching rules based on ideal distribution models of density-dependent habitat use. Recent approaches and the ideal free continuous input matching rule on which they depend, are restricted to only those habitats that are jointly occupied across the full range of population sizes. These assumptions may often be inappropriate to field applications of habitat matching. I develop alternatives that can be applied to a wide array of ideal forms of habitat selection, including the ideal free, continuous input example. Input matching can be distinguished from assumptions of consumer-resource models and preemptive habitat use by regressions of density between paired habitats (isodars). Isodars for continuous input models should be linear on a logarithmic scale, while those for consumer-resource models should be linear on an arithmetic scale. Pre-emptive isodars can be distinguished from the others by dramatic non-linearities at both low and high densities. Field data on white-footed mice support the consumer-resource theory. Implications of the rules for population regulation and community organization are highlighted by new models that specify how the fitness of pre-emptive habitat selectors should decline with increasing density. Strong non-linearities produced by comparisons between variable and homogeneous habitats produce reversing source-sink population regulation and a new form of cyclical community dynamics. Variable habitats act as a source of emigrants at low density and a sink for immigrants at high density. Subordinate species may occupy only the variable habitat at both low and high density.  相似文献   

2.
Ecologists have made substantial progress evaluating the influences of adaptive behaviors on population dynamics and communities. But no-one has examined the joint influences of stochastic variation, predators, and density-dependent habitat selection on our interpretations of species coexistence. I begin the search with simulation models of habitat isodars (lines along which the fitness of individuals is identical in two or more habitats) assuming ideal-free habitat selection by two prey species exploited by a habitat-selecting parasitoid predator. The models include both regulating and non-regulating stochasticity. The intriguing results include the following: (1) all three species often achieved a true ideal-free distribution; (2) predators reduced prey population sizes and increased the frequency of local habitat extinctions; (3) despite the predator's differential reduction of prey densities, there was no evidence of apparent competition; (4) all species exhibited pulses of dispersal associated with donor–receiver population dynamics; (5) isodars produced valid estimates of competition between prey only in constant environments lacking habitat-selecting predators; (6) habitat-selection by predators forced prey into their preferred habitats; (7) the resulting ghost of competition obscured the prey species' competitive interaction; (8) isodars correctly revealed density-dependent habitat selection by the predator. Overall, the results appeared to depend primarily on the predator's habitat choice, rather than on prey trade-offs between competitive ability and reduced value (handling time) to the predator. Habitat selection theory, and its revelation via isodars, can thus provide considerable insight into processes affecting real communities, and most especially if ecologists assess carefully the constraints for their analysis and interpretation. Nevertheless, isodars designed to measure competition are likely to be most reliable in donor-controlled or experimental systems where regulating stochasticity has relatively little influence on prey dynamics.  相似文献   

3.
In order for competing species to coexist, segregation on some ecological niche component is required and is often mediated by differential habitat use. When unequal competitors are involved, the dominant species tends to displace the subordinate one to its less preferred habitat. Here, we use habitat isodars, an approach which reflects evolutionary stable strategies of habitat selection, to evaluate whether interspecific competition between two competing species with distinct habitat preferences, the little bustard Tetrax tetrax and the great bustard Otis tarda, modulates their habitat use. Field data on these endangered species demonstrate that unequal competitors can coexist without completely segregating on their preferred habitats. The negatively sloped isodar of the subordinate little bustard unveils its competition with the dominant great bustard. Interference from great bustards in secondary cereal habitats reinforces use of preferred natural habitat by little bustards. Studies of density‐dependent habitat selection by a single‐species can thus aid in identifying the effects of competition on community composition, and guide the conservation of at‐risk species. Isodars, in particular, represent a promising method to gain clear knowledge on interspecific competition for species in which experimental manipulations are not feasible.  相似文献   

4.
Isodar theory can help to unveil the fitness consequences of habitat disturbance for wildlife through an evaluation of adaptive habitat selection using patterns of animal abundance in adjacent habitats. By incorporating measures of disturbance intensity or variations in resource availability into fitness-density functions, we can evaluate the functional form of isodars expected under different disturbance-fitness relationships. Using this framework, we investigated how a gradient of forest harvesting disturbance and differences in resource availability influenced habitat quality for snowshoe hares (Lepus americanus) and red-backed voles (Myodes gapperi) using pairs of logged and uncut boreal forest. Isodars for both species had positive intercepts, indicating reductions to maximum potential fitness in logged stands. Habitat selection by hares depended on both conspecific density and differences in canopy cover between harvested and uncut stands. Fitness-density curves for hares in logged stands were predicted to shift from diverging to converging with those in uncut forest across a gradient of high to low disturbance intensity. Selection for uncut forests thus became less pronounced with increasing population size at low levels of logging disturbance. Voles responded to differences in moss cover between habitats which reflected moisture availability. Lower moss cover in harvested stands either reduced maximum potential fitness or increased the relative rate of decline in fitness with density. Differences in vole densities between harvested and uncut stands were predicted, however, to diminish as populations increased. Our findings underscore the importance of accounting for density-dependent behaviors when evaluating how changing habitat conditions influence animal distribution.  相似文献   

5.
Isodar theory can be used to evaluate fitness consequences of density-dependent habitat selection by animals. A typical habitat isodar is a regression curve plotting competitor densities in two adjacent habitats when individual fitness is equal. Despite the increasing use of habitat isodars, their application remains largely limited to areas composed of pairs of adjacent habitats that are defined a priori. We developed a resampling method that uses data from wildlife surveys to build isodars in heterogeneous landscapes without having to predefine habitat types. The method consists in randomly placing blocks over the survey area and dividing those blocks in two adjacent sub-blocks of the same size. Animal abundance is then estimated within the two sub-blocks. This process is done 100 times. Different functional forms of isodars can be investigated by relating animal abundance and differences in habitat features between sub-blocks. We applied this method to abundance data of raccoons and striped skunks, two of the main hosts of rabies virus in North America. Habitat selection by raccoons and striped skunks depended on both conspecific abundance and the difference in landscape composition and structure between sub-blocks. When conspecific abundance was low, raccoons and striped skunks favored areas with relatively high proportions of forests and anthropogenic features, respectively. Under high conspecific abundance, however, both species preferred areas with rather large corn-forest edge densities and corn field proportions. Based on random sampling techniques, we provide a robust method that is applicable to a broad range of species, including medium- to large-sized mammals with high mobility. The method is sufficiently flexible to incorporate multiple environmental covariates that can reflect key requirements of the focal species. We thus illustrate how isodar theory can be used with wildlife surveys to assess density-dependent habitat selection over large geographic extents.  相似文献   

6.
Summary Two predictions of the ideal free distribution model, a null hypothesis of habitat selection, were examined using free-ranging muskrats. We rejected the prediction that the proportion of the animals found in each of five habitats was independent of population size. Data on over-winter occupancy of muskrat dwellings tend also to refute the prediction of equal fitness reward among habitats. Habitat type and water-level had a profound effect on the suitability of a site for settlement. We concluded that the observed pattern of muskrat distribution followed more closely an ideal despotic distribution where some individuals benefited from a higher fitness because of resource monopolization. Current theories of density-dependent habitat selection, which assume an ideal free distribution, would not apply to muskrats and possibly to many other mammal species.  相似文献   

7.
1. Although theory predicts a positive relationship between oviposition preferences and the developmental performance of offspring, the strength of this relationship may depend not only on breeding site quality, but also on the complex interactions between environmental heterogeneity and density-dependent processes. Environmental heterogeneity may not only alter the strength of density dependence, but may also fundamentally alter density-dependent relationships and the preference-performance relationship. 2. Here I present results from a series of field experiments testing the effects of environmental heterogeneity and density-dependent feedback on offspring performance in tree-hole mosquitoes. Specifically, I asked: (i) how do oviposition activity, patterns of colonization and larval density differ among habitats and among oviposition sites with different resources; and (ii) how is performance influenced by the density of conspecifics, the type of resource in the oviposition site, and the type of habitat in which the oviposition site is located? 3. Performance did not differ among habitats at low offspring densities, but was higher in deciduous forest habitats than in evergreen forest habitats at high densities. Oviposition activity and larval densities were also higher in deciduous forests, suggesting a weak preference for these habitats. 4. The observed divergence of fitness among habitats with increasing density may select for consistent but weak preferences for deciduous habitats if regional abundances vary temporally. This would generate a negative preference-performance relationship when population densities are low, but a positive relationship when population densities are high. 5. This study demonstrates that failure to recognize that fitness differences among habitats may themselves be density-dependent may bias our assumptions about the ecological and evolutionary processes determining oviposition preferences in natural systems.  相似文献   

8.
When competing species depress one another's fitness in the habitats that they occupy, their competitive effects will emerge in each species' pattern of density-dependent habitat choice. Thus, a regression analysis of joint densities, corrected by the habitat effect, should reveal the magnitude of interspecific competition. We tested this idea by 1) demonstrating the connection between removal experiments and regression estimates of competition with those obtained from isodars (regressions that implicitly incorporate evolutionarily stable strategies of habitat selection) and 2) evaluating whether interspecific competition inferred from isodars corresponded with the inferences emerging from regression and field experiments. Previous removal experiments on two herbivorous rodents occupying coastal wet heathlands in eastern Australia documented that competition between Rattus lutreolus and Pseudomys gracilicaudatus is asymmetrically biased in favor of the much larger Rattus . The asymmetry in competition was also revealed by regression estimates of competition. Isodar analyses illustrate a habitat-dependent mechanism for the asymmetry. Rattus compete effectively with Pseudomys in both 'wetter' and 'drier' patches of heath whereas Pseudomys appear to exert a competitive effect in only the drier sites. The magnitude of competition measured by a removal experiment in an area with more-or-less equal amounts of both habitats will be biased in favor of Rattus . More generally, one can use the isodar estimates to draw isolegs and isoclines of competitive coexistence. Isoclines for the two Australian rodents imply dynamic equilibria of stable competitive coexistence that vary with plant succession in fire-dominated heathland ecosystems.  相似文献   

9.
The ideal free distribution assumes that habitat selection is without cost and predicts that fitness should be equal in different habitats. If habitat selection has a cost, then individuals should only move to another habitat when potential fitness in the new habitat exceeds that in the source habitat by an amount greater than the cost of habitat selection. We used isodar techniques to assess the cost of habitat selection. In an experimental landscape, we monitored density, movement, and reproductive success of adult female prairie voles, Microtus ochrogaster, in adjacent paired habitats with low and high cover. We tested the following hypotheses: (1) adult female prairie voles exhibited density-dependent habitat selection; (2) the cost of habitat selection was density-independent. Habitat quality based on population density and fitness of adult females was higher in high cover habitats. Net movement was from low cover to high cover habitats. The results indicated that adult female prairie voles exhibited density-dependent habitat selection. Furthermore, there was a significant cost of habitat selection, and the cost was density-independent.  相似文献   

10.
Theory predicts that animals should prefer habitats where their fitness is maximized but some mistakenly select habitats where their fitness is compromised, that is, ecological traps. Understanding why this happens requires knowledge of the habitat selection cues animals use, the habitats they prefer and why, and the fitness costs of habitat selection decisions. We conducted experiments with a freshwater insect, the non‐biting midge Chironomus tepperi to ask: (a) whether females respond to potential oviposition cues, (b) to explore whether oviposition is adaptive in relation to metal pollution and conductivity, and (c) whether individuals raised in poor quality sites are more likely to breed in similarly poor locations. We found the following: (a) females responded to some cues, especially conductivity and conspecifics, (b) females preferred sites with higher concentrations of bioavailable metals but suffered no consequences to egg/larval survival, (c) females showed some avoidance of high conductivities, but they still laid eggs resulting in reduced egg hatching, larval survival, and adult emergence, and (d) preferences were independent of natal environment. Our results show that C. tepperi is susceptible to ecological traps, depending on life stage and the relative differences in conductivities among potential oviposition sites. Our results highlight that (a) the fitness outcomes of habitat selection need to be assessed across the life cycle and (b) the relative differences in preference/suitability of habitats need to be considered in ecological trap research. This information can help determine why habitat preferences and their fitness consequences differ among species, which is critical for determining which species are susceptible to ecological traps.  相似文献   

11.
Summary The population densities of sympatric Atlantic salmon,Salmo salar and brook charr,Salvelinus fontinalis, were measured in riffle and pool stream habitats to test whether non-linear isodars, a multispecific model of habitat selection based on ideal distribution assumptions, could (1) predict the distribution of densities between habitats and (2) reproduce the processes postulated to underlie spatial segregation and species interactions in previous laboratory and field studies. The model provided a good fit to observed density patterns and indicated that habitat suitability declined non-linearly with increased heterospecific competitor densities. Competitive effects in riffles appeared to be due to exploitative resource use, with salmon always emerging as the superior competitor. No evidence was found for interference competition in riffles. In contrast, interspecific competition in pools seemed to occur through exploitation and interference. The specific identity of the superior competitor in pools depended on the density of both species; pools provided the charr with refuge from competition with the salmon, presumably through the adoption by the charr of density-dependent behaviours, such as schooling and group foraging, that mitigated the negative impact of the salmon. Charr were displaced from the riffles toward the pools as the total salmon density increased. The isodar analysis, based on limited density data, successfully reproduced the processes suggested to underlie spatial segregation in previous field and laboratory studies and provided new insights into how changes in competitor densities modify habitat suitability in this system.  相似文献   

12.
Parasites should make the same decisions that every animal makes regarding fitness reward. They can maximize reproductive success by selection of those habitats that guarantee the greatest fitness output. We consider the host population as a habitat of a parasite population. Consequently, hosts (=habitats) that differ quantitatively or qualitatively will support different numbers of parasites. The nature of habitat selection can be detected by isodars, lines along which habitat selection yields equivalent fitness reward. We applied this approach to study host selection of five fleas, each infesting two desert rodents. Xenopsylla conformis, Xenopsylla ramesis, Nosopsyllus iranus theodori and Stenoponia tripectinata medialis parasitize Gerbillus dasyurus and Meriones crassus. Synosternus cleopatrae pyramidis parasitizes Gerbillus andersoni allenbyi and Gerbillus pyramidum. Three fleas ( X. conformis, X. ramesis and S. c. pyramidis) were able to perceive quantitative (amount of the resource; e.g. organic matter in the nest for flea larvae) and/or qualitative (pattern of resource acquisition; e.g. host defensiveness) differences between hosts. Two other fleas did not perceive between-host differences. X. conformis was a density-dependent host selector that showed sharp selectivity at low density. X. ramesis and S. c. pyramidis were density-independent host selectors with a direct correspondence of density with habitat quality. N. i. theodori and S. t. medialis were non-selectors with no relationship at all between density and host quality. The results of the application of the isodar theory suggest that ectoparasites, like other animals, behave as if they are able to make choices and decisions that favour environments in which their reproductive benefit is maximized.  相似文献   

13.
During natal dispersal, young animals leave their natal area and search for a new area to live. In species in which individuals inhabit different types of habitat, experience with a natal habitat may increase the probability that a disperser will select the same type of habitat post-dispersal (natal habitat preference induction or NHPI). Despite considerable interest in the ecological and the evolutionary implications of NHPI, we lack empirical evidence that it occurs in nature. Here we show that dispersing brush mice (Peromyscus boylii) are more likely to search and settle within their natal habitat type than expected based on habitat availability. These results document the occurrence of NHPI in nature and highlight the relevance of experience-generated habitat preferences for ecological and evolutionary processes.  相似文献   

14.
Assortative mating, an ubiquitous form of nonrandom mating, strongly impacts Darwinian fitness and can drive biological diversification. Despite its ecological and evolutionary importance, the behavioural processes underlying assortative mating are often unknown, and in particular, mechanisms not involving mate choice have been largely ignored so far. Here, we propose that assortative mating can arise from ‘prudent habitat choice’, a general mechanism that acts under natural selection, and that it can occur despite a complete mixing of phenotypes. We show that in the cichlid Eretmodus cyanostictus size‐assortative mating ensues, because individuals of weaker competitive ability ignore high‐quality but strongly competed habitat patches. Previous studies showed that in E. cyanostictus, size‐based mate preferences are absent. By field and laboratory experiments, here we showed that (i) habitat quality and body size are correlated in this species; (ii) territories with more stone cover are preferred by both sexes in the absence of competition; and (iii) smaller fish prudently occupy vacant territories of worse quality than do larger fish. Prudent habitat choice is likely to be a widespread mechanism of assortative mating, as both preferences for and dominance‐based access to high‐quality habitats are generic phenomena in animals.  相似文献   

15.
Contemporary models of density-dependent habitat selection generally focus on long-term evolutionary consequences of intraspecific or interspecific competition and/or patterns of resource use in patchy environments. A primary goal of such studies often is to elucidate evolutionary stable strategies based on steady-state dynamics of population growth. In contrast, we developed a simulation model to explore short-term movements of interspecific competitors among fine-grained habitats of differing attributes, as might result from field manipulations of habitat quality or population densities. In this model, habitat quality is expressed in terms of mean individual fitness, represented by average per capita growth rate calculated according to the Lotka-Volterra equations describing interspecific competition. This model provides a mechanism for quantifying the effects of habitat quality, patterns of resource use and competition on distributions of individuals. Results demonstrate the heuristic value of this model in corroborating predictions derived from the ideal free distribution and isodar theory, and in generating isolegs to test the predictions of isoleg theory. Results indicate that small changes in model parameters have substantial impacts on patterns of habitat use and co-occurrence between species. The model identifies a variety of conditions under which isolegs for a given type of community organization deviate from predictions of contemporary isoleg theory, potentially expanding the universe of possible interspecific behaviors underlying the development of evolutionary stable strategies.  相似文献   

16.
Density dependent habitat selection at the community level is regarded as a major determinant of biodiversity at the local scale, and data on these processes and how they are affected by human activities is highly applicable to conservation. By studying the competitive relationships between a specialist and a generalist we can acquire valuable insights about how different environmental elements determine species abundance and distribution and consequently biodiversity. Here we describe a study of density dependent processes that determine the community structure of two rodents: a specialist—the broad toothed mouse (Apodemus mystacinus), and a generalist—the common spiny mouse (Acomys cahirinus) in a Mediterranean maqui habitat, and how this structure is impacted by anthropogenic planting of pine stands. We carried out two field experiments: The first, based on open field trapping, looking at how rodent communities change with habitat structure. The second experiment was an enclosure study aimed at validating the habitat preferences and competitive relationship between the specialist and the generalist. We identified asymmetric competition relationships in which the specialist was dominant over the generalist. Competition intensity was lower in maqui with >10% oak cover, although both species abundances were high. Competition was found only during the limiting season (summer). Based on these findings we produced management recommendations to keep indigenous small mammals’ biodiversity high. Density dependent habitat selection processes play a central role in determining biodiversity, and understanding the mechanisms motivating these processes is needed if alterations in biodiversity in response to human disturbance are to be understood.  相似文献   

17.
Scales and costs of habitat selection in heterogeneous landscapes   总被引:4,自引:0,他引:4  
Summary Two scales of habitat selection are likely to influence patterns of animal density in heterogeneous landscapes. At one scale, habitat selection is determined by the differential use of foraging locations within a home range. At a larger scale, habitat selection is determined by dispersal and the ability to relocate the home range. The limits of both scales must be known for accurate assessments of habitat selection and its role in effecting spatial patterns in abundance. Isodars, which specify the relationships between population density in two habitats such that the expected reproductive success of an individual is the same in both, allow us to distinguish the two scales of habitat selection because each scale has different costs. In a two-habitat environment, the cost of rejecting one of the habitats within a home range can be expressed as a devaluation of the other, because, for example, fine-grained foragers must travel through both. At the dispersal scale, the cost of accepting a new home range in a different habitat has the opposite effect of inflating the value of the original habitat to compensate for lost evolutionary potential associated with relocating the home range. These costs produce isodars at the foraging scale with a lower intercept and slope than those at the dispersal scale.Empirical data on deer mice occupying prairie and badland habitats in southern Alberta confirm the ability of isodar analysis to differentiate between foraging and dispersal scales. The data suggest a foraging range of approximately 60 m, and an effective dispersal distance near 140 m. The relatively short dispersal distance implies that recent theories may have over-emphasized the role of habitat selection on local population dynamics. But the exchange of individuals between habitats sharing irregular borders may be substantial. Dispersal distance may thus give a false impression of the inability of habitat selection to help regulate population density.  相似文献   

18.
Theory predicts that environmental heterogeneity in space or in time can maintain genetic polymorphism. Stable polymorphisms are expected to be more readily maintained if there are genotype specific habitat preferences. Genotype specific preferences for oviposition sites in Drosophila could be a major factor promoting habitat selection, and thus the maintenance of genetic variation. This hypothesis is being tested using the cactophilic species, D. buzzatii and D. aldrichi, where available evidence indicates a potential for such habitat selection, the habitats (oviposition sites) being yeast species found in the natural environment of these flies (cactus rots). Genetic variation for oviposition preferences was tested using isofemale lines—for D. buzzatii, a total of 60 lines from seven localities widely distributed through the species range in Australia, and for D. aldrichi, 21 lines from three of these localities. Females were given a choice of five yeast species as oviposition sites. Genetic variation for oviposition preferences on these natural substrates was demonstrated. There was significant variation among isofemale lines within populations in their patterns of preferences for oviposition on the five yeast species. However, analyses of preferences for each yeast species separately showed that the genetic variation for preferences relates to only three of the five species. Heritabilities of individual female preferences for these three species were low, ranging up to 9%. Little geographic differentiation was apparent among populations, most likely due to similar selection regimes within each population. Within populations, this kind of habitat selection could act to maintain polymorphisms, both at loci determining the habitat preferences and at other loci in linkage disequilibrium with them.  相似文献   

19.
Ecological specialization is common across all levels of biological organization, raising the question of whether the evolution of specialization at one scale in a taxon is linked to specialization at other scales. Anolis lizards have diversified repeatedly along axes of habitat use, but it remains unknown if this diversification into habitat use specialists is underlain by individual specialization. From repeated observations of individuals in a population of Anolis sagrei in Florida, we show that the extent of habitat use specialization among individuals is comparable to the extent of specialization in the same traits among ten sympatric Anolis habitat specialist species in Cuba. However, the adaptive correlations between habitat use and morphology commonly seen across species of Anolis were not observed across individuals in the sampled population. Our results therefore suggest that while patterns of ecological specialization can transcend scale, these parallels are the consequence of distinct ecological processes acting at microevolutionary and macroevolutionary scales.  相似文献   

20.
If individuals occupy habitats in a way that maximizes their fitness, if they are free to occupy the habitats they choose and if fitness declines with population density, then their abundance across habitats should follow an ideal free distribution. But, if individuals are genetically related, this simple fitness-maximization mechanism breaks down. Habitat occupation should obey Hamilton's rule (natural selection favours traits causing a loss in individual fitness as long as they result in an equal or greater gain in inclusive fitness) and depends more on inclusive fitness than it does on individual fitness. We demonstrate that the resulting inclusive-fitness distribution inflates the population density in habitats of poorer inherent quality, creating pronounced source sink dynamics. We also show that density-dependent habitat selection among relatives reinforces behaviours such as group defence and interspecific territoriality, and that it explains many anomalies in dispersal and foraging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号