首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stretch activation of cation-permeable channels may be an important proximal sensory mechanism in mechanotransduction. As actin filaments may mediate cellular responses to changes of the mechanical properties of the substrate and regulate stretch-induced calcium transients, we examined the role of actin filaments and substrate flexibility in modulating the amplitude of stretch-activated intracellular calcium transients. Human gingival fibroblasts were subjected to mechanical stretch through integrins by magnetic force acting on collagen-coated ferric oxide beads. Intracellular calcium concentration was measured in fura-2-loaded cells by ratio fluorimetry. Cytochalasin D-treatment greatly increased (3-fold) the amplitude of stretch-activated calcium transients in well-spread cells grown on glass coverslips while phalloidin, colchicine or taxol exerted no signficant effects, indicating that actin filaments but not microtubules modulate stretch-activated calcium transients. In freshly plated cells with rounded shapes and poorly developed cortical actin filaments, stretch-induced calcium transients were of 3-fold higher amplitude than well-spread cells plated for 6-24 hrs and with well developed actin filaments. Cells plated on soft collagen-polyacrylamide gels showed round morphology but exhibited <50% of the response to stretch of well-spread cells on inflexible gels. Notably, cells on soft gels showed very heavy phalloidin staining for cortical actin filaments compared with cells on more inflexible surfaces which showed only light staining for cortical actin. While cell shape may have some effect on responsiveness to mechanical stretch, the rigidity of the cell membrane mediated by the extensive cortical actin network appears to be a central determinant in the regulation of stretch-induced calcium signals.  相似文献   

2.
Orbán J  Lorinczy D  Hild G  Nyitrai M 《Biochemistry》2008,47(15):4530-4534
Actin plays important roles in eukaryotic cell motility. During actin polymerization, the actin-bound ATP is hydrolyzed to ADP and P i. We carried out differential scanning calorimetry experiments to characterize the cooperativity of the stabilizing effect of phalloidin on actin filaments in their ADP.P i state. The ADP.P i state was mimicked by using ADP.BeF x or ADP.AlF 4. The results showed that the binding of the nucleotide analogues or phalloidin stabilized the actin filaments to a similar extent when added separately. Phalloidin binding to ADP.BeF x- or ADP.AlF 4-actin filaments further stabilized them, indicating that the mechanism by which phalloidin and the nucleotide analogues affect the filament structure was different. The results also showed that the stabilization effect of phalloidin binding to ADP.BeF x or ADP.AlF 4-bound actin filaments was not cooperative. Since the effect of phalloidin binding was cooperative in the absence of these nucleotide analogues, these results suggest that the binding of ADP.BeF x or ADP.AlF 4 to the actin modified the protomer-protomer interactions along the actin filaments.  相似文献   

3.
The specific actin-interacting drug phalloidin has been introduced into the cytoplasm of a highly motile amoeba, Entamoeba histolytica, by a new technique: the phagocytosis of liposomes containing phalloidin. After ingestion of these liposomes, two important modifications of the ultrastructure of the amoeba were observed. First, large nodules of densely packed fine filaments are formed, which may be due to the polymerization of actin induced by the release of phalloidin within the cell's cytoplasm. Second, phalloidin induces the proliferation of ribosome crystals known as chromatoid bodies in encysted cells. This formation could be the direct consequence of the action of phalloidin on actin, where filaments form and ribosomes detach from the original oligo or polymers. However, it could also result from an unspecific toxic effect on the amoeba which, under physiological stress, starts to encyst and show multiplication of these chromatoid bodies upon encystment.  相似文献   

4.
用荧光标记的鬼笔碱染色,对离体的黄蝉和姜花的生殖细胞内肌动蛋白微丝的分布进行了研究,结果证明两种植物的生殖细胞内部都存在一个微丝网络,黄蝉生殖细胞的比姜花的简单,微丝束较粗。但姜花生殖细胞的网络微丝束比黄蝉的更紧密地环绕着核。用免疫荧光技术在黄蝉生殖细胞的分裂前期和中期,可以观察到一些微丝束的存在,但在分裂后期和末期细胞内的肌动蛋白则变为颗粒状。  相似文献   

5.
Actin and nonmuscle myosin heavy chain (myosin-II) have been identified and localized in the cortex of unfertilized zebrafish eggs using techniques of SDS-polyacrylamide gel electrophoresis, immunoblotting, and fluorescence microscopy. Whole egg mounts, egg fragments, cryosections, and cortical membrane patches probed with rhodamine phalloidin, fluorescent DNase-I, or anti-actin antibody showed the cortical cytoskeleton to contain two domains of actin: filamentous and nonfilamentous. Filamentous actin was restricted to microplicae and the cytoplasmic face of the plasma membrane where it was organized as an extensive meshwork of interconnecting filaments. The cortical cytoplasm deep to the plasma membrane contained cortical granules and sequestered actin in nonfilamentous form. The cytoplasmic surface (membrane?) of cortical granules displayed an enrichment of nonfilamentous actin. An antibody against human platelet myosin was used to detect myosin-II in whole mounts and egg fragments. Myosin-II colocalized with both filamentous and nonfilamentous actin domains of the cortical cytoskeleton. It was not determined if egg myosin was organized into filaments. Similar to nonfilamentous actin, myosin-II appeared to be concentrated over the surface of cortical granules where staining was in the form of patches and punctate foci. The identification of organized and interconnected domains of filamentous actin, nonfilamentous actin, and myosin-II provides insight into possible functions of these proteins before and after fertilization. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Cytoplasmic actin and cochlear outer hair cell motility   总被引:2,自引:0,他引:2  
Summary Isolated outer hair cells of the guinea pig lacking a cuticular plate and its associated infracuticular network retain the ability to shorten longitudinally and become thinner. Membrane ghosts lacking cytoplasm retain the cylindrical shape of the hair-cell, and although they do not shorten, they retain the ability to constrict and become thinner. These data suggest that cytoplasmic components are associated with outer hair-cell longitudinal shortening and that the lateral wall is responsible for maintaing cell shape and for constriction. Actin, a protein associated with the cytoskeleton and cell motility, is thought to be involved in outer hair-cell motility. To study its role, actin was localized in isolated outer hair cells by use of phalloidin labeled with fluorescein and antibodies against actin coupled to colloidal gold. In permeabilized guinea-pig hair cells stained with phalloidin, actin filaments are found along the lateral wall. In frozen-fixed hair cells actin filaments are distributed uniformly throughout the cytoplasm. Electron-microscopic studies show that antibodies label actin throughout the outer hair-cell body. Thus cytoplasmic actin filaments may provide the structural basis for the contraction-like events.  相似文献   

7.
Phalloidin and fluorescently labeled phalloidin analogs are established reagents to stabilize and mark actin filaments for the investigation of acto-myosin interactions. In the present study, we employed transient and steady-state kinetic measurements as well as in vitro motility assays to show that phalloidin perturbs the productive interaction of human non-muscle myosin-2A and -2C1 with filamentous actin. Phalloidin binding to F-actin results in faster dissociation of the complex formed with non-muscle myosin-2A and -2C1, reduced actin-activated ATP turnover, and slower velocity of actin filaments in the in vitro motility assay. In contrast, phalloidin binding to F-actin does not affect the interaction with human non-muscle myosin isoform 2B and Dictyostelium myosin-2 and myosin-5b.  相似文献   

8.
An intact complex that consisted of the cell membrane and cytoskeleton was prepared from Dictyostelium amoebae by an improved version of the method previously used by CLARKE et al. (1975). Proc. Natl. Acad. Sci. USA., 72: 1758-1762. After cells had attached tightly to a polylysine-coated coverslip in the presence of a divalent cation, the upper portions of the cells were removed with a jet of microfilament-stabilizing solution squirted from a syringe. The cell membranes left on the coverslip were immediately stained with tetramethylrhodamine-conjugated phalloidin for staining of actin filaments, and with antibody against myosin from Dictyostelium and a fluorescein-conjugated second antibody for staining of myosin. Networks of actin filaments and numerous rod-like structures of myosin (myosin filaments) aligned along them were observed on the exposed cytoplasmic surfaces of the cell membranes. These networks were similar to those observed in the cortex of fixed whole cells. Addition of ATP to these intact complexes of cell membrane and cytoskeleton caused the aggregation of both actin and myosin into several dot-like structures of actin on the cell membrane. Similar dot-like structures were also seen in the cortex of fixed whole cells, and their changes in distribution correlated with the motile activity of the cells. Transmission electron microscopy showed that these dot-like structures were composed of an electron-dense structure at the center, from which numerous actin filaments radiated outwards. These observations suggest that these novel dot-like structures are organizing centers for cortical actin filaments and may possibly be related to the adhesion of cells to the substratum.  相似文献   

9.
The cortical cytoskeleton mediates a range of cellular activities such as endocytosis, cell motility, and the maintenance of cell rigidity. Traditional polymers, including actin, microtubules, and septins, contribute to the cortical cytoskeleton, but additional filament systems may also exist. In yeast cells, cortical structures called eisosomes generate specialized domains termed MCCs to cluster specific proteins at sites of membrane invaginations. Here we show that the core eisosome protein Pil1 forms linear cortical filaments in fission yeast cells and that purified Pil1 assembles into filaments in vitro. In cells, Pil1 cortical filaments are excluded from regions of cell growth and are independent of the actin and microtubule cytoskeletons. Pil1 filaments assemble slowly at the cell cortex and appear stable by time-lapse microscopy and fluorescence recovery after photobleaching. This stability does not require the cell wall, but Pil1 and the transmembrane protein Fhn1 colocalize and are interdependent for localization to cortical filaments. Increased Pil1 expression leads to cytoplasmic Pil1 rods that are stable and span the length of cylindrical fission yeast cells. We propose that Pil1 is a novel component of the yeast cytoskeleton, with implications for the role of filament assembly in the spatial organization of cells.  相似文献   

10.
When PtK2 cells round up in mitosis they leave retraction fibers attached between the substrate and the cell body. Retraction fibers and the region where they meet the cell body are rich in actin filaments as judged by phalloidin staining and electron microscopy. Video microscopy was used to study actin dependent motile processes on retraction fibers. Small, phase-dense nodules form spontaneously on the fibers, and move in to the cell body at a rate of 3 microns/minute. As they move in they increase progressively in phase-density. This movement appears to be related to actin dependent centripetal movement which has been previously studied in lamellipodia. Despite its generality, the mechanism of such movement is unknown, and retraction fibers present some special advantages for its study. Cytochalasin treatment causes nodules to stop moving and dissolve. Withdrawal of the drug causes them to reform and start moving. Surprisingly, movement after cytochalasin withdrawal was often outward, indicating a local reversal of cortical polarity. After a few minutes correct polarity is reestablished by a global control mechanism. The implications of these observations for the mechanism and polarity of actin dependent motility is discussed.  相似文献   

11.
Filamentous actin organization in the unfertilized sea urchin egg cortex   总被引:3,自引:0,他引:3  
We have investigated the organization of filamentous actin in the cortex of unfertilized eggs of the sea urchins Strongylocentrotus purpuratus and Lytechinus variegatus. Rhodamine phalloidin and anti-actin immunofluorescent staining of isolated cortices reveal a punctate pattern of fluorescent sources. Comparison of this pattern with SEM images of microvillar morphology and distribution indicates that filamentous actin in the cortex is predominantly localized in the microvilli. Thin-section TEM and quick-freeze deep-etch ultrastructure of isolated cortices demonstrates that this microvillar-associated actin is in a novel organizational state composed of very short filaments arranged in a tight network and that these filament networks form mounds that extend beyond the plane of the plasma membrane. Actin filaments within the networks do not exhibit free ends and make end-on attachments with the membrane only within the region of the evaginating microvilli. Myosin S-1 dissociable crosslinks, 2-3 nm in diameter, are observed between network filaments and between network filaments and the membrane. A second population of long, individual actin filaments is observed in close lateral association with the plasma membrane and frequently complexes with the microvillar actin networks. The filamentous actin of the unfertilized egg cortex may participate in establishing the mechanical properties of the egg surface and may function in nucleating the assembly of cortical actin following fertilization.  相似文献   

12.
Changes in the distribution and organizational state of actin in the cortex of echinoderm eggs are believed to be important events following fertilization. To examine the initial distribution and form of actin in unfertilized eggs, we have adapted immunogold-labeling procedures for use with eggs of Strongylocentrotus purpuratus. Using these procedures, as well as fluorescence microscopy, we have revealed a discrete 1-micron-thick concentrated shell of actin in the unfertilized egg cortex. This actin is located in the short surface projections of unfertilized eggs and around the cortical granules in a manner that suggests it is associated with the cortical granule surface. The actin in the short surface projections appears to be organized into filaments. However, most if not all of the actin surrounding the cortical granules is organized in a form that does not bind phalloidin, even though it is accessible to actin antibody. The lack of phalloidin binding is consistent with either the presence of nonfilamentous actin associated with the cortical granules or the masking of actin-filament phalloidin-binding sites by some cellular actin-binding component. In addition to the concentrated shell of actin found in the cortex, actin was also found to be concentrated in the nuclei of unfertilized eggs.  相似文献   

13.
Host cell entry by Toxoplasma gondii depends critically on actin filaments in the parasite, yet paradoxically, its actin is almost exclusively monomeric. In contrast to the absence of stable filaments in conventional samples, rapid-freeze electron microscopy revealed that actin filaments were formed beneath the plasma membrane of gliding parasites. To investigate the role of actin filaments in motility, we treated parasites with the filament-stabilizing drug jasplakinolide (JAS) and monitored the distribution of actin in live and fixed cells using yellow fluorescent protein (YFP)-actin. JAS treatment caused YFP-actin to redistribute to the apical and posterior ends, where filaments formed a spiral pattern subtending the plasma membrane. Although previous studies have suggested that JAS induces rigor, videomicroscopy demonstrated that JAS treatment increased the rate of parasite gliding by approximately threefold, indicating that filaments are rate limiting for motility. However, JAS also frequently reversed the normal direction of motility, disrupting forward migration and cell entry. Consistent with this alteration, subcortical filaments in JAS-treated parasites occurred in tangled plaques as opposed to the straight, roughly parallel orientation observed in control cells. These studies reveal that precisely controlled polymerization of actin filaments imparts the correct timing, duration, and directionality of gliding motility in the Apicomplexa.  相似文献   

14.
Ou GS  Chen ZL  Yuan M 《Protoplasma》2002,219(3-4):168-175
Summary. Jasplakinolide is potentially a useful pharmacological tool for the study of actin organization and dynamics in living cells, since it induces actin polymerization in vitro and, unlike phalloidin, is membrane permeative. In the present work, the effect of jasplakinolide on the actin cytoskeleton of living suspension-cultured Nicotiana tabacum ‘Bright Yellow 2’ cells was investigated. Actin filaments in the living cells were disrupted by jasplakinolide. The effect of jasplakionlide on the actin cytoskeleton was concentration and time dependent. When cells were treated with a moderate concentration (150 nM) of jasplakinolide, cortical actin filaments were disrupted preferentially, whereas actin aggregated at the perinuclear region. With concentrations higher than 400 nM and exposure times longer than 30 min, actin filaments in the cell disappeared completely. The effect of jasplakinolide on the actin cytoskeleton was reversible even at high concentration. Actin bundles appeared first in the perinuclear region within 5 min, and the cortical actin array was reestablished in 15 min, suggesting that actin filaments might be organized at this region. Received July 31, 2001 Accepted December 14, 2001  相似文献   

15.
Muscle contraction and other forms of cell motility occur as a result of cyclic interactions between myosin molecules and actin filaments. Force generation is generally attributed to ATP-driven structural changes in myosin, whereas a passive role is ascribed to actin. However, some results challenge this view, predicting structural changes in actin during motor activity, e.g., when the actin filaments slide on a myosin-coated surface in vitro. Here, we analyzed statistical properties of the sliding filament paths, allowing us to detect changes of this type. It is interesting to note that evidence for substantial structural changes that led to increased bending flexibility of the filaments was found in phalloidin-stabilized, but not in phalloidin-free, actin filaments. The results are in accordance with the idea that a high-flexibility structural state of actin is a prerequisite for force production, but not the idea that a low-to-high flexibility transition of the actin filament should be an important component of the force-generating step per se. Finally, our data challenge the general view that phalloidin-stabilized filaments behave as native actin filaments in their interaction with myosin. This has important implications, since phalloidin stabilization is a routine procedure in most studies of actomyosin function.  相似文献   

16.
The association of actin filaments with the plasma membrane maintains cell shape and adhesion. Here, we show that the plasma membrane ion exchanger NHE1 acts as an anchor for actin filaments to control the integrity of the cortical cytoskeleton. This occurs through a previously unrecognized structural link between NHE1 and the actin binding proteins ezrin, radixin, and moesin (ERM). NHE1 and ERM proteins associate directly and colocalize in lamellipodia. Fibroblasts expressing NHE1 with mutations that disrupt ERM binding, but not ion translocation, have impaired organization of focal adhesions and actin stress fibers, and an irregular cell shape. We propose a structural role for NHE1 in regulating the cortical cytoskeleton that is independent of its function as an ion exchanger.  相似文献   

17.
NMR studies have revealed that the conformation of the monocyclic viroisin is dissimilar to that of the corresponding monocyclic derivative of phalloidin, dethiophalloidin, but has much similarity with the conformation of the bicyclic phalloidin. Obviously, one of three structural features found exclusively in the virotoxins is able to compensate for the conformational strain that in the bicyclic phallotoxins maintains the toxic conformation. Synthetic work on virotoxin analogues has shown that both the additional hydroxy group in allo-hydroxyproline and the methylsulfonyl moiety in the 2'-position of tryptophan are unlikely to represent the structural element in question, leaving the D-serine moiety as the supposed key element. In this study we asked whether it is the hydroxy group of this amino acid or its D-configuration that is responsible for the effect. We synthesized four viroisin analogues and submitted them to conformational analysis by NMR as well as to an actin binding assay. While the rotating-frame nuclear Overhauser effect (ROESY) spectra of the analogues with L-configured amino acids showed several sets of signals, indicating the existence of conformers interconverting more slowly than the NMR time scale, the spectra of the analogues with D-configured amino acids showed only one set of signals. Remarkably, the two viroisin analogues with D-serine and D-alanine also had distinctly higher affinities for filamentous actin than their L-configured counterparts, suggesting that the high biological activity may be correlated with the absence of multiple and slowly interconverting conformers. Anyhow, D-configuration of serine is the structural element that maintains the phalloidin-like structure, while the hydroxy group does not contribute to conformational stability but is likely to be in contact with the actin surface.  相似文献   

18.
Although the actin cytoskeleton has been implicated in vesicle trafficking, docking and fusion, its site of action and relation to the Ca(2+)-mediated activation of the docking and fusion machinery have not been elucidated. In this study, we examined the role of actin filaments in regulated exocytosis by introducing highly specific actin monomer- binding proteins, the beta-thymosins or a gelsolin fragment, into streptolysin O-permeabilized pancreatic acinar cells. These proteins had stimulatory and inhibitory effects. Low concentrations elicited rapid and robust exocytosis with a profile comparable to the initial phase of regulated exocytosis, but without raising [Ca2+], and even when [Ca2+] was clamped at low levels by EGTA. No additional cofactors were required. Direct visualization and quantitation of actin filaments showed that beta-thymosin, like agonists, induced actin depolymerization at the apical membrane where exocytosis occurs. Blocking actin depolymerization by phalloidin or neutralizing beta- thymosin by complexing with exogenous actin prevented exocytosis. These findings show that the cortical actin network acts as a dominant negative clamp which blocks constitutive exocytosis. In addition, actin filaments also have a positive role. High concentrations of the actin depolymerizing proteins inhibited all phases of exocytosis. The inhibition overrides stimulation by agonists and all downstream effectors tested, suggesting that exocytosis cannot occur without a minimal actin cytoskeletal structure.  相似文献   

19.
Actin filament organization in the fish keratocyte lamellipodium   总被引:17,自引:7,他引:10       下载免费PDF全文
《The Journal of cell biology》1995,129(5):1275-1286
From recent studies of locomoting fish keratocytes it was proposed that the dynamic turnover of actin filaments takes place by a nucleation- release mechanism, which predicts the existence of short (less than 0.5 microns) filaments throughout the lamellipodium (Theriot, J. A., and T. J. Mitchison. 1991. Nature (Lond.). 352:126-131). We have tested this model by investigating the structure of whole mount keratocyte cytoskeletons in the electron microscope and phalloidin-labeled cells, after various fixations, in the light microscope. Micrographs of negatively stained keratocyte cytoskeletons produced by Triton extraction showed that the actin filaments of the lamellipodium are organized to a first approximation in a two-dimensional orthogonal network with the filaments subtending an angle of around 45 degrees to the cell front. Actin filament fringes grown onto the front edge of keratocyte cytoskeletons by the addition of exogenous actin showed a uniform polarity when decorated with myosin subfragment-1, consistent with the fast growing ends of the actin filaments abutting the anterior edge. A steady drop in filament density was observed from the mid- region of the lamellipodium to the perinuclear zone and in images of the more posterior regions of lower filament density many of the actin filaments could be seen to be at least several microns in length. Quantitative analysis of the intensity distribution of fluorescent phalloidin staining across the lamellipodium revealed that the gradient of filament density as well as the absolute content of F-actin was dependent on the fixation method. In cells first fixed and then extracted with Triton, a steep gradient of phalloidin staining was observed from the front to the rear of the lamellipodium. With the protocol required to obtain the electron microscope images, namely Triton extraction followed by fixation, phalloidin staining was, significantly and preferentially reduced in the anterior part of the lamellipodium. This resulted in a lower gradient of filament density, consistent with that seen in the electron microscope, and indicated a loss of around 45% of the filamentous actin during Triton extraction. We conclude, first that the filament organization and length distribution does not support a nucleation release model, but is more consistent with a treadmilling-type mechanism of locomotion featuring actin filaments of graded length. Second, we suggest that two layers of filaments make up the lamellipodium; a lower, stabilized layer associated with the ventral membrane and an upper layer associated with the dorsal membrane that is composed of filaments of a shorter range of lengths than the lower layer and which is mainly lost in Triton.  相似文献   

20.
Previous research has shown that cortical gradients of cytosolic Ca(2+) are formed during the photopolarization of Pelvetia compressa zygotes, with elevated Ca(2+) on the shaded hemisphere that will become the site of rhizoid germination. We report here that the marine sponge toxin, latrunculin B, which blocks photopolarization at nanomolar concentrations, inhibited the formation of the light-driven Ca(2+) gradients. Using low concentrations of microinjected fluorescent phalloidin as a tracer for actin filaments, we found that exposure to light induced a striking increase in actin filaments in the cells as indicated by an increase in fluorescence. The increase was quantified in the cortex, where it was most apparent, and the fluorescence there was found to increase by about a factor of 3. This increase in cortical phalloidin fluorescence was inhibited by latrunculin B at the same concentration required to inhibit Ca(2+) gradient formation and photopolarization. The distribution of the increasing phalloidin fluorescence was uniform with respect to the developing rhizoid-thallus axis during the formation of the axis, and no intense patches of fluorescence were observed. After germination, fluorescence suggestive of an apical ring of actin filaments was seen near the rhizoid tip. Finally, inhibitor studies indicated that myosin may be involved in the photopolarization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号