首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding affinity between a nuclear localization signal (NLS) and its import receptor is closely related to corresponding nuclear import activity. PTM‐based modulation of the NLS binding affinity to the import receptor is one of the most understood mechanisms to regulate nuclear import of proteins. However, identification of such regulation mechanisms is challenging due to the difficulty of assessing the impact of PTM on corresponding nuclear import activities. In this study we proposed NIpredict, an effective algorithm to predict nuclear import activity given its NLS, in which molecular interaction energy components (MIECs) were used to characterize the NLS‐import receptor interaction, and the support vector regression machine (SVR) was used to learn the relationship between the characterized NLS‐import receptor interaction and the corresponding nuclear import activity. Our experiments showed that nuclear import activity change due to NLS change could be accurately predicted by the NIpredict algorithm. Based on NIpredict, we developed a systematic framework to identify potential PTM‐based nuclear import regulations for human and yeast nuclear proteins. Application of this approach has identified the potential nuclear import regulation mechanisms by phosphorylation of two nuclear proteins including SF1 and ORC6. Proteins 2014; 82:2783–2796. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Although much is known about the mechanisms of signal-mediated protein and RNA nuclear import and export, little is understood concerning the nuclear import of plasmid DNA. Plasmids between 4.2 and 14.4 kilobases were specifically labeled using a fluorescein-conjugated peptide nucleic acid clamp. The resulting substrates were capable of gene expression and nuclear localization in microinjected cells in the absence of cell division. To elucidate the requirements for plasmid nuclear import, a digitonin-permeabilized cell system was adapted to follow the nuclear localization of plasmids. Nuclear import of labeled plasmid was time- and energy-dependent, was inhibited by the lectin wheat germ agglutinin, and showed an absolute requirement for cytoplasmic extract. Addition of nuclear extract alone did not support plasmid nuclear import but in combination with cytoplasm stimulated plasmid nuclear localization. Whereas addition of purified importin alpha, importin beta, and RAN was sufficient to support protein nuclear import, plasmid nuclear import also required the addition of nuclear extract. Finally, nuclear import of plasmid DNA was sequence-specific, requiring a region of the SV40 early promoter and enhancer. Taken together, these results confirm and extend our findings in microinjected cells and support a protein-mediated mechanism for plasmid nuclear import.  相似文献   

3.
4.
Nuclear protein import is dependent on specific targeting signals within cargo proteins recognized by importins (IMPs) that mediate translocation through the nuclear pore. Recent evidence, however, implicates a role for the microtubule (MT) network in facilitating nuclear import of the cancer regulatory proteins parathyroid hormone-related protein (PTHrP) and p53 tumor suppressor. Here we assess the extent to which MT and actin integrity may be generally required for nuclear protein import for the first time. We examine 10 nuclear-localizing proteins with diverse IMP-dependent nuclear import pathways, our results indicating that the cytoskeleton does not have a general mechanistic role in nuclear localization sequence-dependent nuclear protein import. Of the proteins examined, only the p110(Rb) tumor suppressor protein Rb, together with p53 and PTHrP, was found to require MT integrity for optimal nuclear import. Fluorescence recovery after photobleaching experiments indicated that the MT-dependent nuclear transport pathway increases both the rate and extent of Rb nuclear import but does not affect Rb nuclear export. Dynamitin overexpression experiments implicate the MT motor dynein in the import process. The results indicate that, additional to IMP/diffusion-dependent processes, certain cancer regulatory proteins utilize an MT-enhanced pathway for accelerated nuclear import that is presumably required for their nuclear functions.  相似文献   

5.
Each nuclear pore is responsible for both nuclear import and export with a finite capacity for bidirectional transport across the nuclear envelope. It remains poorly understood how the nuclear transport pathway responds to increased demands for nucleocytoplasmic communication. A case in point is cellular hypertrophy in which increased amounts of genetic material need to be transported from the nucleus to the cytosol. Here, we report an adaptive down-regulation of nuclear import supporting such an increased demand for nuclear export. The induction of cardiac cell hypertrophy by phenylephrine or angiotensin II inhibited the nuclear translocation of H1 histones. The removal of hypertrophic stimuli reversed the hypertrophic phenotype and restored nuclear import. Moreover, the inhibition of nuclear export by leptomycin B rescued import. Hypertrophic reprogramming increased the intracellular GTP/GDP ratio and promoted the nuclear redistribution of the GTP-binding transport factor Ran, favoring export over import. Further, in hypertrophy, the reduced creatine kinase and adenylate kinase activities limited energy delivery to the nuclear pore. The reduction of activities was associated with the closure of the cytoplasmic phase of the nuclear pore preventing import at the translocation step. Thus, to overcome the limited capacity for nucleocytoplasmic transport, cells requiring increased nuclear export regulate the nuclear transport pathway by undergoing a metabolic and structural restriction of nuclear import.  相似文献   

6.
Gustin KE  Sarnow P 《Journal of virology》2002,76(17):8787-8796
Nucleocytoplasmic trafficking pathways and the status of nuclear pore complex (NPC) components were examined in cells infected with rhinovirus type 14. A variety of shuttling and nonshuttling nuclear proteins, using multiple nuclear import pathways, accumulated in the cytoplasm of cells infected with rhinovirus. An in vitro nuclear import assay with semipermeabilized infected cells confirmed that nuclear import was inhibited and that docking of nuclear import receptor-cargo complexes at the cytoplasmic face of the NPC was prevented in rhinovirus-infected cells. The relocation of cellular proteins and inhibition of nuclear import correlated with the degradation of two NPC components, Nup153 and p62. The degradation of Nup153 and p62 was not due to induction of apoptosis, because p62 was not proteolyzed in apoptotic HeLa cells, and Nup153 was cleaved to produce a 130-kDa cleavage product that was not observed in cells infected with poliovirus or rhinovirus. The finding that both poliovirus and rhinovirus cause inhibition of nuclear import and degradation of NPC components suggests that this may be a common feature of the replicative cycle of picornaviruses. Inhibition of nuclear import is predicted to result in the cytoplasmic accumulation of a large number of nuclear proteins that could have functions in viral translation, RNA synthesis, packaging, or assembly. Additionally, inhibition of nuclear import also presents a novel strategy whereby cytoplasmic RNA viruses can evade host immune defenses by preventing signal transduction into the nucleus.  相似文献   

7.
8.
We have established an in vitro snRNP nuclear import system using digitonin permeabilized somatic cells supplemented with cytosolic extracts. As model karyophiles we used digoxygenin labelled U1 snRNPs or fluorescein labelled U2 snRNPs. In vitro nuclear import of snRNPs is inhibited by anti-pore component antibodies, consistent with transport occurring through nuclear pores. This import requires ATP, cytosolic factors and a nuclear localization signal (NLS). SnRNP nuclear accumulation is saturable and distinct from protein transport. Nuclear import of snRNPs, in permeabilized NRK cells supplemented with somatic cell cytosol, requires the same NLS structures as those identified in micro-injected mammalian cells. In contrast to the situation in Xenopus oocytes, the m3G-cap is not required for in vitro nuclear import of U1 and U2 snRNPs in somatic cells. Instead, assembly of the Sm-core domain is both necessary and sufficient to mediate snRNP nuclear targeting. Interestingly, when the in vitro system was provided with cytosol from Xenopus oocytes instead of somatic cells, U1 and U2 snRNP nuclear import was provided with cytosol from Xenopus oocytes instead of somatic cells, U1 and U2 snRNP nuclear import was m3G-cap dependent. These results indicate that soluble cytosolic factors mediate the differential m3G-cap dependence of U1 and U2 snRNP nuclear import in somatic cells and oocytes. We also demonstrate the existence of a soluble cytosolic factor whose interaction with the U2 snRNP m3G-cap is both saturable and essential for U2 snRNP nuclear import in Xenopus oocytes.  相似文献   

9.
Ribosomal protein L5 is a shuttling protein that, in Xenopus oocytes, is involved in the nucleocytoplasmic transport of 5S rRNA. As demonstrated earlier, L5 contains three independent nuclear import signals (NLSs), which function in oocytes as well as in somatic cells. Upon physical separation, these NLSs differ in respect to their capacity to bind to nuclear import factors in vitro and to mediate the nuclear import of a heterologous RNP in vivo. As reported in this communication, analysis of the in vitro nuclear import activity of these three NLSs reveals that they also differ in respect to their requirements for cytosolic import factors and Ran. Nuclear import mediated by the N-terminal and the central NLS depends on cytosolic import factor(s) and Ran, whereas import via the C-terminal NLS occurs independently from these factors. Thus, the presence of multiple NLSs in ribosomal protein L5 appears to allow for efficient nuclear transport via utilisation of multiple, mechanistically different import pathways.  相似文献   

10.
The nuclear import of 5-lipoxygenase modulates its capacity to produce leukotrienes from arachidonic acid. However, the molecular determinants of its nuclear import are unknown. Recently, we used structural and functional criteria to identify a novel import sequence at Arg(518) on human 5-lipoxygenase (Jones, S. M., Luo, M., Healy, A. M., Peters-Golden, M., and Brock, T. G. (2002) J. Biol. Chem. 277, 38550-38556). However, this analysis also indicated that other import sequences must exist. Here, we identify two additional sites, at Arg(112) and Lys(158), as nuclear import sequences. Both sites were found to be common to 5-lipoxygenases from different species but not found on other lipoxygenases. Both sites also appeared to be a part of structures that were predominantly random loops. Peptide sequences at these sites were sufficient to direct nuclear import of green fluorescent protein. Mutation of basic residues in these sites impaired nuclear import and combinations of mutations at different sites were additive in effect. Mutations in all three sites were required to disable nuclear accumulation of 5-lipoxygenase in all cells. Significantly, mutation in these sites did not inhibit catalytic function. Taken together, these results indicate that nuclear import of 5-lipoxygenase may reflect the combined functional effects of three discrete import sequences. Mutation of individual sites can, by itself, impair nuclear import, which in turn could impact arachidonic acid metabolism.  相似文献   

11.
After synthesis in the cytoplasm, nuclear proteins traverse the nuclear envelope as a result of the specific recognition of nuclear localization signals by import. Various approaches have now uncovered a range of proteins with at least some of the characteristics expected of import receptors. This article focuses on early steps in the nuclear import of proteins and surveys the recently identified candidate import receptors.  相似文献   

12.
Replication of HIV-1 in non-dividing and slowly proliferating cell populations depends on active import of the viral pre-integration complex (PIC) into the cell nucleus. While it is commonly accepted that this process is mediated by an interaction between the HIV-1 PIC and the cellular nuclear import machinery, controversial results have been reported concerning the mechanisms of this interaction. Here, we demonstrate that a recently identified nuclear localization signal within the HIV-1 matrix protein (MA), MA NLS-2, together with previously described MA NLS-1, mediates nuclear import of the HIV-1 PIC. Inactivation of both MA NLSs precluded nuclear translocation of MA and rendered the virus defective in nuclear import and replication in non-dividing macrophage cultures, even when functional Vpr and integrase (IN), two more viral proteins implicated in HIV-1 nuclear import, were present. Taken together, these results indicate that Vpr does not function as an independent nuclear import factor and demonstrate that HIV-1 MA, by virtue of its two nuclear localization signals, regulates HIV-1 nuclear import.  相似文献   

13.
Smad proteins undergo rapid nuclear translocation upon stimulation by transforming growth factor-beta (TGFbeta) and in so doing transduce the signal into the nucleus. In this report we unraveled nuclear import mechanisms of Smad3 and Smad4 that are dependent on their interaction with FG-repeat-containing nucleoporins such as CAN/Nup214, without the involvement of importin molecules that are responsible for most of the known nuclear import events. A surface hydrophobic corridor within the MH2 domain of Smad3 is critical for association with CAN/Nup214 and nuclear import, whereas Smad4 interaction with CAN/Nup214, and nuclear import requires structural elements present only in the full-length Smad4. As exemplified by the different susceptibility to inhibition of import by cytoplasmic retention factor SARA (Smad anchor for receptor activation), such utilization of distinct domains for nuclear import of Smad3 and Smad4 suggests that nuclear transport of Smad3 and Smad4 is subject to control by different retention factors.  相似文献   

14.
Phosphorylation modulates the functioning of alphaB-crystallin as a molecular chaperone. We here explore the role of phosphorylation in the nuclear import and cellular localization of alphaB-crystallin in HeLa cells. Inhibition of nuclear export demonstrated that phosphorylation of alphaB-crystallin is required for import into the nucleus. As revealed by mutant analysis, phosphorylation at Ser-59 is crucial for nuclear import, and phosphorylation at Ser-45 is required for speckle localization. Co-immunoprecipitation experiments suggested that the import of alphaB-crystallin is possibly regulated by its phosphorylation-dependent interaction with the survival motor neuron (SMN) protein, an important factor in small nuclear ribonucleoprotein nuclear import and assembly. This interaction was supported by co-localization of endogenous phosphorylated alphaB-crystallin with SMN in nuclear structures. The cardiomyopathy-causing alphaB-crystallin mutant R120G was found to be excessively phosphorylated, which disturbed SMN interaction and nuclear import, and resulted in the formation of cytoplasmic inclusions. Like for other protein aggregation disorders, hyperphosphorylation appears as an important aspect of the pathogenicity of alphaB-crystallin R120G.  相似文献   

15.
Adenovirus, a respiratory virus with a double-stranded DNA genome, replicates in the nuclei of mammalian cells. We have developed a cytosol-dependent in vitro assay utilizing adenovirus nucleocapsids to examine the requirements for adenovirus docking to the nuclear pore complex and for DNA import into the nucleus. Our assay reveals that adenovirus DNA import is blocked by a competitive excess of classical protein nuclear localization sequences and other inhibitors of nuclear protein import and indicates that this process is dependent on hsc70. Previous work revealed that the hexon (coat) protein of adenovirus is the only major protein on the surface of the adenovirus nucleocapsid that docks at the nuclear pore complex. This, together with our finding that in vitro nuclear import of hexon is inhibited by an excess of classical nuclear localization sequences, suggests a role for the hexon protein in adenovirus DNA import. However, recombinant transport factors that are sufficient for hexon import in permeabilized cells do not support DNA import, indicating that there are other as yet unidentified factors required for this process.  相似文献   

16.
beta-Catenin nuclear import has been found to be independent of classical nuclear localization signal (NLS) nuclear import factors. Here, we test the hypothesis that beta-catenin interacts directly with nuclear pore proteins to mediate its own transport. We show that beta-catenin, unlike importin-beta, does not interact detectably with Phe/Gly(FG)-repeat-rich nuclear pore proteins or nucleoporins (Nups). Moreover, unlike NLS-containing proteins, beta-catenin nuclear import is not inhibited by wheat germ agglutinin (WGA) or excess importin-beta. These results suggest beta-catenin nuclear translocation does not involve direct interactions with FG-Nups. However, beta-catenin has two regions that can target it to the nucleus, and its import is cold sensitive, indicating that beta-catenin nuclear import is still an active process. Transport is blocked by a soluble form of the C-cadherin cytoplasmic domain, suggesting that masking of the nuclear targeting signal may be a mechanism of regulating beta-catenin subcellular localization.  相似文献   

17.
We investigated the nuclear import mechanism of Cdc7, which is essential for the initiation of DNA replication. Here we report that importin-beta binds directly to Cdc7 via the Kinase Insert II domain, promoting its nuclear import. Although both importin-alpha and -beta bind to Cdc7 via the Kinase Insert II domain in a mutually independent manner, the binding affinity of Cdc7 for importin-beta is approximately 10 times higher than for importin-alpha at low protein concentrations of an equimolar ratio. Immunodepletion of importin-beta, but not importin-alpha, abrogates Cdc7 nuclear import, and the addition of importin-beta to the importin-depleted cytosol restores Cdc7 nuclear import. Furthermore, transduction of anti-importin-beta, but not anti-importin-alpha antibodies, into live cells inhibits Cdc7 nuclear import. Unexpectedly, we found that Cdc7 nuclear import is inhibited by competitive binding of importin-alpha to Cdc7. Further studies by site-directed mutagenesis suggest that Lys306 and Lys309 within the Kinase Insert II domain are critical for Cdc7 nuclear localization.  相似文献   

18.
The human immunodeficiency virus 1 (HIV-1) synthesizes its genomic DNA in cytoplasm as soon as it enters the cell. The newly synthesized DNA remains associated with viral/cellular proteins as a high molecular weight pre-integration complex (PIC), which precludes passive diffusion across intact nuclear membrane. However, HIV-1 successfully overcomes nuclear membrane barrier by actively delivering its DNA into nucleus with the help of host nuclear import machinery. Such ability allows HIV-1 to productively infect non-dividing cells as well as dividing cells at interphase. Further, HIV-1 nuclear import is also found important for the proper integration of viral DNA. Thus, nuclear import plays a crucial role in establishment of infection and disease progression. While several viral components, including matrix, viral protein R, integrase, capsid, and central DNA flap are implicated in HIV-1 nuclear import, their molecular mechanism remains poorly understood. In this review, we will elaborate the role of individual viral factors and some of current insights on their molecular mechanism(s) associated with HIV-1 nuclear import. In addition, we will discuss the importance of nuclear import for subsequent step of viral DNA integration. Hereby we aim to further our understanding on molecular mechanism of HIV-1 nuclear import and its potential usefulness for anti-HIV-1 strategies.  相似文献   

19.
Protein transport into the nucleus is generally considered to involve specific nuclear localization signals (NLS) though it is becoming increasingly evident that efficient and well controlled import of proteins which lack a canonical NLS also occurs in cells. Vpx, a 112 amino acid protein from human immunodeficiency virus type 2 (HIV-2) and the closely related simian immunodeficiency virus (SIV) is one such protein, which does not have an identifiable canonical NLS and is yet efficiently imported to the nuclear compartment. Here we report that Vpx protein is imported to the nucleus independently of virus-encoded cofactors. When fusions of truncated versions of Vpx with full-length beta-galactosidase (beta-Gal) were tested, the region from Vpx 61 to 80 was found to be sufficient to mediate the import of the heterologous cytoplasmic protein to the nucleus. Inactivation of Vpx NLS precluded nuclear import of Vpx and reduced virus replication in non-dividing macrophage cultures, even when functional integrase and Gag matrix proteins implicated in viral nuclear import were present. Importantly, we identified and characterized a novel type of 20 amino acid transferable nuclear import signal in Vpx that is distinct from other import signals described. In addition, we show that the minimal nuclear targeting domain identified here overlaps with helical domain III (amino acid (aa) 64-82) and the structural integrity of this helical motif is critical for the nuclear import of Vpx. Taken together, these data suggest that Vpx is imported to the nucleus via a novel import pathway that is dependent on its 20 amino acid unique nuclear targeting signal, and that the nuclear import property of Vpx is critical for the optimal virus replication in non-dividing cells such as macrophages.  相似文献   

20.
Conditional on perforin-dependent delivery to the nucleus of target cells, the cytolytic granule serine protease granzyme B (GrB) plays a central role in eliciting the nuclear events of apoptosis, as shown by the fact that reducing GrB nuclear entry prevents nuclear apoptosis. Apart from a requirement for cytosolic factors and lack of dependence on the guanine-nucleotide-binding protein Ran, little is known regarding the nuclear import pathway of GrB. In this study we use quantitative yeast two-hybrid and direct binding assays to show that GrB can be recognized independently by either of the nuclear import receptor family members importin (IMP) alpha and beta1, but that these proteins either alone or in combination cannot replace exogenous cytosol to reconstitute GrB nuclear import in vitro. Whereas antibodies to IMP(alpha) inhibit transport, indicating that IMP(alpha) is required for GrB nuclear import, those to IMP(beta) enhance transport, implying that IMP(beta) inhibits GrB nuclear import; consistent with this, the addition of recombinant IMP(beta) but not IMP(alpha) reduces maximal nuclear accumulation in the presence of cytosol. Intriguingly, complexation of GrB with its specific serpin inhibitor PI-9 was found to prevent recognition by IMP(beta) but not by IMP(alpha), and eliminate the apparent requirement for IMP(alpha) for nuclear import. We conclude that GrB nuclear import exhibits complex regulation by IMPs; that heterodimerization with PI-9 can modulate the interaction has implications for protection against apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号