首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TCR stimulation by Ag or anti-receptor antibodies in murine T cells results in the activation of two independent protein kinases, protein kinase C (PKC) and a protein tyrosine kinase. Similarly, stimulation of murine Thy-1 or Ly-6 with mAb also results in activation of both of these kinase pathways. Tyrosine phosphorylation in all cases occurs on the TCR zeta-chain. It is known that Ag and anti-receptor antibodies activate PKC in human T cells. In this study we demonstrate that mitogen or anti-CD3 antibodies activate tyrosine phosphorylation of the human TCR-zeta-chain. PMA, which activates PKC, does not result in zeta-chain tyrosine phosphorylation. Stimulation of human T cells by antibodies that bind the CD2 molecule is an alternate mode of inducing T cell proliferation. These antibodies surprisingly do not induce tyrosine phosphorylation of the zeta-chain. Thus, different methods of cellular activation can result in distinguishable patterns of receptor-mediated biochemical signaling events.  相似文献   

2.
The c-raf kinase has been shown to be activated following stimulation of several tyrosine kinase growth factor receptors. We examined changes in c-raf following engagement of the T cell receptor for antigen (TCR), a stimulus which activates both a non-receptor tyrosine kinase and protein kinase C (PKC). We found that activation of the T-cell receptor on the T cell hybridoma 2B4 causes a rapid and stoichiometric hyperphosphorylation of c-raf and an increase in c-raf-associated kinase activity. Phosphoamino acid analysis showed that the phosphorylation was entirely on serine residues. High-resolution phosphopeptide mapping showed the appearance of a single major new phosphopeptide with TCR stimulation. That phosphopeptide was shown to comigrate with the major new phosphopeptide induced in response to phorbol ester. When cells were depleted of PKC by pretreatment with high concentrations of phorbol ester, TCR stimulation was no longer capable of inducing c-raf-associated kinase activity. To determine whether activation of the tyrosine kinase alone would activate c-raf, we examined the 2B4 variant cell line FL.8. In response to Thy-1 stimulation, these cells activate the tyrosine kinase but not protein kinase C due to a deficiency in TCR eta chain expression. We found that in contrast to Thy-1 stimulation of 2B4 cells, stimulation of FL.8 cells does not lead to the induction of c-raf-associated kinase activity, although phorbol ester activates the kinase to an equivalent degree in both cells. We conclude that T cell receptor activation of c-raf occurs via phosphorylation by the serine/threonine kinase PKC. Activation of c-raf through PKC represents a mechanism distinct from that reported for tyrosine kinase growth factor receptors.  相似文献   

3.
The T cell antigen receptor complex (TCR) and the interleukin 2 (IL-2) receptor are responsible for signal transduction that results in T lymphocyte activation and proliferation. Stimulation of either the TCR or the IL-2 receptor induces an increase in tyrosine phosphorylation of several cellular proteins indicating that signal transduction by both of these receptors involves the activation of a tyrosine protein kinase. Although the tyrosine protein kinases activated by these receptors have not yet been characterized the receptors themselves are known not to contain a tyrosine protein kinase domain. To determine if these receptors are coupled to the activation of similar or distinct tyrosine protein kinases we examined the patterns and kinetics of tyrosine phosphorylation induced by stimulation of these receptors on a cloned cell line. Hut 78.3 cells co-express the TCR and the p75 IL-2 receptor. These cells were stimulated with either OKT3 antibodies, specific for the TCR, or with IL-2. Signal transduction by these receptors was found to increase the tyrosine phosphorylation of a set of proteins unique to each stimulus. The kinetics of the tyrosine phosphorylation induced by OKT3 antibodies also differed from that induced by IL-2. The OKT3-dependent tyrosine phosphorylation reached maximal levels within 2.5 min and began to decline by 5 min after stimulation. In contrast, the IL-2-induced tyrosine phosphorylation did not achieve maximal levels until 15 min after the addition of IL-2 and the proteins remained phosphorylated even after 60 min of incubation. In addition the tyrosine phosphorylations induced by OKT3 and IL-2 were not affected by prior stimulation with the other agent. These results demonstrate that the TCR and IL-2 receptor are coupled to different signal transduction pathways responsible for the independent activation of distinct tyrosine protein kinases.  相似文献   

4.
Multiple kinases interact at the multicomponent murine T cell antigen receptor. Antigen induces serine phosphorylation of the 21-kDa gamma glycoprotein and tyrosine phosphorylation of p21, a distinct 21-kDa chain. We demonstrate that tyrosine phosphorylation is due to kinase activation, and that all phosphorylated p21 is associated with the antigen receptor. We also show that antigen leads to polyphosphoinositide metabolism and subsequent protein kinase C activation. The two phosphorylation events can be dissociated by protein kinase C depletion, which eliminates phorbol 12-myristate 13-acetate-induced serine but not tyrosine phosphorylation. Activation of a third kinase, cyclic AMP-dependent protein kinase, inhibits both serine and tyrosine events, yet this inhibition can be modulated by addition of the protein kinase C activator, phorbol 12-myristate 13-acetate. Receptor-mediated signal transduction may be understood as the interaction of multiple stimulatory and inhibitory kinase activities.  相似文献   

5.
Abstract

The presence of consensus phosphorylation sites in the ectodomains of cell surface proteins suggests that such post‐translational modification may be important in regulation of surface receptor activity. To date, the only cell surface receptor for which such ectodomain phosphorylation has been conclusively demonstrated is the clonally expressed T cell antigen receptor (TCR). Attempts to conclusively identify individual phosphorylated residues in TCR α and β chains and determine their functional significance by biochemical approaches failed due to insufficient quantities of purified molecules. Here we present the results of an alternative approach where survey of phosphorylation sites in the TCR α and β chains was accomplished using site‐directed mutagenesis and retroviral vector expression, as well as in vitro phosphorylation of synthetic peptide substrates. All mutants studied directed the cell surface expression of normal amounts of TCR, and all transfectants could be stimulated to produce IL‐2 in response to substrate‐immobilized antibody to TCR. However, mutation of serine‐88 in the protein kinase A phosphorylation site of the TCR β chain resulted in a complete lack of response to the superantigen staphylococcal enterotoxin B (SEB). In addition, this mutation abolished TCR‐associated tyrosine phosphorylation, consistent with the impairment of cell signaling. Reversion of the serine‐88/alanine mutation with phosphorylatable threonine completely restored the SEB recognition by TCR. These results, interpreted in the context of the known three‐dimensional structure of the complex of SEB and TCR, are consistent with the view that serine‐88 is important for the contact of the TCR β chain with SEB.  相似文献   

6.
We have examined the ability of the CD3-gamma delta epsilon and CD3-zeta signaling modules of the T cell receptor (TCR) to couple CD38 to intracellular signaling pathways. The results demonstrated that in TCR+ T cells that express the whole set of CD3 subunits CD38 ligation led to complete tyrosine phosphorylation of both CD3-zeta and CD3-epsilon polypeptide chains. In contrast, in TCR+ cells with a defective CD3-zeta association CD38 engagement caused tyrosine phosphorylation of CD3-epsilon but not of CD3-zeta. Despite these differences, in both cell types CD38 ligation resulted in protein-tyrosine kinase and mitogen-activated protein kinase activation. However, in cells expressing chimerical CD25-zeta or CD25-epsilon receptors or in a TCR-beta- Jurkat T cell line, CD38 ligation did not result in tyrosine phosphorylation of the chimeric receptors, or CD3 subunits, or protein-tyrosine kinase or mitogen-activated protein kinase activation. In summary, these results support a model in which CD38 transduces activating signals inside the cell by means of CD3-epsilon and CD3-zeta tyrosine phosphorylation. Moreover, these data identify the CD3-gamma delta epsilon signaling module as a necessary and sufficient component of the TCR/CD3 complex involved in T cell activation through CD38.  相似文献   

7.
Activation of murine T cells by antigen, antibodies binding the T cell antigen receptor, or stimulatory anti-Thy-1 antibodies results in rapid phosphorylation of the T cell receptor zeta chain on tyrosine residues. The T cell receptor is itself unlikely to be a tyrosine kinase; rather, it is probable that this receptor is coupled to a nonreceptor tyrosine kinase. To understand further this protein kinase pathway, additional targets of the tyrosine kinase have been sought by comparing anti-phosphotyrosine antibody immunoblots of cellular proteins from unactivated and activated T cell hybridomas. In addition to the T cell receptor zeta chain, two proteins of 53 and 62 kDa are phosphorylated on tyrosine residues after T cell activation. These phosphorylations require stimulatory anti-Thy-1 antibodies, antigen, or antireceptor antibody stimulation. The 53-kDa protein is preferentially phosphorylated by antigen or antireceptor antibody. Of interest is that variants of the murine T cell hybridoma lacking the T cell receptor zeta chain or lacking surface antigen receptor can nonetheless be stimulated by anti-Thy-1 antibodies to phosphorylate the 62-kDa substrate. In contrast to the tyrosine kinases of oncogenic viruses, the kinase coupled to the T cell antigen receptor appears to have a limited number of targets. These proteins are candidates for critical substrates in this protein tyrosine kinase pathway.  相似文献   

8.
The mechanisms by which phorbol 12-myristate 13-acetate (PMA) and cAMP attenuate the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns 4,5-P2) induced by ligation of the T-cell antigen receptor complex (TCR) was studied in the human Jurkat T-cell line. It has previously been shown that stimulation of Jurkat cells with antibodies to CD3, components of the TCR, elicits a rapid and transient phosphorylation of phospholipase C (PLC)-gamma 1, the predominant PLC isozyme in Jurkat cells, at multiple tyrosine residues and that such tyrosine phosphorylation leads to activation of PLC-gamma 1. Prior incubation of Jurkat cells with PMA or forskolin, which increases intracellular cAMP concentrations, prevented tyrosine phosphorylation of PLC-gamma 1 as well as the hydrolysis of PtdIns 4,5-P2 induced by ligation of CD3. Dose-response curves of PMA and of forskolin for the inhibition of PLC-gamma 1 tyrosine phosphorylation and of PtdIns 4,5-P2 hydrolysis were similar. These results suggest that the inhibition of PtdIns 4,5-P2 hydrolysis by PMA and cAMP is attributable to reduced tyrosine phosphorylation of PLC-gamma 1. Treatment of Jurkat cells with PMA or forskolin stimulated the phosphorylation of PLC-gamma 1 at serine 1248. PMA treatment also elicited the phosphorylation of PLC-gamma 1 at an unidentified serine site. Phosphopeptide map analysis indicated that the sites of PLC-gamma 1 phosphorylated in Jurkat cells treated with PMA and forskolin are the same as those phosphorylated in vitro by protein kinase C (PKC) and cAMP-dependent protein kinase (PKA), respectively. Stimulation of Jurkat cells with antibodies to CD3 also elicited phosphorylation of PLC-gamma 1 at serine 1248 and at the unidentified serine site phosphorylated in PLC-gamma 1 from PMA-treated cells. Thus, phosphorylation of PLC-gamma 1 by PKC or PKA at serine 1248 may modulate the interaction of PLC-gamma 1 with the protein tyrosine kinase or the protein tyrosine phosphatase; this altered interaction may, at least in part, be responsible for the decreased tyrosine phosphorylation of PLC-gamma 1 seen in PMA- and forskolin-treated Jurkat cells. Furthermore, in the absence of PMA, activation of PKC by diacylglycerol provides a negative feedback signal responsible for reducing the phosphotyrosine contents of PLC-gamma 1.  相似文献   

9.
Stimulation of murine T cells by engagement of the multi-component T cell antigen receptor or by cross-linking the Thy-1 molecule leads to a similar response characterized by lymphocyte activation and lymphokine production. The early biochemical events induced by engaging these molecules also are similar and begin with activation of a tyrosine kinase pathway and tyrosine phosphorylation of a comparable set of substrates. Previous work demonstrates that the protein tyrosine kinase p60fyn is associated with the antigen receptor and therefore it may participate in the tyrosine phosphorylations that are observed with antigen receptor signaling. In this study we demonstrate that the Thy-1 molecule is also associated with p60fyn in a murine T cell hybridoma and in murine thymocytes. The interaction is independent of antigen receptor expression. Thy-1 is a member of the class of molecules anchored to the plasma membrane by a glycophosphatidylinositol (GPI) group. The association of Thy-1 with p60fyn is dependent on the GPI linkage, since cleavage of the GPI anchor disrupts the interaction. The association of Thy-1 and p60fyn suggests a means by which Thy-1 cross-linking leads to tyrosine phosphorylation and T cell activation.  相似文献   

10.
Antigen activation of murine T lymphocytes leads to phosphorylation of three subunits of the murine T cell antigen receptor (L.E. Samelson, M.D. Patel, A.M. Weissman, J.B. Harford, and R.D. Klausner. 1986. Cell 46:1083). Two kinases are activated in this process: protein kinase C which leads to phosphorylation of the gamma and, to a lesser extent, the epsilon subunits on serine residues and a tyrosine kinase which phosphorylates the p21 subunit (M.D. Patel, L.E. Samelson, and R.D. Klausner. 1987. J. Biol Chem. 262:5831). We sought to determine whether treatment of these cells with NaF could simulate any of these antigen-induced events. Indeed NaF treatment resulted in breakdown of polyphosphoinositides and production of phosphoinositols. This treatment also resulted in a rise in cytosolic free Ca2+. EGTA failed to block this rise suggesting that NaF liberated intracellular stores of Ca2+. Finally NaF treatment resulted in phosphorylation of the gamma and epsilon chains of the T cell receptor indistinguishable from the effects of phorbol esters. The NaF effect was potentiated by addition of A1Cl3 consistent with the view that the active moiety is A1F4-. The A1F4--induced phosphorylations were abolished in cells in which protein kinase C was depleted by prior treatment with phorbol myristate acetate. All of these observations are compatible with the interpretation that the A1F4- phosphorylation is mediated by protein kinase C. Antigen and anti-receptor antibody-induced receptor serine phosphorylation and phophatidylinositol turnover are blocked by raising intracellular levels of cyclic adenosine monophosphate. In contrast, A1F4--induced effects were insensitive to cyclic adenosine monophosphate.  相似文献   

11.
A phosphoinositide kinase that can phosphorylate phosphatidylinositol (PtdIns) is present in 4G10 monoclonal antibody (mAb) phosphotyrosine immunoprecipitates isolated from T cells activated via the T cell antigen receptor (TCR).CD3 complex. This PtdIns kinase is not the PtdIns 3-kinase that associates with activated protein tyrosine kinases in fibroblasts, since Western blotting and immunoprecipitation experiments with antibodies specific for the p85 alpha subunit of the PtdIns 3-kinase indicate that this polypeptide is not immunoprecipitated by the 4G10 mAb from TCR.CD3-activated Jurkat cells. Moreover, immunoprecipitated PtdIns 3-kinase isolated from T cells with p85 antibodies is inhibited when PtdIns is presented in Nonidet P-40, whereas the PtdIns kinase activity present in 4G10 mAb phosphotyrosine immunoprecipitates is enhanced in the presence of Nonidet P-40. In vitro kinase assays of PtdIns 3-kinase immunoprecipitated with p85 antibodies from T cells indicate that it associates with a serine kinase that can phosphorylate a p85 polypeptide. However, no protein tyrosine kinase activity capable of tyrosine phosphorylating p85 in vitro associates with p85 alpha immunoprecipitates in quiescent or TCR.CD3-activated T cells. These data suggest that the TCR.CD3 complex does not regulate PtdIns 3-kinase activity by a mechanism that involves protein tyrosine kinases.  相似文献   

12.
Expressed in mast and T-cells/inducible T cell tyrosine kinase (Emt/Itk) is a protein tyrosine kinase required for T cell Ag receptor (TCR)-induced activation and development. A physical interaction between Emt/Itk and TCR has not been described previously. Here, we have utilized laser scanning confocal microscopy to demonstrate that Ab-mediated engagement of the CD3epsilon chain induces the membrane colocalization of Emt/Itk with TCR/CD3. Removal of the Emt/Itk pleckstrin homology domain (DeltaPH-Emt/Itk) abrogates the association of the kinase with the cell membrane, as well as its activation-induced colocalization with the TCR complex and subsequent tyrosine phosphorylation. The addition of a membrane localization sequence to DeltaPH-Emt/Itk from Lck restores all of these deficiencies except the activation-induced tyrosine phosphorylation. Our data suggest that the PH domain of Emt/Itk can be replaced with another membrane localization signal without affecting the membrane targeting and activation-induced colocalization of the kinase with the TCR. However, the PH domain is indispensable for the activation-induced tyrosine phosphorylation of the kinase.  相似文献   

13.
The T cell antigen receptor is composed of at least seven chains derived from six different gene products. Upon stimulation, several chains can be phosphorylated. Two of these, CD3-gamma and CD3-epsilon are phosphorylated on serine residues. In addition, a 21-kDa nonglycosylated receptor component is phosphorylated, upon activation, on tyrosine residues. We have referred to this phosphoprotein as p21 because we have previously not been able to assign the tyrosine phosphorylation to any of the described receptor subunits (Samelson, L. E., Patel, M. D., Weissman, A. M., Harford, J. B., and Klausner, R. D. (1986) Cell 46, 1083-1090). In this paper, we demonstrate that it is the 16-kDa zeta chain which is the tyrosine phosphorylated subunit, and thus the p21 nomenclature can be replaced. This phosphorylation results in a shift of the apparent Mr of zeta to 21 kDa. Proof that p21 is tyrosine phosphorylated zeta was afforded by a number of approaches. Specific anti-zeta antibodies directly precipitated phospho-p21. Metabolically labeled protein corresponding to p21 could only be observed after activation. When this 21-kDa band was isolated after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reanalyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after treatment with alkaline phosphatase, its migration was identical with that of zeta. Furthermore, peptide mapping of metabolically labeled p21 (after gel isolation and dephosphorylation) showed it to be indistinguishable from p21. Thus, one of the early events of T cell activation is the tyrosine phosphorylation of the zeta chain of the T cell antigen receptor.  相似文献   

14.
Rac activation in neuronal cells plays an important role in lamellipodia formation that is a critical event for neuritogenesis. It is well known that the Rac activity is regulated via activation of phosphatidylinositol 3-kinase (PI3K) by a variety of receptor tyrosine kinases. Here we show that increased serine phosphorylation on RET receptor tyrosine kinase following cAMP elevation promotes lamellipodia formation of neuronal cells induced by glial cell line-derived neurotrophic factor (GDNF). We identified serine 696 in RET as a putative phosphorylation site by protein kinase A and found that mutation of this serine almost completely inhibited lamellipodia formation by GDNF without affecting activation of the PI3K/AKT signaling pathway. Mutation of tyrosine 1062 in RET, whose phosphorylation is crucial for activation of PI3K, also inhibited lamellipodia formation by GDNF. Inhibition of lamellipodia formation by mutation of either serine 696 or tyrosine 1062 was associated with decrease of the Rac1-guanine nucleotide exchange factor (GEF) activity, suggesting that this activity is regulated by two different signaling pathways via serine 696 and tyrosine 1062 in RET. Moreover, in the presence of serine 696 mutation, lamellipodia formation was rescued by replacing tyrosine 687 with phenylalanine. These findings propose a novel mechanism that receptor tyrosine kinase modulates actin dynamics in neuronal cells via its cAMP-dependent phosphorylation.  相似文献   

15.
Identification of the components of the murine T cell antigen receptor complex   总被引:69,自引:0,他引:69  
In addition to the alpha and beta chains of the MHC class II restricted antigen receptor, monoclonal anti-receptor antibodies coprecipitate four polypeptides that appear to be noncovalently associated with the alpha-beta dimer of murine T cells. Included in the murine T cell antigen receptor complex are two glycoproteins of 25 kd (gamma) and 21 kd (delta) and two nonglycosylated polypeptides of 26 kd (epsilon) and 16 kd (zeta). The epsilon chain appears to possess an intrachain disulfide bond and zeta exists in the complex as a disulfide-linked homodimer. The delta chain is phosphorylated on a serine residue in response to T cell activation with antigen. In contrast, both delta and epsilon are phosphorylated in response to treatment of the T cells with phorbol 12-myristate 13-acetate. These polypeptides may play a role in the transduction of the signal(s) in T cell activation.  相似文献   

16.
The antigen T cell receptor (TCR)-CD3 complexes present on the cell surface of CD4(+) T lymphocytes and T cell lines express CD3 epsilon chain isoforms with different isoelectric points (pI), with important structural and functional consequences. The pI values of the isoforms fit the predicted pI values of CD3 epsilon chains lacking one, two, and three negatively charged amino acid residues present in the N-terminal region. Different T cells have different ratios of CD3 epsilon chain isoforms. At a high pI, degraded CD3 epsilon isoforms can be better recognized by certain anti-CD3 monoclonal antibodies such as YCD3-1, the ability of which to bind to the TCR-CD3 complex is directly correlated with the pI of CD3 epsilon. The abundance of CD3 epsilon isoforms can be modified by treatment of T cells with the proteinase inhibitor phenanthroline. In addition, these CD3 epsilon isoforms have functional importance. This is shown, first, by the different structure of TCR-CD3 complexes in cells possessing different amounts of isoforms (as observed in surface biotinylation experiments), by their different antigen responses, and by the stronger interaction between low pI CD3 epsilon isoforms and the TCR. Second, incubation of cells with phenanthroline diminished the proportion of degraded high pI CD3 epsilon isoforms, but also the ability of the cells to deliver early TCR activation signals. Third, cells expressing mutant CD3 epsilon chains lacking N-terminal acid residues showed facilitated recognition by antibody YCD3-1 and enhanced TCR-mediated activation. Furthermore, the binding avidity of antibody YCD3-1 was different in distinct thymus populations. These results suggest that changes in CD3 epsilon N-terminal chains might help to fine-tune the response of the TCR to its ligands in distinct activation situations or in thymus selection.  相似文献   

17.
The high affinity receptor for immunoglobulin (Ig) E on mast cells, along with the antigen receptors on T and B cells and Fc receptors for IgG, belongs to a class of receptors which lack intrinsic kinase activity, but activate non-receptor tyrosine and serine/threonine kinases. Receptor engagement triggers a chain of signaling events leading from protein phosphorylation to activation of phosphatidylinositol-specific phospholipase C, an increase in intracellular calcium levels, and ultimately the activation of more specialized functions. IgE receptor disengagement leads to reversal of phosphorylation by undefined phosphatases and to inhibition of activation pathways. Here we show that phenylarsine oxide, a chemical which reacts with thiol groups and has been reported to inhibit tyrosine phosphatases, uncouples the IgE receptor-mediated phosphorylation signal from activation of phosphatidyl inositol metabolism, the increase in intracellular calcium levels, and serotonin release. Phenylarsine oxide inhibits neither the kinases (tyrosine and serine/threonine) phosphorylating the receptor and various cellular substrates nor, unexpectedly, the phosphatases responsible for the dephosphorylation following receptor disengagement. By contrast, it abolishes the receptor-mediated phosphorylation of phospholipase C-gamma 1, but not phospholipase C activity in vitro. Therefore the phosphorylation and activation of phospholipase C likely requires a phenylarsine oxide-sensitive element. Receptor aggregation thus activates at least two distinct phosphorylation pathways: a phenylarsine oxide-insensitive pathway leading to phosphorylation/dephosphorylation of the receptor and of various substrates and a sensitive pathway leading to phospholipase C-gamma 1 phosphorylation.  相似文献   

18.
An increase in the intracellular cAMP concentration induces tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) followed by activation of extracellular signal-regulated kinases 1/2 (ERK1/2). In this report we demonstrate that these effects of cAMP are mediated via activation of protein kinase A (PKA). Chemical inhibition of PKA suppressed forskolin-induced EGFR tyrosine phosphorylation and ERK1/2 activation in PC12 cells. Furthermore, forskolin failed to induce significant tyrosine phosphorylation of the EGFR and ERK1/2 activation in PKA-defective PC12 cells. Forskolin-induced EGFR tyrosine phosphorylation was also observed in A431 cells and in membranes isolated from these cells. Phosphoamino acid analysis indicated that the recombinant catalytic subunit of PKA elicited phosphorylation of the EGFR on both tyrosine and serine but not threonine residues in A431 membranes. Together, our data indicate that activation of PKA mediates the effects of cAMP on the EGFR and ERK1/2. While PKA may directly phosphorylate the EGFR on serine residues, PKA-induced tyrosine phosphorylation of the EGFR occurs by an indirect mechanism.  相似文献   

19.
High affinity IgE receptor (Fc epsilon RI) signaling after contact with antigen occurs in response to receptor clustering. This paper describes methodology, based on vaccinia virus driven protein expression, for probing signaling pathways and its application to Fc epsilon RI interactions with the lyn and syk tyrosine kinases. Reconstitution of the complete tetrameric Fc epsilon RI receptor, lyn and syk in a non-hematopoietic 'null' cell line is sufficient to reconstruct clustering-controlled receptor tyrosine phosphorylation and activation of syk, without apparent requirement for hematopoietic specific phosphatases. The src family kinase lyn phosphorylates Fc epsilon RI in response to receptor clustering, resulting in syk binding to the phosphorylated Fc epsilon RI. Lyn also participates in the tyrosine phosphorylation and activation of syk in a manner which is dependent on phosphorylated Fc epsilon RI. Using overexpression of active and dominant negative syk proteins in a mast cell line which naturally expresses Fc epsilon RI, we corroborate syk's role downstream of receptor phosphorylation, and demonstrate that syk SH2 domains protect receptor ITAMs from ongoing dephosphorylation. Based on these results, we propose that receptor clustering controls lyn-mediated Fc epsilon RI tyrosine phosphorylation by shifting a balance between phosphorylation and dephosphorylation towards accumulation of tyrosine phosphorylated Fc epsilon RI. Fc epsilon RI tyrosine phosphorylation functions to bring syk into a microenvironment where it becomes tyrosine phosphorylated and activated, thereby allowing clustering to indirectly control syk activity.  相似文献   

20.
The monoclonal antibody 2B12 is directed toward p120, a 120-kDa cellular protein originally identified as a protein tyrosine kinase substrate in cells expressing membrane-associated oncogenic variants of pp60src. In this report, we show that p120 was tyrosine phosphorylated in avian cells expressing membrane-associated, enzymatically activated variants of c-src, including variants having structural alterations in the src homology regions 2 and 3. In contrast, p120 was not tyrosine phosphorylated in cells expressing enzymatically activated, nonmyristylated pp60src. Furthermore, p120 was tyrosine phosphorylated in avian cells expressing middle T antigen, the transforming protein of polyomavirus, as well as in rodent cells stimulated with either epidermal growth factor (EGF) or platelet-derived growth factor. Analysis of the time course of p120 tyrosine phosphorylation in EGF-stimulated cells revealed a rapid onset of tyrosine phosphorylation. In addition, both the extent and duration of p120 phosphorylation increased when cells overexpressing the EGF receptor were stimulated with EGF. Biochemical analysis showed that p120 (in both normal and src-transformed cells) was membrane associated, was myristylated, and was phosphorylated on serine and threonine residues. Hence, p120 appears to be a substrate of both nonreceptor- and ligand-activated transmembrane receptor tyrosine kinases and of serine/threonine kinases and is perhaps a component of both mitogen-stimulated and tyrosine kinase oncogene-induced signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号