首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Two cell cycle-specific temperature sensitive (ts) mutants of mammalian cell lines, AF8 and K12, are known to arrest in G1 when shifted to the non-permissive temperature. We have determined the entry into S of both AF8 and K12 cells in five different growth conditions, namely: (1) quiescent sparse cultures stimulated to proliferative by serum; (2) quiescent dense cultures stimulated by serum; (3) quiescent sparse cultures stimulated by trypsinization and replating; (4) quiescent, dense cultures stimulated by trypsinization and replating; and (5) mitotic cells collected by mitotic detachment. In addition, for each cell line and for each different growth condition, we have determined the shift-up time, i.e., the time at which a shift-up to the nonpermissive temperature no longer prevents the entry of cells into S. In no case did K12 or AF8 enter S at the nonpermissive temperature. At the permissive temperature, the average time of entry into S varied in different growth conditions, and so did the shift-up time. However, in both cell lines, the distance of the average shift-up time from the average time of entry into S was remarkably constant, regardless of the growth conditions. i.e., 1.8 hours in K12 and 8.6 hours in AF8.  相似文献   

2.
Isolation of a G0-specific ts mutant from a Fischer rat cell line, 3Y1   总被引:2,自引:0,他引:2  
A ts mutant clone, tsJT60, was isolated from Fisher rat cell line, 3Y1. During the exponential growth at both 34 and 39.5 degrees C, tsJT60 did not appear as ts mutant cells. However, once entered resting state (G0) under serum deprivation at the confluent state, they could re-enter S phase at 34 degrees C but could not at 39.5 degrees C following the stimulation of cells either by the addition of fetal bovine serum or by trypsinization and replating. These and other results suggested that tsJT60 is a G0-specific ts mutant, i.e., the cells have ts defect(s) in the function which is required for the stimulation from the resting state to S phase but not for the progression of the cell cycle in an exponential growth phase.  相似文献   

3.
ts 13 cells are a temperature-sensitive (ts) mutant of BHK cells that are known to arrest in G1 when shifted to the nonpermissive temperature. We have determined the entry into S of ts13 cells in five different growth conditions, namely: 1) quiescent, sparse cultures stimulated to proliferate by serum. 2) Quiescent, dense cultures stimulated by serum. 3) Quiescent, sparse cultures stimulated by trypsinization and replating. 4) Quiescent, dense cultures stimulated by trypsinization and replating. 5) Mitotic cells collected by mitotic detachment. For each different growth condition we have also determined the execution point of the mutant function, i.e. the time at which a shift-up to the nonpermissive temperature no longer prevents the entry of cells into S. The median time of entry into S and the execution point varied in different growth conditions, but the distance between the median execution point and the median time of entry into S was remarkably constant, i.e. 3.2 hr. In addition we have fused ts 13 cells cells with chick erythrocytes and studied the ability of ts13 cells in heterokaryon formation to induce DNA synthesis in chick nuclei. Although ts13 cells can induce DNA synthesis in chick nuclei at the permissive temperature, they fail to do so when fused and stimulated at the nonpermissive temperature of 39.5 degrees C.  相似文献   

4.
Progression through the G1-phase of the on-going cell cycle   总被引:7,自引:0,他引:7  
Cell cycle progression is dependent upon the action of cyclins and their partners the cyclin dependent kinases (CDKs). Each cell cycle phase has its own characteristic cyclin-CDK combination, cyclin D-CDK4,6 and cyclin E-CDK2 being responsible for progression through G(1)-phase into S-phase. Progression through G(1)-phase is regulated by signal transduction cascades activated by polypeptide growth factors and by extracellular matrix (ECM) components. Studies aiming to unravel the molecular mechanism by which these extracellular components activate the cyclin-CDK complexes in the G(1)-phase, are usually performed using serum-starved cells (G(0) cells). These cells are activated by addition of growth factors, or the cells are detached from the substratum by trypsinization and subsequently allowed to re-attach. An alternative approach, however, is to study the effects of growth factors and attachment in the ongoing cell cycle by synchronization of the cells by the mitotic shake-off method. These cells are not serum starved and not actively detached from the substratum. In this contribution it is shown that both methods yield significant different results. These observations demonstrate that data obtained with model systems should be interpreted with care, especially if the findings are used to explain cell cycle progression in cells in an intact organism.  相似文献   

5.
An analysis by scanning electron microscopy (SEM) has been performed of the attachment, neurite outgrowth, EGTA-mediated detachment, and morphological characteristics of substratum-attached material (SAM) for non-neurite- or neurite-containing rat neuroblastoma cells growing on serum-coated plastic coverslips. Attachment is initiated by filopodial contact with the substratum and with subsequent broad spreading of the surface membrane; footpad-type adhesion sites commonly observed in fibroblasts are not apparent at the periphery of these neuronal cells. During serum starvation, neurite extension occurs by elongation into bipolar cells, membrane ruffling and filopodial extension at these polar ends, and growth cone extension over the substratum. With time, some growth cones terminate membrane ruffling and spread extensively into a footpad-like morphology. EGTA-mediated detachment occurs by cell body rounding and pulling away from small focal areas of contact between the surface membrane and the substratum. After complete detachment, two morphologically different classes of SAM are identified. Non-neurite-containing neuroblastoma cells leave large membranous pools of SAM which are rigid and raised off the substratum, revealing small focal contact areas. A second morphological class of SAM is identified in neurite-containing cultures as small pools of membranous material tightly bound to the substratum and reminiscent of the footpad SAM deposited by fibroblasts. Along with the biochemical differences noted previously for the SAMs from non-neurite- or neurite-containing cultures, these studies indicate that the adhesion between the growth cone of neurites and the serum-coated substratum is significantly different from the adhesion processes occurring between the cell body and the substratum.  相似文献   

6.
《The Journal of cell biology》1985,101(5):1695-1701
Statin, a 57,000-D protein characteristically found in nonreplicating cells, was identified by a monoclonal antibody produced by hybridomas established from mice injected with extracts of in vitro aged human fibroblasts (Wang, E., 1985, J. Cell Biol., 100:545-551). Fluorescence staining with the antibody shows that the expression of statin disappears upon reinitiation of the process for cell replication. The rapid de-expression is observed in fibroblasts involved in the in vitro wound-healing process, as well as in cells that have been subcultured after trypsinization and replated from a confluent culture. Kinetic analysis shows that 50% of the cell population lose their statin expression at 12 h after replating, before the actual events of mitosis. Immunogold labeling with highly purified antibodies localizes the protein at the nuclear envelope in nonreplicating cells, but not in their replicating counterparts. Immunoblotting analysis confirms the disappearance of statin in cells that have reentered the cycling process. Using the technique of flow cytometry to examine the large number of nonreplicating fibroblasts in confluent cultures, we have found that statin is mostly expressed in those cells showing the least amount of DNA content, whose growth is blocked at the G0/G1 stage of the cell cycle. This close correlation is rapidly altered once the cells are released from the confluent state. These results suggest that the expression of statin may be regulated by a fine mechanism controlling the transition from the nonreplicating to the replicating state, and that the protein is structurally associated with the nuclear envelope.  相似文献   

7.
Growth of three established cell lines on glass microcarriers   总被引:1,自引:0,他引:1  
Three established cell lines were examined for growth on a newly developed microcarrier which consists of glass beads. The cells were simultaneously exmined for growth on commercially available microcarriers made from DEAE-dextran and from plastic. Cell yields on the glass microcarriers were comparble to the cell yields on the commercially available products. Cells grown on the glass microcarriers were easily separated from the substratum by trypsinization (as were the cells grown on the plastic substratum) while the cells grown on the DEAE-dextran particles were much more trypsin resistant. After removal of cells from the glass microcarriers, the cells reattached and spread out in plastic flasks as readily as cells harvested from monolayer. Scanning electron microscopy revealed dramatic differences in the appearence of the cell grown on the glass microcarriers and cells grown on the DEAE-dextran microcarriers. On the glass microcarriers, cells attached to the substratum through lond, slender filopodia while on the DEAE-dextran microcarriers, the entire edge of the cell appeared to be in contact with the substratum. This dissimilarity in attachment could underly the difference in sensitivity to trypsin-mediated detachment. Finally, the glass microcarriers were washed after being used once and retested for their ability to support cell growth a second time. Nearly identical results were obtained with the reprocessed beads as with previously unused ones.  相似文献   

8.
The cell kinetic parameters of K-562 leukemia cells were studied using microwell cultures in which growth was initiated from a single cell. Total population growth was studied by direct enumeration, 3H-thymidine labelling, and flow cytometry. Clonogenic cell growth was studied by replating and 3H-thymidine suicide. In 7-day clones of K-562 cells, durations of the total cell cycle, G1, S, G2, and M phases were 20.8 h, 3.5 h, 12.9 h, 3.3 h, and 1.1 h, respectively; the growth fraction was 0.92 and the cell loss factor was 0.084. Study of colony-forming cells by replating indicated that clonogenic cells comprised 40% of total cells. 3H-Thymidine suicide showed that cell-cycle duration for these cells was 22.5 h and that S-phase duration was 11.7 h.  相似文献   

9.
The expression of alpha 5 beta 1 integrin on the surface of fibroblasts requires adhesion to substratum. We have examined the basis for this adhesion-dependent surface expression by comparing the life cycle of integrins in parallel cultures of adherent and nonadherent cells. Results of biosynthetic labeling experiments in NRK fibroblasts showed that the synthesis and biosynthetic processing of the beta 1 integrin subunit proceed in the absence of cell attachment; however, when examining the behavior of preexisting cell surface integrins, we observed that the alpha beta 1 integrins are internalized and degraded when adhesion to substratum is blocked. A kinetic analysis of integrin internalization in cycloheximide-treated NRK cells showed that each of the fibroblast integrins we examined (in both the beta 1 and beta 3 families) are lost from the cell surface after detachment from substratum. Thus, the default integrin life cycle in fibroblasts involves continuous synthesis, processing, transport to the cell surface, and internalization/degradation. Interestingly, studies with NIH-3T3 cells expressing alpha 1 beta 1 integrin showed that the loss of cell-surface alpha 5 beta 1 integrin is blocked by adhesion of cells to dishes coated with type IV collagen (a ligand for alpha 1 beta 1 integrin) as well as fibronectin. Similarly, adhesion of these cells to dishes coated with type IV collagen stabilizes the surface expression of alpha 5 beta 1 as well as alpha 1 beta 1 integrin. We propose that the adhesion of fibroblasts to extracellular matrix protein alters the integrin life cycle and permits retention of these proteins at the cell surface where they can play important roles in transmitting adhesion-dependent signals.  相似文献   

10.
A suspension subline LS of mouse fibroblasts L was adapted to the growth in monolayer (LSM subline). The duration of cell cycle and its phases was determined for both the sublines synchronized by a double thymidine block. The duration of cell cycle for LS cells is 17.0 hours, with G1, S and G2 + M being 8.8, 6.3 and 1.8 hours, resp., for LSM cells corresponding values being 31.6, 15.6, 11.0 and 4.8 hours. The karyotype of LSM cells differs from that of LS cells only slightly: there is a redistribution between the numbers of cells with 55 and 56 chromosomes, and a decrease in the number of polyploid cells from 2.0 till 0.2%. The data obtained indicate the heterogeneity of the L line culture which contains cells with long and short cycles. Depending on the mode of cultivation (suspension or monolayer), there is a certain predominance of population either with short or with long cell cycle.  相似文献   

11.
N Chiu  R Baserga 《Biochemistry》1975,14(14):3126-3132
Quiescent confluent monolayers of WI-38 fibroblasts were stimulated to proliferate by either adding 10% fetal calf serum or by trypsinization and replating at lower density. The length of the prereplicative phase was 12 hr after serum stimulation and 18 hr after trypsinization and replating at lower density. Nuclei were isolated from WI-38 cells at different time intervals after either type of stimulation and their template activity, circular dichroism spectra, and ability to bind ethidium bromide were investigated. All these parameters were similarly increased after either type of stimulation. However, these changes, like the onset of DNA synthesis, were delayed 6 hr in cells trypsinized and replated at lower density. While there were no detectable changes in nuclear protein content after serum stimulation, at least 40% of nuclear protein, mostly nonhistone chromosomal proteins, were lost after trypsinization. The amount of nuclear proteins returned to prestimulation levels only 6-8 hr after replating. These data seem to suggest that nonhistone chromosomal proteins lost by trypsinization are essential for the entrance of WI-38 cells into the "prereplicative phase".  相似文献   

12.
13.
Growth factors and cell anchorage jointly regulate transit through G1 in almost all cell types, but the cell cycle basis for this combined requirement remains largely uncharacterized. We show here that cell adhesion and growth factors jointly regulate the cyclin D1- and E- dependent kinases. Adhesion to substratum regulates both the induction and translation of cyclin D1 mRNA. Nonadherent cells fail to phosphorylate the retinoblastoma protein (Rb), and enforced expression of cyclin D1 rescues Rb phosphorylation and entry into S phase when G1 cells are cultured in the absence of substratum. Nonadherent cells also fail to activate the cyclin E-associated kinase, and this effect can be linked to an increased association of the cdk inhibitors, p21 and p27. These data describe a striking convergence in the cell cycle controls used by the two major signal transduction systems responsible for normal and abnormal cell growth. Taken together with our previous studies showing adhesion-dependent expression of cyclin A, they also establish the cell cycle basis for explaining the combined requirement for growth factors and the extracellular matrix in transit through the Rb checkpoint, entry into S phase, and anchorage-dependent growth.  相似文献   

14.
Methylmercury effects on cell cycle kinetics   总被引:1,自引:0,他引:1  
Methylmercury (MeHg) effects on cell cycle kinetics were investigated to help identify its mechanisms of action. Flow cytometric analysis of normal human fibroblasts grown in vitro in the presence of BrdU allowed quantitation of the proportion of cells in G1, S, G2 and the next G1 phase. This technique provides a rapid and easily performed method of characterizing phase lengths and transition rates for the complete cell cycle. After first exposure to MeHg the cell cycle time was lengthened due to a prolonged G1. At 3 microM MeHg the G1 phase length was 25% longer than the control. The G1/S transition rate was also decreased in a dose-related manner. Confluent cells exposed to MeHg and replated with MeHg respond in the same way as cells which have not been exposed to MeHg before replating. Cells exposed for long times to MeHg lost a detectable G1 effect, and instead showed an increase in the G2 percentage, which was directly related to MeHg concentration and length of exposure. After 8 days at 5 microM MeHg, 45% of the population was in G2. The G2 accumulation was reversible up to 3 days, but at 6 days the cells remained in G2 when the MeHg was removed. Cell counts and viability indicated that there was not a selective loss of cells from the MeHg. MeHg has multiple effects on the cell cycle which include a lengthened G1 and decreased transition probability after short term exposure of cycling cells, and a G2 accumulation after a longer term exposure. There were no detectable S phase effects. It appears that mitosis (the G2 accumulation) and probably synthesis of some macromolecules in G1 (the lengthened G1 and lowered transition probability) are particularly susceptible to MeHg.  相似文献   

15.
We have examined cell cycle control of anchorage-independent growth in nontransformed fibroblasts. In previous studies using G0-synchronized NRK and NIH-3T3 cells, we showed that anchorage-independent growth is regulated by an attachment-dependent transition at G1/S that resembles the START control point in the cell cycle of Saccharomyces cerevisiae. In the studies reported here, we have synchronized NRK and NIH-3T3 fibroblasts immediately after this attachment-dependent transition to determine if other portions of the fibroblast cell cycle are similarly regulated by adhesion. Our results show that S-, G2-, and M-phase progression proceed in the absence of attachment. Thus, we conclude that the adhesion requirement for proliferation of these cells can be explained in terms of the single START-like transition. In related studies, we show that TGF-beta 1 overrides the attachment-dependent transition in NRK and AKR-2B fibroblasts (lines in which TGF-beta 1 induces anchorage-independent growth), but not in NIH-3T3 or Balb/c 3T3 fibroblasts (lines in which TGF-beta 1 fails to induce anchorage- independent growth). These results show that (a) adhesion and TGF-beta 1 can have similar effects in stimulating cell cycle progression from G1 to S and (b) the differential effects of TGF-beta 1 on anchorage- independent growth of various fibroblast lines are directly reflected in the differential effects of the growth factor at G1/S. Finally, we have randomly mutagenized NRK fibroblasts to generate mutant lines that have lost their attachment/TGF-beta 1 requirement for G1/S transit while retaining their normal mitogen requirements for proliferation. These clones, which readily proliferate in mitogen-supplemented soft agar, appear non-transformed in monolayer: they are well spread, nonrefractile, and contact inhibited. The existence of this new fibroblast phenotype demonstrates (a) that the growth factor and adhesion/TGF-beta 1 requirements for cell cycle progression are genetically separable, (b) that the two major control points in the fibroblast cell cycle (G0/G1 and G1/S) are regulated by distinct extracellular signals, and (c) that the genes regulating anchorage- independent growth need not be involved in regulating contact inhibition, focus formation, or growth factor dependence.  相似文献   

16.
17.
G1/S control of anchorage-independent growth in the fibroblast cell cycle   总被引:18,自引:4,他引:14  
We have developed methodology to identify the block to anchorage-independent growth and position it within the fibroblast cell cycle. Results with NRK fibroblasts show that mitogen stimulation of the G0/G1 transition and G1-associated increases in cell size are minimally affected by loss of cell anchorage. In contrast, the induction of G1/S cell cycle genes and DNA synthesis is markedly inhibited when anchorage is blocked. Moreover, we demonstrate that the anchorage-dependent transition maps to late G1 and shortly before activation of the G1/S p34cdc2-like kinase. The G1/S block was also detectable in NIH-3T3 cells. Our results: (a) distinguish control of cell cycle progression by growth factors and anchorage; (b) indicate that anchorage mediates G1/S control in fibroblasts; and (c) identify a physiologic circumstance in which the phenotype of mammalian cell cycle arrest would closely resemble Saccharomyces cerevisiae START. The close correlation between anchorage independence in vitro and tumorigenicity in vivo emphasizes the key regulatory role for G1/S control in mammalian cells.  相似文献   

18.
Incorporation of tritiated thymidine into acid-precipitable material was used to measure the rate of DNA synthesis in secondary cultures of human diploid fibroblasts. Confluent cultures of human diploid fibroblasts, which are synchronized in the G1 phase due to contact inhibition, were released from growth inhibition either by the addition of fresh medium to the cultures or by trypsinization and replating at nonconfluent densities. Either treatment resulted in a synchronous wave of DNA synthesis beginning 10–15 h after treatment and peaking at 20–25 h. In confluent cultures stimulated by fresh medium, either the addition of 0.25 mM N6, O2-dibutyryl-adenosine 3',5'-cyclic monophosphate (db-cAMP) to the medium in the interval 4–8 h after stimulation or the replacement of the fresh medium in that same 4 h interval with the depleted medium present on the cells for the 2 day period before stimulation delayed the synchronous onset of DNA synthesis in the cultures by about 4 h. In nonconfluent cultures freshly seeded from trypsinized confluent cultures, this same depleted medium obtained after a 2 day incubation of fresh medium on confluent cultures is shown to support the progress of the cells into S phase; however, the addition of 0.25 mM db-cAMP to the medium 3½ h after replating still partially prevented the initiation of DNA synthesis in the cultures. The results are discussed in terms of the role of serum and cAMP in the control of cell growth in fibroblast cultures.  相似文献   

19.
Three procedures were used to induce dihydrofolate reductase synthesis in quiescent cultures of methotrexate resistant mouse fibroblasts: (1) lytic infection with polyoma virus, (2) growth stimulation by replating cells at lower density in fresh cell culture medium, and (3) the addition of fresh medium to confluent cells. Following polyoma infection, an increase in the percentage of S-phase cells began at approximately 20 hours; dihydrofolate reductase synthesis also increased following a lag of 20 hours or more, and continued to increase throughout the late phase of lytic infection, reaching values nearly fivefold greater than that originally present in the quiescent cells. When quiescent cells received fresh medium (with or without replating), the percentage of cells in S phase began to increase by 10 hours and was accompanied by an increase in dihydrofolate reductase synthesis which reached a maximum by approximately 25 hours. These observations show that the initial entry of cells into S phase following mitogenic stimulation is associated with an induction of dihydrofolate reductase synthesis. Dibutyryl cyclic AMP blocked the stimulation of dihydrofolate reductase synthesis and the increase in the percentage of S-phase cells that resulted from the addition of fresh medium to confluent cells. When dibutyryl cyclic AMP was added at various times following the addition of fresh medium, the block in the induction of dihydrofolate reductase synthesis was correlated with a corresponding block in the increase in S-phase cells. These results suggest that dibutyryl cyclic AMP blocks cells at a point in Gl prior to either the induction of dihydrofolate reductase synthesis or the beginning of S phase. The relationship between the control of dihydrofolate reductase synthesis and entry into S phase suggests some form of coordinate control over these two parameters.  相似文献   

20.
The metachromatic fluorochrome acridine orange was used to differentially stain DNA and RNA in Chinese hamster ovary (CHO) cells and in mitogen-stimulated human lymphocytes during their progression through the cell cycle. Green and red fluorescence of individual cells, representing cellular DNA and RNA, respectively, was measured by flow cytometry. CHO cells were synchronized by selective detachment at mitosis. Their rate of progression through G1 and subsequently through S phase correlated with the content of stainable RNA. The mean duration of the G1 phase was 5.2 hours for cells with high RNA content (highest 25 percentile population) and 8.1 hours for cells with low RNA (lowest 25 percentile). The duration of S phase was 5.9 and 7.5 hours for high- and low-RNA, 25 percentile subpopulations, respectively. Lymphocytes synchronized at the G1/S boundary by hydroxyurea or 5-fluorodeoxyuridine showed extremely high intercellular variation with respect to content of stainable RNA. After release from the block they traversed S phase at rates linearly proportional to the content of stainable RNA. The duration of S phase was five hours for cells with high RNA-, six to nine hours for cells with moderate RNA- and up to 27 hours for cells with minimal RNA-content. The data suggest that the rate of progression through the cell cycle of individual cells within a population may be correlated with the number of ribosomes per cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号