首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP)-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 subunit activation and translocation to the nucleus, Bax accumulation into the mitochondria, cytochrome c release and caspase activation. AAP activates the intrinsic death pathway in the SH-SY5Y human neuroblastoma cell line. AAP metabolism is partially responsible for this activation, because blockade of the cytochrome CYP2E1 significantly reduced but did not totally prevent, AAP-induced SH-SY5Y cell death. AAP also induced NFkB p65 activation by phosphorylation and its translocation to the nucleus, where NFkB p65 increased IL-1β production. This increase contributed to neuroblastoma cell death through a mechanism involving Bax accumulation into the mitochondria, cytochrome c release and caspase3 activation. Blockade of NFkB translocation to the nucleus by the peptide SN50 prevented AAP-mediated cell death and IL-1β production. Moreover, overexpression of the antiapoptotic protein Bcl-xL did not decrease AAP-mediated IL-1β production, but prevented both AAP and IL-1β-mediated cell death. We also confirmed the AAP toxic actions on SK-N-MC neuroepithelioma and U87MG glioblastoma cell lines. The results presented here suggest that AAP activates the intrinsic death pathway in neuroblastoma cells through a mechanism involving NFkB and IL-1β.  相似文献   

2.
This review compares the signaling pathways leading to cellular responses (primarily proliferation and differentiation) of cells to the insulin-like growth factors (IGFs). Although some systems (such as myoblasts and adipocytes) clearly employ the Ras-Raf-Mitogen Activated Protein (MAP) kinase pathway in signaling for cell proliferation, others (such as MCF-7 mammary tumors and brain capillary cells) proliferate in response to signals mediated by phosphatidylinositol-3 kinase and p70 S6 kinase. Similarly, most of the systems surveyed use a phosphatidylinositol-3 kinase pathway in differentiating in response to IGFs, but others (such as SH-SY5Y neuroblastoma cells) differentiate in response to the MAP kinase pathway. Thus, it seems that there are no simple generalizations that can be used to forecast the signaling pathway that will be involved in any response to the IGFs.  相似文献   

3.
β-Amyloid peptide (Aβ) is generated via the sequential proteolysis of β-amyloid precursor protein (APP) by β- and γ-secretases, and plays a crucial role in the pathogenesis of Alzheimer’s disease (AD). Here, we sought to clarify the role of insulin-like growth factor-1 (IGF-1), implicated in the AD pathomechanism, in the generation of Aβ. Treatment of neuroblastoma SH-SY5Y cells expressing AD-associated Swedish mutant APP with IGF-1 did not alter cellular levels of APP, but significantly increased those of β-C-terminal fragment (β-CTF) and secreted Aβ. IGF-1 also enhanced APP phosphorylation at Thr668. Treatment of β-CTF-expressing cells with IGF-1 increased the levels of β-CTF and secreted Aβ. The IGF-1-induced augmentation of β-CTF was observed in the presence of γ-secretase inhibitors, but not in cells expressing β-CTF with a Thr668 to alanine substitution. These results suggest that IGF-1 promotes Aβ production through a secretase-independent mechanism involving APP phosphorylation.  相似文献   

4.
Neuroblastoma is a childhood tumor of the peripheral nervous system that remains largely uncurable by conventional methods. Mannitol induces apoptosis in neuroblastoma cell types and insulin-like growth factor I (IGF-I) protects these cells from hyperosmotic-induced apoptosis by affecting apoptosis-regulatory proteins. In the current study, we investigate factors that enable SH-SY5Y neuroblastoma cells to survive in the presence of an apoptotic stimulus. When SH-SY5Y cells are exposed to high mannitol concentrations, more than 60% of the cells are apoptotic within 48 h. Normal CS prevents hyperosmotic-induced apoptosis in a dose-dependent manner, with 0.6% CS protecting 50% of the cells, and 3% CS rescuing more than 70% of the cells from apoptosis. Serum also delays the commitment point for SH-SY5Y cells from 9 h to 35 h. A survey of several growth factors, including epidermal growth factor (EGF), platelet-derived growth factor (PDGF), nerve growth factor (NGF), fibroblast growth factor (FGF), and IGF-I reveals that IGF-I is a component of serum necessary for protection of neuroblastoma cells from death. Mitochondrial membrane depolarization occurs in greater than 40% of the cells after mannitol exposure and caspase-3 activation is increased in high mannitol conditions after 9 h. IGF-I blocks both the mitochondrial membrane depolarization and caspase-3 activation normally induced by hyperosmotic treatment in neuroblastoma cells. Our results suggest that (1) IGF-I is a key factor in serum necessary for protection from death and (2) IGF-I acts upstream from the mitochondria and the caspases to prevent apoptosis in human neuroblastoma.  相似文献   

5.
6.
The potential of plant expression systems to produce functional recombinant proteins was used to produce human prohormone insulin-like growth factor-1B (pro-IGF-1B). Insulin-like growth factor-1 (IGF-1) plays a role in normal growth, development and cell division. The analysis of IGF-1 cDNAs predicted two prohormone precursors (pro-IGF-1A and pro-IGF-1B) with distinct C-terminal E domains. The functions of these precursors, and the E-peptides generated on cleavage to mature IGF-1, are unknown. We expressed human pro-IGF-1B in transgenic tobacco plants and to our knowledge this is the first report of the plant-based recombinant prohormone. The plant-expressed pro-IGF-1B caused proliferation and differentiation of human neuroblastoma cell line SH-SY5Y comparable to human IGF-1. This implies a distinct biological role for pro-IGF-1B. It also suggests that pro-IGF-1B may play a role in tumorigenesis. These results are important in view of obtaining a better knowledge of the role of pro-IGF-1B in human neuroblastoma cells and its relationship to IGF-1. The data also confirm the feasibility of using plant expression system as a cheap and safe bioreactor to produce the recombinant protein for further analysis.  相似文献   

7.
The mammalian amyloid precursor protein (APP) protein family consists of the APP and the amyloid precursor-like proteins 1 and 2 (APLP1 and APLP2). The neurotoxic amyloid beta-peptide (Abeta) originates from APP, which is the only member of this protein family implicated in Alzheimer disease. However, the three homologous proteins have been proposed to be processed in similar ways and to have essential and overlapping functions. Therefore, it is also important to take into account the effects on the processing and function of the APP-like proteins in the development of therapeutic drugs aimed at decreasing the production of Abeta. Insulin and insulin-like growth factor-1 (IGF-1) have been shown to regulate APP processing and the levels of Abeta in the brain. In the present study, we show that IGF-1 increases alpha-secretase processing of endogenous APP and also increases ectodomain shedding of APLP1 and APLP2 in human SH-SY5Y neuroblastoma cells. We also investigated the role of different IGF-1-induced signaling pathways, using specific inhibitors for phosphatidylinositol 3-kinase and mitogen-activated protein kinase (MAPK). Our results indicate that phosphatidylinositol 3-kinase is involved in ectodomain shedding of APP and APLP1, but not APLP2, and that MAPK is involved only in the ectodomain shedding of APLP1.  相似文献   

8.
In the retinoic acid-differentiated neuroblastoma SH-SY5Y cells, IL-1 induced binding activity of NFkappaB and up-regulated the expression and activity of MnSOD. The IL-1-elicited effects were partly reversed by IL-4 and IL-6. It is proposed that IL-4 and IL-6 may participate in the regulation of the imbalanced oxidant status induced by IL-1 in differentiated neuroblastoma cells. In the SH-SY5Y cell line, TNFalpha neither activated NFkappaB nor induced MnSOD expression and activity, but was capable of modulating the IL-1 effects. Pyrrolidine dithiocarbamate (PDTC), an inhibitor of NFkappaB activation, down-regulated the expression and activity of MnSOD, which may suggest that the regulation of MnSOD by IL-1 in retinoic acid-differentiated neuroblastoma cells was mediated by the nuclear factor kappaB.  相似文献   

9.
The effect of ethanol on insulin-like growth factor-1 (IGF-I)-mediated signal transduction and functional activation in neuronal cells was examined. In human SH-SY5Y neuroblastoma cells, ethanol inhibited tyrosine autophosphorylation of the IGF-I receptor. This corresponded to the inhibition of IGF-I-induced phosphorylation of p42/p44 mitogen-activated/extracellular signal-regulated protein kinase (MAPK) by ethanol. Insulin-related substrate-2 (IRS-2) and focal adhesion kinase phosphorylation were reduced in the presence of ethanol, which corresponded to the prevention of lamellipodia formation (30 min). By contrast, ethanol had no effect on Shc phosphorylation when measured up to 1 h, and did not affect the association of Grb-2 with Shc. Neurite formation at 24 h was similarly unaffected by ethanol. The data indicate that the IGF-I receptor is a target for ethanol in SH-SY5Y cells However, there is diversity in the sensitivity of signaling elements within the IGF-I receptor tyrosine kinase signaling cascades to ethanol, which can be related to the inhibition of specific functional events in neuronal activation.  相似文献   

10.
The purpose of this study was to examine the effects of a known inhibitor, transforming growth factor-beta1 (TGF-beta1) versus the known stimulators insulin-like growth factor-1 (IGF-1) and dexamethasone (DEX) on pig preadipocyte differentiation in serum and serum-free primary cultures. In cultures with serum, preadipocyte and nonpreadipocyte replication was increased (p < 0.02) by IGF-1 and by TGF-beta1 (p < 0.05; p < 0.001). IGF-1 (10 nM) enhanced preadipocyte differentiation (p < 0.05) in serum-supplemented (1% pig serum) cultures, whereas TGF-beta1 (15 pM) reduced preadipocyte differentiation (p < 0.01) in the presence and absence of IGF-1. Furthermore, GPDH (SN-glycerol-3-phosphate dehydrogenase) specific activity (marker that indicates differentiation) was decreased (p < 0.05) by adding TGF-beta1 to serum-free cultures, but TGF-beta1 had little effect in serum-supplemented cultures. DEX significantly enhanced GPDH activity and fat cell cluster number, whereas pretreatment with TGF-beta1 eliminated the DEX enhancement. We have shown for the first time that TGF-beta can decrease (p < 0.01) the cellular secretion of IGF-1 by pig adipose tissue cells and counter the effects of exogenous IGF-1. These studies indicate that TGF-beta1 may not inhibit adipocyte development in the initial growth phase, but may inhibit differentiation and/or hypertrophy (lipid filling) at a later stage of development.  相似文献   

11.
Interest in the role of the insulin-like growth factor (IGF) axis in growth control and carcinogenesis has recently been increased by the finding of elevated serum insulin-like growth factor I (IGF-I) levels in association with three of the most prevalent cancers in the United States: prostate cancer, colorectal cancer, and lung cancer. IGFs serve as endocrine, autocrine, and paracrine stimulators of mitogenesis, survival, and cellular transformation. These actions are mediated through the type 1 IGF-receptor (IGF-1R), a tyrosine kinase that resembles the insulin receptor. The availability of free IGF for interaction with the IGF-1R is modulated by the insulin-like growth factor-binding proteins (IGFBPs). IGFBPs, especially IGFBP-3, also have IGF-independent effects on cell growth. IGF-independent growth inhibition by IGFBP-3 is believed to occur through IGFBP-3-specific cell surface association proteins or receptors and involves nuclear translocation. IGFBP-3-mediated apoptosis is controlled by numerous cell cycle regulators in both normal and disease processes. IGFBP activity is also regulated by IGFBP proteases, which affect the relative affinities of IGFBPs, IGFs and IGF-1R. Perturbations in each level of the IGF axis have been implicated in cancer formation and progression in various cell types.  相似文献   

12.
目的:探讨胰岛素样生长因子-1(IGF-1)对冈田酸(OA)诱导的细胞损伤和tau蛋白过度磷酸化的保护作用。方法:模型组以OA40nmol/L作用于SH-SY5Y细胞24h;IGF-1预处理组分别以100、200和400ng/mlIGF-1预处理2h,再加入OA作用24h。倒置显微镜观察细胞形态学变化;MTT法检测细胞活力;Hoechst染色和分光光度法检测Caspase-3活化程度观察细胞损伤;蛋白免疫印迹法检测tau蛋白磷酸化程度。结果:与模型组比较,IGF-1预处理组细胞形态改善,细胞活力增强,Caspase-3活化程度降低,且磷酸化tau蛋白(Ser396)水平下降。结论:IGF-1可能通过抑制tau蛋白过度磷酸化对OA诱导的细胞损伤具有保护作用。  相似文献   

13.
Apoptosis Signal-regulating Kinase 1 (ASK1) is known to either induce apoptosis or differentiation in various cell lines of neuronal origin. We analyzed the effect of the constitutively active mutant of ASK1 (ASK1-Delta N) in an adenoviral vector in four neuroblastoma cell lines, two murine, C1300 and NXS2, and two human, SH-SY5Y and IMR-32. Already after 24 h upon infection, C1300 and SH-SY5Y cells arrested in growth when judged by [(3)H]thymidine incorporation, and the majority of the cells demonstrated apoptotic appearance, which was confirmed by DNA-laddering in gel electrophoresis. In contrast, NXS2 and IMR-32 cell lines remained unaffected. Immunoblotting revealed strongly phosphorylated p38 MAPK accompanied by weakly phosphorylated JNK in C1300 and SH-SY5Y, whereas none of these kinases were activated by adenoviruses expressing the kinase negative ASK1 mutant or beta-galactosidase. There was no expression of phosphorylated kinases in IMR-32 cells, but NXS2 showed a faint band of phosphorylated p38 MAPK. Addition of the p38 MAPK specific inhibitor, SB203580, protected C1300 and SH-SY5Y cells from apoptosis induced by ASK1-Delta N. The anti-neoplastic agent, paclitaxel, activates ASK1 and JNK, and promotes the in vitro assembly of stable microtubules. Addition of 10 nM paclitaxel sensitised the NXS2 cell line to ASK1-induced cell death. Our results indicate that ASK1 induces apoptosis in neuroblastoma cells mainly via the p38 MAPK pathway, and resistant neuroblastoma cells can be sensitised to ASK1 by paclitaxel.  相似文献   

14.
Studies of insulin-like growth factor 1 (IGF-1) mRNA translation products suggest synthesis as a high Mr precursor, larger than circulating forms. To search for a precursor, we characterized IGF-1 immunoreactivity and IGF bioactivity in extracts from the liver and other body tissues. Sequential extraction with neutral followed by acid buffer was superior to extraction with acid/ethanol or acid alone in yield of immunoreactivity and specific activity. Extracts of normal rat liver exhibited both immuno- and bioactivity parallel to that of recombinant IGF-1 and serum IGFs over a 25-fold concentration range. Based on immunoreactivity, the liver of a 134-g rat appears to contain 1.2 micrograms of IGF-1 equivalents, 50% of the 2.45 micrograms in the circulation. Diaphragm, spleen, and kidney contained no significant IGF bioactivity and 8, 17, and 32% of the IGF-1 immunoreactivity of normal liver, respectively. Although serum IGFs were found at 7.5 kDa after size exclusion chromatography at pH 3, hepatic extracts contained a predominant peak of immuno- and bioactivity of apparent molecular mass of 30-35 kDa; both sizes were present in liver perfusates. Both immunoaffinity chromatography followed by Western blotting and IGF-binding protein affinity chromatography followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two predominant species, at 18-19 and 12 kDa. The 18-19-kDa species is consistent with the apparent size of the glycosylated propeptide encoded by IGF-1A mRNA, while the 12-kDa species may be nonglycosylated propeptide. Extract activity was pituitary-dependent; the livers of hypophysectomized rats contained 15.4 and 48.8% of normal immuno- and bioactivity, respectively. During fasting and refeeding of rats, fluctuations in hepatic extract IGF-1 immunoreactivity generally paralleled changes in serum IGF-1 (r = 0.93, p less than 0.001). These studies demonstrate that the liver contains a pituitary- and nutrition-dependent, high Mr form of IGF-1 with immunological and biological properties similar to circulating IGF-1. Processing of this 18-19-kDa molecule through a 12-kDa intermediate may contribute IGF-1 to the circulation.  相似文献   

15.
Multiple advantages-including the short generation time, large numbers of fertilized eggs, low cost of cultivation and easy maintenance favor the use of fish as bioreactors for the production of pharmaceutical proteins. In the present study, zebrafish eggs were used as bioreactors to produce mature tilapia insulin-like growth factors (IGFs) proteins using the oocyte-specific zona pellucida (zp3) promoter. The chimeric expression plasmids, pT2-ZP-tIGFs-IRES-hrGFP, in which hrGFP was used as reporter of tilapia IGFs expression, were designed to established Tg (ZP:tIGFs:hrGFP) transgenic lines for the expression of tilapia IGF-1 and IGF-2. Recombinant tilapia IGF-1 and IGF-2 were expressed as soluble forms in cytoplasm of fertilized eggs. The content level of tilapia IGF-1 and IGF-2 were 6.5 and 5.0% of the soluble protein, respectively. Using a simple Ni–NTA affinity chromatography purification process, 0.58 and 0.49 mg of purified tilapia IGF-1 and IGF-2 were obtained, respectively, from 650 fertilized eggs. The biological activity of the purified tilapia IGF-1 and IGF-2 was confirmed via a colorimetric bioassay to monitor the growth stimulation of zebrafish embryonic cells (ZF4), tilapia ovary cells (TO-2) and human osteosarcoma epithelial cells (U2OS). These results demonstrate that the use of zebrafish eggs as bioreactors is a promising approach for the production of biological recombinant proteins.  相似文献   

16.
17.
Despite their sympathetic neuroblast origin, highly malignant neuroblastoma tumors and derived cell lines have no or low expression of the neurotrophin receptor genes, trkA and trkC. Expression of exogenous trkA in neuroblastoma cells restores their ability to differentiate in response to nerve growth factor (NGF). Here we show that stable expression of trkC in SH-SY5Y neuroblastoma cells resulted in morphological and biochemical differentiation upon treatment with neurotrophin-3 (NT-3). To some extent, trkA- and trkC-transfected SH-SY5Y (SH-SY5Y/trkA and SH-SY5Y/trkC) cells resembled one another in terms of early signaling events and neuronal marker gene expression, but important differences were observed. Although induced Erk 1/2 and Akt/PKB phosphorylation was stronger in NT-3-stimulated SH-Y5Y/trkC cells, activation of the immediate-early genes tested was more prominent in NGF-treated SH-SY5Y/ trkA cells. In particular, c-fos was not induced in the SH-SY5Y/trkC cells. There were also phenotypic differences. The concentrations of norepinephrine, the major sympathetic neurotransmitter, and growth cone-located synaptophysin, a neurosecretory granule protein, were increased in NGF-treated SH-SY5Y/trkA but not in NT-3-treated SH-SY5Y/trkC cells. Our data suggest that NT-3/p145trkC and NGF/p140trkA signaling differ in some aspects in neuroblasoma cells, and that this may explain the phenotypic differences seen in the long-term neurotrophin-treated cells.  相似文献   

18.
The insulin-like growth factors 2 (IGF2) is a peptide hormone that binds to the insulin-like growth factor 1 receptor (IGF1R) and is abundantly stored in bone. IGF1R is deeply involved in the pathogenesis of many cancers that growth within bone and is also involved in osteoclast biology. Among different cell lines representative of osteolytic tumors, we found a very high expression of IGF2 in SH-SY5Y cells derived from neuroblastoma (NB). We previously showed that NB cells induce an osteolytic process through the Osteoprotegerin/RANKL/RANK and the canonical Wnt pathway system. Here, we hypothesized that NB promotes osteoclastogenesis also via IGF2. First, we demonstrated the presence of IGF1R on the osteoclast basolateral membrane, and we observed a cyclic IGF1R activation along with the differentiation process, also when induced by SH-SY5Y. Moreover, we found that IGF2 mRNA expression in SH-SY5Y cells was further increased when co-cultured with mesenchymal stromal cells, suggesting that IGF2 is important for NB interaction with the bone microenvironment. Finally, the treatment of SH-SY5Y cells with an anti-IGF2 siRNA or the addition of anti-IGF1R molecules impaired NB-induced osteoclastogenesis, even though the chemoattraction of monocytes by NB cells was unaffected. Our findings suggest that in IGF2-producing osteolytic tumors IGF1R is a good candidate for targeted therapies in combination with conventional drugs.  相似文献   

19.
Human cell lines are often used to investigate cellular pathways relevant for physiological or pathological processes or to evaluate cell toxicity or protection induced by different compounds, including potential drugs. In this study, we analyzed and compared the differentiating activities of three agents (retinoic acid, staurosporine and 12-O-tetradecanoylphorbol-13-acetate) on the human neuroblastoma SH-SY5Y and BE(2)-M17 cell lines; the first cell line is largely used in the field of neuroscience, while the second is still poorly characterized. After evaluating their effects in terms of cell proliferation and morphology, we investigated their catecholaminergic properties by assessing the expression profiles of the major genes involved in catecholamine synthesis and storage and the cellular concentrations of the neurotransmitters dopamine and noradrenaline. Our results demonstrate that the two cell lines possess similar abilities to differentiate and acquire a neuron-like morphology. The most evident effects in SH-SY5Y cells were observed in the presence of staurosporine, while in BE(2)-M17 cells, retinoic acid induced the strongest effects. Undifferentiated SH-SY5Y and BE(2)-M17 cells are characterized by the production of both NA and DA, but their levels are considerably higher in BE(2)-M17 cells. Moreover, the NAergic phenotype appears to be more pronounced in SH-SY5Y cells, while BE(2)-M17 cells have a more prominent DAergic phenotype. Finally, the catecholamine concentration strongly increases upon differentiation induced by staurosporine in both cell lines. In conclusion, in this work the catecholaminergic phenotype of the human BE(2)-M17 cell line upon differentiation was characterized for the first time. Our data suggest that SH-SY5Y and BE(2)-M17 represent two alternative cell models for the neuroscience field.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号