首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We examined the effects of in vivo hypoxia (10% O2/90% N2) on the gamma-aminobutyric acid (GABA)/benzodiazepine receptors and on glutamic acid decarboxylase (GAD) activity in the rat brain. Male Wistar rats were exposed to a mixture of 10% O2 and 90% N2 in a chamber for various periods (3, 6, 12, and 24 h). The control rats were exposed to room air. The brain regions examined were the cerebral cortex, striatum, hippocampus, and cerebellum. GABA and benzodiazepine receptors were assessed using [3H]muscimol and [3H]flunitrazepam, respectively. Compared with control values, GAD activity was decreased significantly following a 6-h exposure to hypoxia in all four regions studied. On the other hand, the numbers of both [3H]muscimol and [3H]flunitrazepam binding sites were increased significantly. The increase in receptor number tended to return to control values after 24 h. Treatment of the membrane preparations with 0.05% Triton X-100 eliminated the increase in the binding capacity. These results may represent an up-regulation of postsynaptically located GABA/benzodiazepine receptors corresponding to the impaired presynaptic activity under hypoxia.  相似文献   

2.
To identify those glycoproteins whose synthesis or modification is necessary for memory formation, we have studied the uptake of radiolabelled fucose into synaptic plasma membranes (SPMs) and postsynaptic densities (PSDs) derived from two specific left and right forebrain loci, at two different times after training of 1-day-old chicks on a one-trial passive avoidance learning task. To increase the reliability of the comparison, a double-labelling method was used. Tissue samples from intermediate medial hyperstriatum ventrale (IMHV) and lobus parolfactorius (LPO) were isolated at 6 and 24 h after training. At both times, training resulted in region-specific changes, both increases and decreases, in incorporated radioactivity into pre- and postsynaptic glycoproteins. After 6 h, there was a relative decline in incorporation into both SPMs and PSDs of the right IMHV of trained chicks, a decline that persisted in the PSDs until 24 h. A small decline in incorporation in SPMs from the right LPO of trained chicks at 6 h was reversed by 24 h, by which time there was a 64% increase in incorporation into SPMs and a 24% increase into PSDs of the left LPO. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis of left and right hemisphere samples containing LPO revealed that 6 h after training the main effect was presynaptic, including a reduction of incorporation into high molecular mass glycoproteins, of 150-180 kDa, and an increase in a lower molecular mass (41 kDa) fraction. By 24 h after training, a left hemisphere presynaptic glycoprotein of molecular mass approximately 50 kDa showed the biggest increase in fucosylation. In addition, a wide group of postsynaptic glycoproteins of both hemispheres, in the ranges 150-180, 100-120, and 33 kDa now showed increases in incorporation. Some other fractions showed decreases. These results are in accord with previous data on incorporation obtained using the amnesic agent 2-deoxygalactose. They also support the hypothesis that memory formation involves the strengthening of connections between pre- and postsynaptic neurons of the LPO by growth or modulation of pre- and postsynaptic structures.  相似文献   

3.
The incorporation of [3H]myo-inositol into individual phosphoinositides and of [3H]glycerol into glycerolipids was determined in sciatic nerve obtained from normal and streptozotocin diabetic rats and incubated in vitro. The uptake of inositol into lipid was approximately linear with time. More than 80% of the label was present in phosphatidylinositol with the remainder divided about equally between phosphatidylinositol phosphate and phosphatidylinositol-4,5-bisphosphate. Labeling was unchanged 2 weeks after induction of diabetes, but was reduced by 32% after 20 weeks of the disease. Glycerol incorporation occurred primarily into phosphatidylcholine and triacylglycerol and was depressed up to 45% into major phosphoglycerides in nerves from both 2- and 20-week diabetic animals. Triacylglycerol labeling was also substantially decreased, and the reduction was comparable in intact and epineurium free nerve, suggesting that a metabolically active pool of this compound, which is sensitive to hyperglycemia and/or insulin deficiency, is located in or immediately adjacent to the nerve fibers. The considerable decline in incorporation of these lipid precursors in diabetic nerve may be related to impaired inositol transport and to decrease overall energy utilization by the tissue.  相似文献   

4.
Abstract: Choline uptake by cholinergic nerve terminals is increased by depolarization; the literature suggests that this results from either the appearance of occult transporters or the increased activity of existing ones. The present experiments attempt to clarify the mechanism by which choline transport is regulated by testing if the preexposure of synaptosomes to choline mustard aziridinium ion prevents the stimulation-induced appearance of hemicholinium-3 binding sites and/or choline transport activity. Choline mustard inhibited irreversibly most of the “ground-state” (basal) high-affinity choline transport but only 50% of “ground-state” hemicholinium-3 binding sites. Exposure of both striatal and hippocampal synaptosomes to the mustard, before stimulation, inhibited K+-stimulated increases in choline transport and of [3H]hemicholinium-3 binding. We conclude that the mechanism by which choline transport is regulated involves the increased activity of a pool of transport sites that are occluded to hemicholinium-3 but are available to choline mustard aziridinium ion, and presumably to choline, before stimulation. However, the concentration of mustard needed to inhibit the stimulation-induced increase of [3H]hemicholinium-3 binding and choline transport was lower for striatal synaptosomes than for hippocampal synaptosomes. In the absence of extracellular Ca2+ or presence of high Mg2+ levels, the choline mustard did not prevent the appearance of extra striatal hemicholinium-3 binding sites. Also, high Mg2+ levels removed the ability of the mustard to inhibit K+-stimulated increases of either [3H]hemicholinium-3 binding or choline transport by hippocampal synaptosomes. In contrast, the preexposure of hippocampal synaptosomes to the mustard in the presence of a calcium ionophore (A23187) reduced the concentration of inhibitor needed to prevent the activation of [3H]hemicholinium-3 binding and choline uptake. Thus, we conclude that the ability of the choline mustard to alkylate the pool of choline transporters that are activated by stimulation appears dependent on the entry of extracellular Ca2+.  相似文献   

5.
Abstract: Glutamatergic synaptic dysfunction has been proposed as a causal factor in portal-systemic encephalopathy. Increased in vitro and in vivo glutamate release and decreased glutamate binding to NMDA receptors were previously reported in the brains of portacaval-shunted rats. Such changes could lead to alterations in the second messenger systems coupled to glutamate receptors. As NMDA receptors have been shown to act via the nitric oxide/cyclic GMP second messenger system, we studied the activities of constitutive nitric oxide synthase (NOS), in the brains of rats following portacaval shunting. Results demonstrate that NOS activities are significantly increased in cerebellum (by 54%, p < 0.01), cerebral cortex (by 65%, p < 0.01), hippocampus (by 88%, p < 0.01), and striatum (by 64%, p < 0.01) of shunted rats compared with sham-operated controls. As l -arginine transport is a prerequisite for nitric oxide production, we also studied l -[3H]arginine transport into cerebellar and cerebral cortical synaptosomes prepared from the brains of portacaval-shunted and sham-operated rats. l -[3H]Arginine uptake was significantly increased (by ∼50%, p < 0.01) in both cerebellum and cortex. Increased NOS activities of neuronal and/or astrocytic origin and the resultant increased production of nitric oxide in brain could be the consequence of increased NMDA receptor activation following portacaval shunting. Furthermore, increased nitric oxide production could contribute to the increased cerebral blood flow consistently observed following portacaval shunting.  相似文献   

6.
The incorporation of intracisternally injected L-[methyl-3H]methionine [( 3H]Met) or S-adenosyl-L-[methyl-3H]methionine (Ado[3H]Met) into rat brain AdoMet and phospholipid pools was examined. When [3H]Met was administered, both AdoMet and phospholipid pools were labeled. However, exogenously injected Ado[3H]Met did not serve as a substrate for phospholipid-N-methyltransferases. It was concluded that only Ado[3H]Met formed in situ was utilized to methylate phospholipids and that this process was initiated on the cytoplasmic side of the membrane. The apparent biological half-life in brainstem of phosphatidyl-N-monomethylethanolamine and phosphatidyl-N,N-dimethylethanolamine formed from [3H]Met was 1.4 and 1.7 days, respectively. The half-life of phosphatidylcholine could not be determined due to interference from peripheral sources.  相似文献   

7.
The relationship between the nucleoside transport system and the nitrobenzylthioinosine-sensitive and -resistant [3H]dipyridamole binding sites was examined by comparing the characteristics of [3H]dipyridamole binding with those of [3H]nitrobenzylthioinosine binding and [3H]-uridine influx in rabbit and guinea pig cerebral cortical synaptosomes. Two distinct high-affinity synaptosomal membrane-associated [3H]dipyridamole binding sites, with different sensitivities to inhibition by nitrobenzylthioinosine, were characterized in the presence of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS, 0.01%) to prevent [3H]dipyridamole binding to glass tubes and filters. The nitrobenzylthioinosine-resistant [3H]-dipyridamole binding sites represented a greater proportion of the total membrane sites in guinea pig than in rabbit (40 vs. 10% based on inhibition studies). In rabbit, nitrobenzylthioinosine-sensitive [3H]dipyridamole binding (KD = 1.4 +/- 0.2 nM) and [3H]nitrobenzylthioinosine binding (KD = 0.30 +/- 0.01 nM) appeared to involve the same membrane site associated with the nitrobenzylthioinosine-sensitive nucleoside transporter. By mass law analysis, [3H]-dipyridamole binding in guinea pig could be resolved into two components based on sensitivity to inhibition by 1 microM nitrobenzylthioinosine. The nitrobenzylthioinosine-resistant [3H]dipyridamole binding sites were relatively insensitive to inhibition by all of the nucleoside transport substrates and inhibitors tested, with the exception of dipyridamole itself. In guinea pig synaptosomes, 100 microM dilazep blocked nitrobenzylthioinosine-resistant [3H]uridine transport completely but inhibited the nitrobenzylthioinosine-resistant [3H]dipyridamole binding component by only 20%. Furthermore, a greater percentage of the [3H]dipyridamole binding was nitrobenzylthioinosine resistant in guinea pig compared with rabbit, yet both species had a similar percentage of nitrobenzylthioinosine-resistant [3H]uridine transport.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Abstract The binding of [3H]aspartate and [3H]glutamate to membranes prepared from frozen human cerebellar cortex was studied. The binding sites differed in their relative proportions, their inhibition by amino acids and analogues, and by the effects of cations. A proportion (about 30%) of [3H]glutamate binding was to sites similar to those labelled by [3H]aspartate. An additional component of [3H]gluta-mate binding (about 50%) was displaced by quisqualate and aL-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and may represent a “quisqualate-preferring” receptor. Neither N-methyl-d-aspartic acid-sensitive nor dl-2-amino-4-phosphonobutyric acid-sensitive [3H]glutamate binding was detected.  相似文献   

9.
The interaction of the amnesic agent 2-deoxygalactose with fucose incorporation into glycoproteins in day-old chick forebrain has been studied with the aim of identifying glycoproteins whose synthesis is modified during memory formation. 2-Deoxygalactose inhibited total exogenous [14C]fucose incorporation into the forebrain glycoproteins by 26%. Sodium dodecyl sulphate-polyacrylamide gradient gel analysis revealed that intracerebrally injected 2-[3H]deoxygalactose labelled the same eight major glycoprotein bands as were identified using [14C]fucose labelling. Subsequent investigations focussed on these selected components. Subcellular fractionation showed that between 4 and 24 h after administration of the deoxy-sugar, the incorporated radioactivity was found predominantly at the synaptic sites, some glycoproteins being more abundant in synaptic plasma membranes and others in postsynaptic densities. This distribution pattern varied according to the time after injection. The effect of passive avoidance training, using a methylanthranilate-coated bead, on [14C]fucose incorporation into forebrain was to decrease fucose uptake into components of molecular mass 150-180 kilodaltons but to increase significantly labelling of glycoproteins of molecular mass 33 and 28 kilodaltons. The possible implications of these training-induced changes are discussed.  相似文献   

10.
Abstract: Intracerebral injection of [3H]inositoi into gerbil brain resulted in labeling of phosphoinositides and inositolphosphates in various subcellular membrane fractions. Phosphatidylinositol (PI) comprised >90% of the radioactivity of inositol lipids. However, the level of labeled poly-PI (with respect to PI) was higher in synaptosomes than in other membrane fractions. Ischemia induced in gerbils by ligation of the common carotid arteries resulted in a 30% decrease in labeled poly-PI in brain homogenates and this decrease was largely attributed to the poly-PI in synaptosomes (50% decrease). Among the inositol phosphates, the ischemia induction resulted in a decrease in labeling of inositol trisphosphate (63%) and inositol bisphosphate (38%), but labeling of inositol phosphate (IP) was increased by 59%. The results suggested a rapid turnover of the inositol phosphates in the gerbil brain. In general, changes in inositol lipids and inositol phosphates due to ischemia were attenuated after pretreatment with lithium (3 meq/kg) injected intraperitoneally 5 h prior to ligation. Surprisingly, lithium treatment alone did not cause an increase in IP labeling in the gerbil brain.  相似文献   

11.
The uptake of [3H]adrenaline and [3H]noradrenaline into rat hypothalamic slices was compared for determination of whether adrenaline uptake was independent of uptake into noradrenergic neurones. Kinetic analysis revealed a similar high-affinity uptake process for both adrenaline and noradrenaline, with Km and Vmax values within similar ranges. These uptakes were inhibited by desipramine and maprotiline in a dose-dependent manner, but the selective dopamine and 5-hydroxytryptamine uptake inhibitors benztropine and fluoxetine, respectively, were without effect. Competition for uptake sites by unlabelled adrenaline with [3H]adrenaline and [3H]-noradrenaline and by unlabelled noradrenaline with [3H]-adrenaline and [3H]noradrenaline was very similar. Lesioning of the major adrenaline-containing cell group (C1 cell group) decreased the hypothalamic adrenaline concentration but had no effect on hypothalamic [3H]adrenaline or [3H]noradrenaline uptake. The results suggest that exogenous adrenaline is largely taken up by high-affinity sites on noradrenergic nerve terminals.  相似文献   

12.
Abstract: Elevated activities of nitric oxide synthase (NOS) have been reported previously in the brains of portacaval-shunted (PCS) rats, a model of chronic hepatic encephalopathy (HE). As l -arginine availability for nitric oxide synthesis depends on a specific uptake mechanism in neurons, we studied the kinetics of l -[3H]-arginine uptake into synaptosomes prepared from the brains of PCS rats. Results demonstrate that l -arginine uptake is significantly increased in cerebellum (60%; p < 0.01), cerebral cortex (42%; p < 0.01), hippocampus (56%; p < 0.01), and striatum (51%; p < 0.01) of PCS rats compared with sham-operated controls. Hyperammonemia in the absence of portacaval shunting also stimulated the transport of l -[3H]arginine; kinetic analysis revealed that the elevated uptake was due to increased uptake capacity ( V max) without any change in affinity ( K m). Incubation of cerebellar synaptosomes with ammonium acetate for 10 min caused a dose-dependent stimulation of l -[3H]arginine uptake. Neither portacaval shunting nor hyperammonemia had any significant effect on the synaptosomal uptake of N G-nitro- l -[3H]arginine. These studies demonstrate that increased NOS activity observed in experimental HE may result from increased availability of l -arginine resulting from a direct stimulatory effect of ammonia on l -arginine transport.  相似文献   

13.
The binding of the 5-hydroxytryptamine (5-HT, serotonin) uptake inhibitor [3H]paroxetine to rat cortical homogenates has been characterized. The effect of tissue concentration was examined and, with 0.75 mg wet weight tissue/ml in a total volume of 1,600 microliter, the binding was optimized with an apparent dissociation constant (KD) of 0.03-0.05 nM. Competition experiments with 5-HT, citalopram, norzimeldine, and desipramine revealed a high (90%) proportion of displaceable binding that fitted a single-site binding model. Fluoxetine and imipramine revealed, in addition to a high-affinity (nanomolar) site, also a low-affinity (micromolar) site representing approximately 10% of the displaceable binding. The specificity of the [3H]paroxetine binding was emphasized by the fact that 5-HT was the only active neurotransmitter bound and that the serotonin S1 and S2 antagonist methysergide was without effect on the binding. Both 5-HT- and fluoxetine-sensitive [3H]paroxetine binding was completely abolished after protease treatment, suggesting that the binding site is of protein nature. Saturation studies with 5-HT (100 microM) sensitive [3H]paroxetine binding were also consistent with a single-site binding model, and the binding was competitively inhibited by 5-HT and imipramine. The number of binding sites (Bmax) for 5-HT-sensitive [3H]paroxetine and [3H]imipramine binding was the same, indicating that the radioligands bind to the same sites. Lesion experiments with p-chloroamphetamine resulted in a binding in frontal and parietal cortices becoming undetectable and a greater than 60% reduction in the striatum and hypothalamus, indicating a selective localization on 5-HT terminals. Together these findings suggest that [3H]paroxetine specifically and selectively labels the substrate recognition site for 5-HT uptake in rat brain.  相似文献   

14.
Labelling index, S-phase duration and cell-cycle time of proliferating brain cells from 6-day-old chick embryos in culture were investigated autoradiographically after labelling with [3H]- and/or [14C]-thymidine. the dissociated cells were cultured in the absence or in the presence of brain extract from 8-day-old chick embryos. Cultures contained essentially two cell types, which could be easily distinguished by the size of their nuclei: small nuclei identified as belonging to precursor cells of neurons and large nuclei corresponding to astroglial cells. the labelling index of astroglial cells (16.4%) was about 2 times higher than that of the neuronal cells (9.9%). Under the influence of brain extract the labelling index of neuroblasts was nearly doubled while that of the astroglial cells remained nearly unchanged. From double-labelling experiments with [3H]- and [14C]-thymidine, the same S-phase duration of about 7 hr was found for both cell types cultured with or without brain extract. A cell-cycle duration of 39 hr for neuronal and of 29 hr for astroglial cells was found. the cycle times remained constant under the influence of brain extract. From the measured data mentioned above, a growth fraction of 50% (neuroblasts) and 68% (astroglial cells) was calculated in control cultures without brain extract. After addition of brain extract, the growth fraction increased for both cell types (neuroblasts: 92%; astroglial cells: 80%). the results demonstrate that more cells proliferate in the presence of brain extract, but the durations of the S-phase and the cell cycle remain unchanged.  相似文献   

15.
The depolarization-induced, calcium-dependent release of [3H]ACh from hippocampal synaptosomes was studied in a superfusion system. Release increased, with increasing depolarization. Barium and strontium effectively substituted for calcium during the depolarization, but magnesium inhibited the release. Releasable [3H]ACh is derived from the sodium-dependent component of the [3H]choline uptake which points out the physiologic importance of sodium-dependent choline transport. It is concluded that [3H]ACh release in this system has the same properties as neurotransmitter release in many other systems. Previous studies have shown that treatments which alter the activity of cholinergic neurons in vivo result in parallel changes in sodium-dependent choline uptake in vitro. When synaptosomes were utilized from animals treated to reduce cholinergic activity, there was a reduced release following the reduced uptake. Conversely, when synaptosomes were taken from animals treated to increase sodium-dependent choline uptake, there was an increase in the release. It is concluded that the changes in sodium-dependent choline uptake in vitro consequent to changes in neuronal activity in vivo result in parallel changes in releasable ACh. A comparison was made between the effect of a number of ions and agents on release and their effect on the in vitro, depolarization-induced activation of sodium-dependent choline uptake. Barium and strontium, ions which substitute for calcium in the release process, support the in vitro activation of uptake. Vinblastine and Bay a 1040, compounds which block release, prevented the in vitro activation of sodium-dependent choline uptake. However, magnesium blocked release in a dose-dependent manner, but did not block the activation of uptake in vitro. Rather, magnesium substituted for calcium and supported the activation of uptake in a dose-dependent fashion. It is concluded that acetylcholine release is not necessary for the activation of choline uptake.  相似文献   

16.
Abstract: Characteristics of the transport of the nitric oxide synthase substrate l -arginine and its inhibitor, N G-nitro- l -arginine ( l -NOARG), into rat cerebellar synaptosomes were studied. Uptake of both l -arginine and l -NOARG was linear with increasing amount of protein (up to 40 µg) and time of incubation (up to 5 min) at 37°C. Uptake of both compounds reached a steady state by 20 min. Maximal uptake of l -NOARG (650 pmol/mg of protein) was three to four times higher than that of l -arginine (170 pmol/mg of protein). l -NOARG uptake showed biphasic kinetics ( K m 1 = 0.72 m M , V max 1 = 0.98 nmol/min/mg of protein; K m 2 = 2.57 m M , V max 2 = 16.25 nmol/min/mg of protein). l -Arginine uptake was monophasic with a K m of 106 µ M and a V max of 0.33 nmol/min/mg of protein. l -NOARG uptake was selectively inhibited by l -NOARG, N G-nitro- l -arginine methyl ester, and branched-chain and aromatic amino acids. l -Alanine and l -serine also inhibited l -NOARG uptake but with less potency. Uptake of l -arginine was selectively inhibited by N G-monomethyl- l -arginine acetate and basic amino acids. These studies suggest that in rat cerebellar synaptosomes, l -NOARG is transported by the neutral amino acid carrier systems T and L with high affinity, whereas l -arginine is transported by the basic amino acid carrier system y+ with high affinity. These data indicate that the concentration of competing amino acids is an important factor in determining the rates of uptake of l -NOARG and l -arginine into synaptosomes and, in this way, may control the activity of nitric oxide synthase.  相似文献   

17.
The percentages of labelled lymphocytes in smear preparations of mouse thymus were higher than those in similar preparations of mesenteric lymph nodes with either generally labelled tritiated deoxycytidine, [3H]CdR, or tritiated thymidine, [3H]TdR. Lymphocytes in the thymus cortex and in germinal centres of mesenteric lymph nodes were intensely labelled with [3H]CdR, whereas with [3H]TdR lymphocytes in the peripheral region of thymus and medullary cords of mesenteric lymph nodes were heavily labelled. The majority of lymphocytes in thymic cortex and germinal centres of mesenteric lymph nodes were labelled weakly with [3H]TdR. Thus, labelling patterns with [3H]CdR differed from those with [3H]TdR in lymphoid tissues of the mouse. Mouse lymphocytes can utilize [3H]CdR as a precursor molecule for cytosine and thymine in DNA. The ratio of radioactivity of thymine to that of cytosine was measured biochemically in DNA extracted from lymphocytes labelled with [3H]CdR. This radioactivity ratio in thymus was higher than that in mesenteric lymph nodes. These results suggest that the metabolic activities of utilizing CdR for DNA synthesis differ within lymphocyte populations in various lymphoid tissues in the mouse.  相似文献   

18.
19.
Abstract: Abstract: [3H]Adenosine transport was characterized in cerebral cortical synaptoneurosomes prepared from postmortem human brain using an inhibitor-stop/centrifugation method. The adenosine transport inhibitors dipyridamole and dilazep completely and rapidly blocked transmembrane fluxes of [3H]adenosine. For 5-s incubations, two kinetically distinguishable processes were identified, i.e., a high-affinity adenosine transport system with Kt and Vmax values of 89 μM and 0.98 nmol/min/mg of protein, respectively, and a low-affinity adenosine transport system that did not appear to be saturable. For incubations with 1 μM [3H]adenosine as substrate, intrasynaptoneurosomal concentrations of [3H]adenosine were 0.26 μM at 5 s and 1 μM at 600 s. Metabolism of accumulated [3H]adenosine to adenine nucleotides was 15% for 5-s, 23% for 15-s, 34% for 30-s, 43% for 60-s, and 80% for 600-s incubations. The concentrations (μM) of total accumulated 3H-purines ([3H]-adenosine plus metabolites) at these times were 0.3, 0.5, 1.0, 1.3 and 5.6, respectively. These results indicate that in the presence of extensive metabolism, the intrasynaptoneurosomal accumulation of 3H-purines was higher than the initial concentration of 1 μM [3H]adenosine in the reaction medium. For 5-, 15-, 30-, 60-, and 600-s incubations in the presence of the adenosine deaminase inhibitor EHNA and the adenosine kinase inhibitor 5′-iodotubercidin, metabolism of the transported [3H]adenosine was 14, 14, 16, 14, and 38%, respectively. During these times, total 3H-purine accumulation was 0.3, 0.5, 0.5, 0.7, and 1.8 μM, respectively. Thus, the apparently “concentrative'’accumulation of 3H-purines can be prevented by inhibition of adenosine metabolism and, taken together, these results suggest that adenosine transport in at least synaptoneurosomes prepared from postmortem human brain is via a nonconcentrative and equilibrative system.  相似文献   

20.
Certain D-amino acids can be incorporated into the murein sacculus of Escherichia coli apparently through a direct transpeptidation reaction independent of the normal biosynthetic pathway. Investigation of this process is important because it could lead to the identification of hitherto unknown enzymes involved in murein metabolism. However, a serious drawback is the lack of an appropriate in vitro assay. We have analysed the suitability of a system based on the incorporation of a radioactive substrate (S-[3H]methyl-D-cysteine) by ether-treated cells, a method successfully applied before to the study of murein biosynthesis. The results reported here indicate that ether-treated cells are indeed proficient in the incorporation of D-amino acids, matching closely the properties of the reaction in growing cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号