共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
N. Rashevsky 《Bulletin of mathematical biology》1969,31(1):199-203
Henri Poincaré (Derniere Pansées, Paris, Flamerion, 1920) makes the interesting suggestion that our space is three-dimensional
because ourvoluntary movements are those of quasi-rigid bodies in three dimensional space. Inasmuch as according to the theory of organismic sets
(Rashevsky,Bulletin of Mathematical Biophysics,31, 159–198, 1969) organisms are conceivable, perhaps in some remote parts of the universe, for which the primary voluntary
changes may be not spatial movements but changes of other physical qualities, it is pointed out that the acceptance of Poincaré's
hypothesis will require an invariance of the physical laws in an abstractn-hyperspace with respect to the choice ofm<n coordinates as the basic frame of reference. 相似文献
5.
Weisel JW Nagaswami C Woodhead JL Higazi AA Cain WJ Marcovina SM Koschinsky ML Cines DB Bdeir K 《Biochemistry》2001,40(35):10424-10435
Lipoprotein(a) is composed of low-density lipoprotein linked both covalently and noncovalently to apolipoprotein(a). The structure of lipoprotein(a) and the interactions between low-density lipoprotein and apolipoprotein(a) were investigated by electron microscopy and correlated with analytical ultracentrifugation. Electron microscopy of rotary-shadowed and unidirectionally shadowed lipoprotein(a) prepared without glycerol revealed that it is a nearly spherical particle with no large projections. After extraction of both lipoprotein(a) and low-density lipoprotein with glycerol prior to rotary shadowing, the protein components were observed to consist of a ring of density made up of nodules of different sizes, with apolipoprotein(a) and apolipoprotein B-100 closely associated with each other. However, when lipoprotein(a) was treated with a lysine analogue, 6-aminohexanoic acid, much of the apolipoprotein(a) separated from the apolipoprotein B-100. In 6-aminohexanoic acid-treated preparations without glycerol extraction, lipoprotein(a) particles had an irregular mass of density around the core. In contrast, lipoprotein(a) particles treated with 6-aminohexanoic acid in the presence of glycerol had a long tail, in which individual kringles could be distinguished, extending from the ring of apolipoprotein B-100. The length of the tail was dependent on the particular isoform of apolipoprotein(a). Dissociation of the noncovalent interactions between apolipoprotein(a) and low-density lipoprotein as a result of shear forces or changes in the microenvironment may contribute to selective retention of lipoprotein(a) in the vasculature. 相似文献
6.
Interactions of low density lipoprotein2 and other apolipoprotein B-containing lipoproteins with lipoprotein(a) 总被引:2,自引:0,他引:2
S Q Ye V N Trieu D L Stiers W J McConathy 《The Journal of biological chemistry》1988,263(13):6337-6343
Studies were undertaken to investigate potential interactions among plasma lipoproteins. Techniques used were low density lipoprotein2 (LDL2)-ligand blotting of plasma lipoproteins separated by nondenaturing 2.5-15% gradient gel electrophoresis, ligand binding of plasma lipoproteins by affinity chromatography with either LDL2 or lipoprotein(a) (Lp(a)) as ligands, and agarose lipoprotein electrophoresis. Ligand blotting showed that LDL2 can bind to Lp(a). When apolipoprotein(a) was removed from Lp(a) by reduction and ultracentrifugation, no interaction between LDL2 and reduced Lp(a) was detected by ligand blotting. Ligand binding showed that LDL2-Sepharose 4B columns bound plasma lipoproteins containing apolipoproteins(a), B, and other apolipoproteins. The Lp(a)-Sepharose column bound lipoproteins containing apolipoprotein B and other apolipoproteins. Furthermore, the Lp(a) ligand column bound more lipoprotein lipid than the LDL2 ligand column, with the Lp(a) ligand column having a greater affinity for triglyceride-rich lipoproteins. Lipoprotein electrophoresis of a mixture of LDL2 and Lp(a) demonstrated a single band with a mobility intermediate between that of LDL2 and Lp(a). Chemical modification of the lysine residues of apolipoprotein B (apoB) by either acetylation or acetoacetylation prevented or diminished the interaction of LDL2 with Lp(a), as shown by both agarose electrophoresis and ligand blotting using modified LDL2. Moreover, removal of the acetoacetyl group from the lysine residues of apoB by hydroxylamine reestablished the interaction of LDL2 with Lp(a). On the other hand, blocking of--SH groups of apoB by iodoacetamide failed to show any effect on the interaction between LDL2 and Lp(a). Based on these observations, it was concluded that Lp(a) interacts with LDL2 and other apoB-containing lipoproteins which are enriched in triglyceride; this interaction is due to the presence of apolipoprotein(a) and involves lysine residues of apoB interacting with the plasminogen-like domains (kringle 4) of apolipoprotein(a). Such results suggest that Lp(a) may be involved in triglyceride-rich lipoprotein metabolism, could form transient associations with apoB-containing lipoproteins in the vascular compartment, and alter the intake by the high affinity apoB, E receptor pathway. 相似文献
7.
Isolation of apolipoprotein(a) from lipoprotein(a) 总被引:10,自引:0,他引:10
An easy method was developed for the rapid and selective isolation of apo(a) from human plasma Lp(a). This procedure was applied to a "low density" Lp(a) subspecies (usually found in the density interval 1.050 to 1.070 g/ml) from a single individual whose apo(a) was of a size smaller than apoB-100. After reduction with 0.01 M dithiothreitol, apo(a) was separated from the Lp(a) particle by rate zonal centrifugation on a 7.5-30% NaBr density gradient. Two completely water-soluble products were recovered: apo(a), which contained less than 1% each of phospholipid and cholesterol, remained at the bottom of the gradient, and a lipid-rich floating LDL-like particle which contained apoB but not apo(a) and which we referred to as Lp(a-). The separation of these two components was also achieved by subjecting reduced Lp(a) to electrophoresis on 2.5-16% polyacrylamide gradient gels. However, dissociation of reduced Lp(a) could not be achieved by gel filtration in either low or high salt solutions. These observations indicate that apo(a) is associated to Lp(a) by non-covalent interactions in addition to its disulfide linkage to apoB. The latter is sensitive to chemical reduction whereas the former are broken through the action of a gravitational or electrical field. 相似文献
8.
The linkage with apolipoprotein (a) in lipoprotein (a) modifies the immunochemical and functional properties of apolipoprotein B 总被引:1,自引:0,他引:1
Z Zawadzki F Tercé L J Seman R T Theolis W C Breckenridge R W Milne Y L Marcel 《Biochemistry》1988,27(22):8474-8481
Lipoprotein (a) [Lp(a)] was isolated from several donors and its apolipoprotein (a) [apo(a)] dissociated by a reductive treatment, generating the apo(a)-free form of Lp(a) [Lp(a--)] that contains apolipoprotein B (apo B) as its sole protein. Using anti-apo B monoclonal antibodies, the properties of apo B in Lp(a), Lp(a--), and autologous low-density lipoprotein (LDL) were compared. Marked differences in apo B immunoreactivity were found between these lipoproteins, due to the presence of apo(a) in Lp(a). Apo(a) enhanced the expression of two epitopes in the amino-terminal part of apo B while it diminished the immunoreactivity of three other epitopes in the LDL receptor binding domain. Accordingly, the binding of the lipoproteins to the LDL receptor was also decreased in the presence of apo(a). In a different experimental system, the incubation of antibodies that react with 27 distinct epitopes distributed along the whole length of apo B sequence with plastic-bound Lp(a) and Lp(a--) failed to reveal any epitope of apo B that is sterically hindered by the presence of apo(a). Our results demonstrate that the presence of apo(a) modified the organization and function of apo B in Lp(a) particles. The data presented indicate that most likely the modification is not due to a steric hindrance but that some more profound conformational changes are involved. We suggest that the formation of the disulfide bridge between apo B and apo(a) in Lp(a) alters the system of disulfide bonds present in apo B and thereby modifies apo B structure. 相似文献
9.
Physicochemical properties of apolipoprotein(a) and lipoprotein(a-) derived from the dissociation of human plasma lipoprotein (a) 总被引:13,自引:0,他引:13
Chemical reduction of human plasma lipoprotein(a) (Lp(a)) yielded two water-soluble products which were separated by rate zonal ultracentrifugation. Apolipoprotein(a) (apo(a)) was completely recovered from the bottom of the gradient, whereas lipoprotein(a-) (Lp(a-)), which contained all of the lipids and apo-B100 of Lp(a), floated. By the techniques of circular dichroism and viscometry Lp(a-) was identical to low density lipoprotein (LDL). Lp(a-) was slightly larger in mass than autologous LDL and contained proportionally more triglyceride. The difference in mass between Lp(a) and Lp(a-) was accounted for by the loss of 2 molecules of apo(a) from the Lp(a) particle. The molecular weight of reduced and carboxymethylated apo(a) was 281,000 as determined by sedimentation equilibrium in 6 M guanidine HCl. By circular dichroism the structure of apo(a) was mostly random (71%) with the remainder representing 8% alpha-helix and 21% beta-sheet; its intrinsic viscosity, 28.3 cm3/g, was consistent with an extended flexible coil. The amino acid composition was characterized by an unusually high content of proline (11.4 mol %) as well as tryptophan, tyrosine, arginine, threonine, and a low amount of lysine, phenylalanine, and isoleucine. Apo(a) contained 28.1% carbohydrate by weight represented by mannose, galactose, galactosamine, glucosamine, and sialic acid in an approximate molar ratio of 3:7:5:4:7, respectively. Overall, the structure of Lp(a) appears to be consistent with a rigid spherical LDL-like core particle which, as a consequence of its association with a flexible glycoprotein such as apo(a), favors the entrapment of significant amounts of hydrodynamically associated solvent. Furthermore, the Lp(a-) remnant generated by the removal of apo(a) from Lp(a) was similar in structure but not identical to autologous LDL. 相似文献
10.
D'Angelo A Geroldi D Hancock MA Valtulina V Cornaglia AI Spencer CA Emanuele E Calligaro A Koschinsky ML Speziale P Visai L 《Biochimica et biophysica acta》2005,1687(1-3):1-10
Lipoprotein(a) [Lp(a)] entrapment by vascular extracellular matrix may be important in atherogenesis. We sought to determine whether laminin, a major component of the basal membrane, may contribute to Lp(a) retention in the arterial wall. First, immunohistochemistry experiments were performed to examine the relative distribution of Lp(a) and laminin in human carotid artery specimens. There was a high degree of co-localization of Lp(a) and laminin in atherosclerotic specimens, but not in non-atherosclerotic sections. We then studied the binding interaction between Lp(a) and laminin in vitro. ELISA experiments showed that native Lp(a) particles and 17K and 12K recombinant apolipoprotein(a) [r-apo(a)] variants interacted strongly with laminin whereas LDL, apoB-100, and the truncated KIV(6-P), KIV(8-P), and KIV(9-P) r-apo(a) variants did not. Overall, the ELISA data demonstrated that Lp(a) binding to laminin is mediated by apo(a) and a combination of the lysine analogue epsilon-aminocaproic acid and salt effectively decreases apo(a) binding to laminin. Secondary binding analyses with 125I-labeled r-apo(a) revealed equilibrium dissociation constants (K(d)) of 180 and 360 nM for the 17K and 12K variants binding to laminin, respectively. Such similar K(d) values between these two r-apo(a) variants suggest that isoform size does not appear to influence apo(a) binding to laminin. In summary, our data suggest that laminin may bind to apo(a) in the atherosclerotic intima, thus contributing to the selective retention of Lp(a) in this milieu. 相似文献
11.
Ca2+-mediated association of glycoprotein G (thrombinsensitive protein, thrombospondin) with human platelets 总被引:22,自引:0,他引:22
D R Phillips L K Jennings H R Prasanna 《The Journal of biological chemistry》1980,255(24):11629-11632
Washed human platelets suspended in buffers containing either 1.8 mM Ca2+ and 0.49 mM Mg2+ or 1 mM EDTA were treated with human alpha-thrombin to induce secretion. Glycoprotein G, a major glycoprotein in alpha-granules, was quantitatively secreted from platelets activated in the EDTA-containing buffer but remained with the platelet in the presence of Ca2+ and Mg2+. Addition of Ca2+ to the platelets that were activated in the presence of EDTA caused glycoprotein G to bind to platelets. To determine if glycoprotein G is expressed on the membrane surface of the activated platelet, platelets were rapidly labeled by a method employing lactoperoxidase-catalyzed iodination. Although glycoprotein G was barely detected on the surface of unstimulated platelets, labveling 1 min after thrombin treatment showed that glycoprotein G rapidly became one of the prominent surface proteins. These findings show that an alpha-granule protein, glycoprotein G, is one of the major glycoproteins on the membrane surface of thrombin-activated platelets and that its binding is dependent on divalent cations. 相似文献
12.
13.
Gaubatz JW Gillard BK Massey JB Hoogeveen RC Huang M Lloyd EE Raya JL Yang CY Pownall HJ 《Journal of lipid research》2007,48(2):348-357
Small, dense, electronegative low density lipoprotein [LDL(-)] is increased in patients with familial hypercholesterolemia and diabetes, populations at increased risk for coronary artery disease. It is present to a lesser extent in normolipidemic subjects. The mechanistic link between small, dense LDL(-) and atherogenesis is not known. To begin to address this, we studied the composition and dynamics of small, dense LDL(-) from normolipidemic subjects. NEFA levels, which correlate with triglyceride content, are quantitatively linked to LDL electronegativity. Oxidized LDL is not specific to small, dense LDL(-) or lipoprotein [a] (i.e., abnormal lipoprotein). Apolipoprotein C-III is excluded from the most abundant LDL (i.e., that of intermediate density: 1.034 < d < 1.050 g/ml) but associated with both small and large LDL(-). In contrast, lipoprotein-associated phospholipase A(2) (LpPLA(2)) is highly enriched only in small, dense LDL(-). The association of LpPLA(2) with LDL may occur through amphipathic helical domains that are displaced from the LDL surface by contraction of the neutral lipid core. 相似文献
14.
Sexton KE Lee HT Massa M Padia J Patt WC Liao P Pontrello JK Roth BD Spahr MA Ramharack R 《Bioorganic & medicinal chemistry》2003,11(22):4827-4845
Compounds of the general structure A and B were investigated for their activity as lipoprotein(a), [Lp(a)], assembly (coupling) inhibitors. SAR around the amino acid derivatives (structure A) gave compound 14-6 as a potent coupling inhibitor. Oral dosing of compound 14-6 to Lp(a) transgenic mice and cymologous monkeys resulted in a>30% decrease in plasma Lp(a) levels after 1-2 weeks of treatment at 100 mg/kg/day. 相似文献
15.
Lipoprotein(a) mediates high affinity low density lipoprotein association to receptor negative fibroblasts. 总被引:1,自引:0,他引:1
Lipoprotein(a) (Lp(a)) is an acute phase protein with unknown function. Lp(a) binds to low density lipoprotein (LDL) receptors, as well as to plasminogen (Plg) receptors. Preincubation of normal human skin fibroblasts with Lp(a) or with apo(a) cause a severalfold increase of LDL binding. Plg and kringle-4 of Plg have no effect. LDL receptor-negative fibroblasts respond upon preincubation with apo(a) with high affinity binding of LDL with Kd values that are almost identical with those of LDL binding to the LDL receptor. Incubation of apo(a)-pretreated fibroblasts with anti-apo(a) completely abolishes the increment of LDL binding. The high affinity LDL binding to LDL receptor-negative fibroblasts could be dissociated by approximately 80 and 54% with 5 mg/ml proline and 30 mg/ml NaCl, respectively, but not with dextran sulfate. The Lp(a)- and apo(a)-triggered LDL binding to fibroblasts have no effect on LDL internalization. These findings may reflect a key function in the role as an acute phase protein and may be relevant to the high atherogeneicity of Lp(a). 相似文献
16.
17.
Carole Ober Alex S. Nord Emma E. Thompson Lin Pan Zheng Tan Darren Cusanovich Ying Sun Raluca Nicolae Celina Edelstein Daniel H. Schneider Christine Billstrand Ditta Pfaffinger Natasha Phillips Rebecca L. Anderson Binu Philips Ramakrishnan Rajagopalan Thomas S. Hatsukami Mark J. Rieder Patrick J. Heagerty Deborah A. Nickerson Mark Abney Santica Marcovina Gail P. Jarvik Angelo M. Scanu Dan L. Nicolae 《Journal of lipid research》2009,50(5):798-806
18.
Studies on the molecular weight and lipoprotein nature of glucose-6-phosphate solubilized rat brain hexokinase 总被引:1,自引:0,他引:1
J E Wilson 《Archives of biochemistry and biophysics》1973,154(1):332-340
Treatment of brain mitochondria with glucose-6-P releases the hexokinase (ATP: d-hexose 6-phosphotransferase, EC 2.7.1.1), normally associated with the outer mitochondrial membrane, in soluble form. The glucose-6-P solubilized enzyme sediments during sucrose density gradient centrifugation at a rate compatible with a molecular weight of approx. 100,000. In contrast, in agreement with the results of Craven and Basford [Biochim. Biophys. Acta255, 620 (1972)], the enzyme is eluted in the void volume when chromatographed on Sephadex G-200 in 0.3 m mannitol-0.1 mm EDTA, suggesting a molecular weight much greater than 100,000. The resolution of this paradox is found in the observation that glucose-6-P solubilized hexokinase and several other proteins behave anomalously when chromatographed under these conditions; thus, elution in the void volume is not a satisfactory basis for estimating molecular weight.The glucose-6-P solubilized enzyme can be rebound to the mitochondria in the presence of added divalent cation. Phospholipase C treatment of the enzyme greatly hinders this reassociation but has no effect on hexokinase activity, suggesting the involvement of phospholipid in the interaction of the enzyme with the mitochondria. Based on the observation that sedimentation through a sucrose density gradient does not decrease binding ability, it is suggested that the required phospholipid is bound to the enzyme. After purification to homogeneity, however, the enzyme does not contain appreciable lipid (<0.7 mole phospholipid per mole enzyme), nor can it be rebound to mitochondria. Apparently the lipid, required for binding, is dissociated during purification. The potential significance of lipid in determining the intracellular distribution of the enzyme is discussed. 相似文献
19.
《Journal of lipid research》2017,58(9):1756-1764
20.
《Prostaglandins, Leukotrienes and Medicine》1983,10(4):443-448
LDL (0.5 – 2.0 mg LDL-cholesterol/ml) isolated from venous blood of healthy male volunteers stimulated dose-dependently the malondialdehyde (MDA) formation by frozen human platelets, used as a marker for the activity of the thromboxane synthetase. HDL (0.25 – 1.0 mg HDL-cholesterol/ml) and human serum albumin (1 – 10 mg/ml) had no concentration-dependent influence on the MDA formation. If these results can be extended to in vivo they suggested the strong connection between the prostaglandin and lipoprotein hypothesis of pathogenesis of atheroscyerosis. 相似文献