首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present project, the time of leaf budding and flowering, and partly also of fruit ripening, was studied over 3 years in different cultivated and native plants on a gradient along a western Norwegian fjord about 300 km long, from oceanic to relatively continental regions. In the plants investigated, flowering of the red currant was most strongly favoured by oceanic conditions in the outermost part of the fjord. On the other hand, flowering of the apple was earliest in the middle district, as were flowering of the common lilac and raspberry, while differences were small between the districts for flowering of the plum and pear. In the inner district, leaf budding of the apple was about 1.5 weeks earlier than flowering of the red currant, while these two phenophases, on average, occurred on the same day in the oceanic district. The time from 1 April to flowering was generally lengthened by increased precipitation in the pear, apple, lilac and raspberry, but not in the red currant and plum. By contrast, the period from leaf budding to flowering was significantly shortened in the plum by high precipitation. The present studies also indicated that leaf budding of the birch was favoured by the high minimum temperature and the relatively high precipitation normally found in the oceanic district. Partial correlations showed that increased precipitation delayed the flowering of both rowan and bird cherry trees; there was also a week effect on bud break in the same two species. The clear conclusion of the present study, therefore, is that various plant species react differently to various climatic factors ("phenological interception"), even in different phenophases within the same species. This means that the various species are best fitted to certain climatic regions and should preferably be planted there if other growth factors are satisfactory.  相似文献   

2.
This study analyses how coexisting evergreen and deciduous oaks adjust their phenology to cope with the stressful Mediterranean summer conditions. We test the hypothesis that the vegetative and reproductive growth of the winter deciduous (Quercus faginea Lam.) is more affected by summer drought than that of the evergreen [Quercus ilex L. subsp. ballota (Desf.) Samp.]. First, we assessed the complete aboveground phenology of both species during two consecutive years. Shoot and litter production and bud, acorn and secondary growth were monitored monthly. Second, we identified several parameters affected by summer conditions: apical bud size, individual leaf area (LA), leaf mass per area (LMA) and acorn yield in both species, and leaf-fall in Q. faginea; and analysed their variation over 10 years. Q. ilex performed up to 25% of shoot growth and most leaf development during summer, whereas Q. faginea completed most of both phenophases during spring. Secondary growth was arrested in summer under drought conditions. Approximately, 30–40% of bud and 40–50% of acorn growth was undertaken during summer in both species. Summer drought related to differences in LA, LMA and leaf senescence, but not to acorn yield. Both species had similar year-to-year patterns of acorn production, though yields were always lower in Q. faginea. Bud size decreased severely in both species during extremely dry years. In Q. ilex, bud size tended to alternate between years of large and small buds, and these patterns were followed by opposite trends in stem length. In Q. faginea, bud size was more stable through time. Q. ilex was more phenologically active during summer than Q. faginea, indicating a higher tolerance to drought. Furthermore, bud and fruit growth (the only two phenophases that both species performed during summer) were more severely affected by summer drought in Q. faginea than in the evergreen. The differential effects of summer drought on key phenophases for the persistence (bud growth) and colonization ability (fruit production) of both species may have consequences for their coexistence.  相似文献   

3.
Climate warming is strongly altering the timing of season initiation and season length in the Arctic. Phenological activities are among the most sensitive plant responses to climate change and have important effects at all levels within the ecosystem. We tested the effects of two experimental treatments, extended growing season via snow removal and extended growing season combined with soil warming, on plant phenology in tussock tundra in Alaska from 1995 through 2003. We specifically monitored the responses of eight species, representing four growth forms: (i) graminoids (Carex bigellowii and Eriophorum vaginatum); (ii) evergreen shrubs (Ledum palustre, Cassiope tetragona, and Vaccinium vitis‐idaea); (iii) deciduous shrubs (Betula nana and Salix pulchra); and (iv) forbs (Polygonum bistorta). Our study answered three questions: (i) Do experimental treatments affect the timing of leaf bud break, flowering, and leaf senescence? (ii) Are responses to treatments species‐specific and growth form‐specific? and (iii) Which environmental factors best predict timing of phenophases? Treatment significantly affected the timing of all three phenophases, although the two experimental treatments did not differ from each other. While phenological events began earlier in the experimental plots relative to the controls, duration of phenophases did not increase. The evergreen shrub, Cassiope tetragona, did not respond to either experimental treatment. While the other species did respond to experimental treatments, the total active period for these species did not increase relative to the control. Air temperature was consistently the best predictor of phenology. Our results imply that some evergreen shrubs (i.e., C. tetragona) will not capitalize on earlier favorable growing conditions, putting them at a competitive disadvantage relative to phenotypically plastic deciduous shrubs. Our findings also suggest that an early onset of the growing season as a result of decreased snow cover will not necessarily result in greater tundra productivity.  相似文献   

4.
In order to examine the impacts of both large-scale and small-scale climate changes (urban climate effect) on the development of plants, long-term observations of four spring phenophases from ten central European regions (Hamburg, Berlin, Cologne, Frankfurt, Munich, Prague, Vienna, Zurich, Basle and Chur) were analysed. The objective of this study was to identify and compare the differences in the starting dates of the pre-spring phenophases, the beginning of flowering of the snowdrop (Galanthus nivalis) and forsythia (Forsythia sp.), and of the full-spring phenophases, the beginning of flowering of the sweet cherry (Prunus avium) and apple (Malus domestica), in urban and rural areas. The results indicate that, despite regional differences, in nearly all cases the species studied flower earlier in urbanised areas than in the corresponding rural areas. The forcing in urban areas was about 4 days for the pre-spring phenophases and about 2 days for the full-spring phenophases. The analysis of trends for the period from 1951 to 1995 showed tendencies towards an earlier flowering in all regions, but only 22% were significant at the 5% level. The trends for the period from 1980 to 1995 were much stronger for all regions and phases: the pre-spring phenophases on average became earlier by 13.9 days/decade in the urban areas and 15.3 days/decade in the rural areas, while the full-spring phenophases were 6.7 days earlier/decade in the urban areas and 9.1 days/decade earlier in the rural areas. Thus rural areas showed a higher trend towards an earlier flowering than did urban areas for the period from 1980 to 1995. However, these trends, especially for the pre-spring phenophases, turned out to be extremely variable. Received: 21 October 1999 / Revised: 5 April 2000 / Accepted: 25 April 2000  相似文献   

5.
First flowering was observed in some native herbaceous and woody plants in Norway at latitudes of ∼58°N to nearly 71°N from 1928 to 1977. For woody plants, the timing for first bud burst was also often observed. Generally, there were highly significant correlations (0.1% level) between the timing of nearly all spring–early summer observations in plants and gridded mean monthly temperatures for the various phenophases (up to 65% of the variance was accounted for, less so for the autumn phenophases). Analyses by a low pass Gaussian smoothing technique showed early phenophases in the warm period of the early 1930s, delayed phases for most sites and species in colder periods in the early 1940s, mid-1950s, late 1960s and also towards the end of the study period in the late 1970s, all in approximately 10- to 12-year cycles. The study thus starts in a relatively early (warm) period and ends towards a late (cooler) period, resulting in mainly weak linear trends in phenophases throughout the total period. The end of the observation period in 1977 also predates the strongly increasing “earliness” in phenology of plants in most Norwegian lowland areas due to global warming. The strong altitudinal and latitudinal variations in Norway, however, do cause regional differences in trends. The study showed a tendency towards earlier spring phenophases all along the western coast from south to north in the country. On the other hand, the northeasternmost site and also the more continental sites in the southeast showed tendencies to weak trends for later phenophases during the 50 years of these field observations.  相似文献   

6.
Echinochloa colona regeneration via organogenesis in callus cultures derived from leaf base and mesocotyl expiants andin vitro flowering were achived. Shoot bud regeneration was achieved on Murashige and Skoog’s (MS) basal medium supplemented with 6.66 μM 6-benzylaminopurine (BAP), 2.68 μM 1-naphthalene acetic acid (NAA) and 3 % (m/v) saccharose. Regenerated shoots were rooted on half strength basal MS medium with 2 % (m/v) saccharose devoid of growth regulators. About 90 -95 % of rooted plantlets survived in the greenhouse.In vitro flowering was induced in the regenerated shoots derived from callus on half strength MS medium supplemented with 4.4 μM BAP, 74.07 μM adeninesulphate, 0.72 μM gibberellic acid, and 3 % (m/v) saccharose. The frequency ofin vitro flowering was 80 – 90 % in three repeated experiments. Fertile seeds were recovered fromin vitro grown plantlets which were subsequently germinated into plants. Acknowledgement: The authors wish to thank to the Department of Environment and Forests, Government of India for financial assistance to undertake this investigation.  相似文献   

7.
The morphological, anatomical and physiological variations of leaf traits were analysed during Quercus ilex L. leaf expansion. The leaf water content (LWC), leaf area relative growth rate (RGRl) and leaf dry mass relative growth rate (RGRm) were the highest (76±2 %, 0.413 cm2 cm−2 d−1, 0.709 mg mg−1 d−1, respectively) at the beginning of the leaf expansion process (7 days after bud break). Leaf expansion lasted 84±2 days when air temperature ranged from 13.3±0.8 to 27.6±0.9 °C. The net photosynthetic rate (P N), stomatal conductance (g s), and chlorophyll content per fresh mass (Chl) increased during leaf expansion, having the highest values [12.62±1.64 μmol (CO2) m−2 s−1, 0.090 mol (H2O) m−2 s−1, and 1.03±0.08 mg g−1, respectively] 56 days after bud break. Chl was directly correlated with leaf dry mass (DM) and P N. The thickness of palisade parenchyma contributed to the total leaf thickness (263.1±1.5 μm) by 47 %, spongy layer thickness 38 %, adaxial epidermis and cuticle thickness 9 %, and abaxial epidermis and cuticle thickness 6 %. Variation in leaf size during leaf expansion might be attributed to a combination of cells density and length, and it is confirmed by the significant (p<0.001) correlations among these traits. Q. ilex leaves reached 90 % of their definitive structure before the most severe drought period (beginning of June — end of August). The high leaf mass area (LMA, 15.1±0.6 mg cm−2) at full leaf expansion was indicative of compact leaves (2028±100 cells mm−2). Air temperature increasing might shorten the favourable period for leaf expansion, thus changing the final amount of biomass per unit leaf area of Q. ilex.  相似文献   

8.
Quercus garryana habitats are increasingly being managed with prescribed fire, but acorn dependent wildlife might be adversely affected if fires damage acorn crops. We examined one way that fire might affect subsequent acorn crops: through direct heating and damage of buds containing the following year’s floral organs. We measured internal bud temperatures during controlled time and temperature treatments, described damage to heated buds at the tissue and cellular levels and quantified spring flowering to assess the consequences of the treatments. We found that internal bud temperature was logarithmically related to exposure time and linearly related to treatment temperature. Tissue damage was more common in bud scales, staminate and bud scale scar primordia than in leaf, pistillate, leaf axillary primordia and apical meristems. Damaged tissues were sequestered by cells with thickened cell walls. A 133°C treatment applied for 60 s produced minimal damage or mortality, but damage increased rapidly in hotter or longer treatments, culminating in 100% mortality at 273°C for 60 s. Our experiments account only for radiative, not convective heating, but suggest that fires might produce sublethal effects that affect flowering and acorn crops. Q. garryana’s large buds possess an internal organ arrangement well suited to minimizing heat damage. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Petunia × hybrida was grown under high (H), medium (M) and low (L) light intensity [photoperiod; 16 h d−1, photosynthetic photon flux density (PPFD); 360, 120 and 40 μmol m−2 s−1, respectively] as well as under end-of-day (EOD) red (R) and far-red (FR) light quality treatments [photoperiod; 14.5 h d−1, PPFD; 30 μmol m−2 s−1 EOD; 15 min, Control (C) light; without EOD light treatment]. Shoot growth, leaf anatomical and photosynthetic responses as well as the responses of peroxidase (POD) isoforms and their specific activities following transition to flowering (1–6 weeks) were evaluated. Flower bud formation of Petunia × hybrida was achieved at the end of the 4th week for H light treatment and on the end of the 6th week for FR light treatment. No flower bud formation was noticed in the C and R light treatments. H and M light treatments induced lower chlorophyll (Chla, Chlb, Chla+b) concentrations in comparison to L light. On the other hand R and FR light chlorophyll content were similar to C light. Photosynthetic parameters [CO2 assimilation rate (A), transpiration rate (E) and stomatal conductance (g s) values] were higher in the H light treated plants in comparison to M and L light treated plants. A, E and g s values of R and FR light were similar to C light plants. Leaf anatomy revealed that total leaf thickness, thickness of the contained tissues (epidermis, palisade and spongy parenchyma) and relative volume percentages of the leaf histological components were differently affected within the light intensity and the light quality treatments. POD specific activities increased from the 1st to the 6th week during transition to flowering. Native-PAGE analysis revealed the appearance of four anionic POD (A1–A4) isoforms in all light treatments. On the basis of the leaf anatomical, photosynthetic and plant morphological responses, the production of high quality Petunia × hybrida plants with optimal flowering times could be achieved through the control of both light intensity and light quality. The appearance of A1 and A2 anionic POD isoforms could be also used for successful scheduling under light treatments.  相似文献   

10.
 Several methods have been used in plant phenology to find the best starting date in spring and the best threshold or basic temperature for growth and development of perennial plants. In the present paper the date giving the highest correlation coefficient for development to various phenophases, in relation to 24-hourly mean air temperatures was chosen as the best starting value in further analyses. For many woody plants this date was very often found to be 1 April based on phenological and climatological observations at about 60 sites in western Norway (at about 61°N). The early flowering species Corylus avellana and Salix caprea and the early leaf-bud breaking Prunus padus seemed to start development earlier in Spring, while the late sprouting Fraxinus excelsior showed the highest correlation coefficient using 15 April. If daytime temperatures were used in the calculations, the ”best” starting date was generally found to be later than for the 24-hour mean temperatures. This variation must be seen as resulting from the different basic temperatures for the development of various species. Estimates of basic temperatures in various species and periods may be given, for example by finding the value having the least variance in heat sums or by various regression analyses. A technique has been developed to minimise the influence of significance of correlation, using the intercept with the temperature axis by merging the two least squares rectilinear regression lines that can be found between plant development and mean air temperature (from the estimated best starting date) at r=+1 or –1. The basic temperature seemed to vary from –5.9°C for leaf-bud break of P. padus to 5.5°C for leaf-bud break of F. excelsior, with basic temperatures of several other woody plants having intermediate values. These values are compared with those found by other methods. Received: 26 May 1998 / Accepted: 7 September 1998  相似文献   

11.
Stem and trunk growth, axillary bud break and branching habits are extremely important parameters of wood production in forest trees. The possibility of altering tree form by transformation with genes responsible for hormone biosynthesis and/or activity is most attractive. We examined four different phenotypically selected transgenic clones of a model tree –Populus tremula– expressing rol genes from Agrobacterium rhizogenes under their native promoters. Several of the observed phenotypic modifications were correlated with rol-gene expression, including breaking of stem apical dominance which resulted in the development and branching of up to four axillary buds per explant, as compared to a lack of axillary bud break in a uidA (β-glucuronidase-encoding)-transgenic aspen line and control (non-transformed) plants. rol-Transgenic plants also exhibited a higher cumulative stem length and enhanced growth rate, and hence a higher stem production index. During their first and second years in the greenhouse, rol-transgenic aspen plants exhibited enhanced growth and delayed winter dormancy relative to non-transformed plants. Although initially rol-transgenic plants had smaller, wrinkled leaves, these changes were not observed in the 2-year-old plants, which exhibited a phenotypically true-to-type leaf shape. Received: 13 September 1998 / Accepted: 15 April 1999  相似文献   

12.
13.
为明确文冠果(Xanthoceras sorbifolium Bunge)物候期的地理变异规律,在文冠果的主要分布区(内蒙古自治区、河北省和河南省)选择6个样地,采用定株观测方法,于2012年对文冠果的物候期进行观测,并分析了物候期与经度和纬度、气候因子和结实性状间的相关性.结果表明:在供试6个样地中,文冠果的芽萌动期、初花期、盛花期、末花期、展叶期、果速生期、果熟期、落果期、落叶期及总生长期均存在明显差异;其中,盛花期相差天数最多(40 d),果速生期相差天数最少(26 d).产自河南省三门峡市陕县(分布区南缘)的文冠果落叶期最晚,但其他各物候期均最早,总生长期最长(199 d);而产自内蒙古自治区赤峰市阿鲁科尔沁旗坤都镇(分布区北缘)的文冠果落叶期最早,但其他各物候期均最晚,总生长期最短(148 d).从结实性状看,6个样地文冠果的座果率和单位投影面积种子质量差异均较大,而种子含油率差异不明显;其中,产自河南省三门峡市陕县的文冠果座果率和单位投影面积种子质量均最低.相关性和回归分析结果表明:文冠果的大多数物候期间呈正相关,仅落叶期与其他物候期呈负相关;其中,除盛花期与果速生期无显著相关性外,花期的各物候期(初花期、盛花期和末花期)与果期的各物候期(果速生期、果熟期和落果期)均呈显著或极显著正相关.多数物候期与经度和纬度呈显著或极显著正相关,仅落叶期与经度和纬度分别呈显著和极显著负相关.总体上看,除落叶期外,文冠果各物候期与年均日照时数呈正相关,与其他气候因子多数呈负相关;其中,除果速生期和落果期外,其他物候期与年均温呈显著或极显著负相关.此外,仅总生长期与文冠果的座果率呈显著负相关,其他物候期与结实性状则无显著相关性.综合分析结果表明:文冠果的物候期呈现明显的地理变异规律,且气温是影响其物候期的主要气候因子.  相似文献   

14.
E.N. Chidumayo   《Flora》2006,201(7):588-594
Many woody plants of savannas have massive underground parts (“lignotubers”) and diminutive aboveground parts with phenologies that are triggered by fire. Lannea edulis (Anacardiaceae) represents this life form and is widely distributed in south central Africa. The phenology of L. edulis was monitored on 42 permanently marked shoots over a 3-year period, from 2002 to 2004, and under three fire treatments (early and middle dry season burning, and fire protection) to determine whether (i) fire affected time of bud break and (ii) time of fruit ripening affected seed germination. Statistical analyses revealed that shoot reproductive status and fire treatments significantly affected time of bud break and the lag between bud break and leaf production. Shoot reproductive status explained 27% (P<0.001) while the interaction between reproductive status and fire treatments explained 34% (P<0.0001) of the variation in time at bud break. The appearance of the first leaf was delayed by 4 weeks in reproductive shoots compared with vegetative shoots. Shoot reproductive status explained 28% (P<0.0001) of the variation in the lag between bud break and appearance of the first leaf suggesting the existence of resource competition between reproduction and vegetative growth. However, reproductive status and fire treatments did not affect shoot size and leaves produced because replacement shoots after dieback due to fire were as long as shoots surviving from previous years due to insignificant annual shoot extension among the latter. There was high autocorrelation in the germination rate of seed-lots with seeds from fruits ripening early having a significantly higher germination rate (47% in 2002 and 89% in 2004) than those from fruits ripening later (3% in 2002 and 53% in 2004). Since time at bud break and fruit ripening were linked, it is proposed that late bud break results in reduced fitness in L. edulis because of reduced seed germination rate. Early and late dry season fires that delay bud break and destroy reproductive structures, respectively, also reduce this measure of fitness.  相似文献   

15.
Summary An efficient protocol for in vitro propagation of an aromatic and medicinal herb Ocimum basilicum L. (sweet basil) through axillary shoot proliferation from nodal explants, collected from field-grown plants, is described. High frequency bud break and maximum number of axillary shoot formation was induced in the nodal explants on Murashige and Skoog (1962) medium (MS) containing N6-benzyladenine (BA). The nodal explants required the presence of BA at a higher concentration (1.0 mg·l−1, 4.4 μM) at the initial stage of bud break; however, further growth and proliferation required transfer to a medium containing BA at a relatively low concentration (0.25 mg·gl−1, 1.1 μM). Gibberellic (GA3) at 0.4 mg·l−1 (1.2 μM) added to the medium along with BA (1.0 mg·l−1, 4.4 μM) markedly enhanced the frequency of bud break. The shoot clumps that were maintained on the proliferating medium for longer durations, developed inflorescences and flowered in vitro. The shoots formed in vitro were rooted on half-strength MS supplemented with 1.0 mg·l−1 (5.0 μM) indole-3-butyric acid (IBA). Rooted plantlets were successfully acclimated in vermi-compost inside a growth chamber and eventually established in soil. All regenerated plants were identical to the donor plants with respect to vegetative and floral morphology.  相似文献   

16.
Massive flowering of tropical Phalaenopsis orchids is coordinated by the cold-induced release of reproductive bud dormancy. Light and temperature are the two key factors integrated by the dormancy mechanism to both stop and reactivate the meristem development of many other angiosperm species, including fruit trees and ornamental plants. It is well established that leaves and roots play a major role in inducing flower development; however, currently, knowledge of molecular events associated with reproductive bud dormancy release in organs other than the bud is limited. Using differential gene expression, we have shown that the leaves of a hybrid of Phalaenopsis species, Doritaenopsis ‘Tinny Tender’, undergo major metabolic modifications. These changes result in the production of sucrose and amino acids, both of which can sustain bud outgrowth, and auxin and ethylene, which may play important roles in awaking the dormant buds. Intake of abscisic acid and synthesis of the hormone jasmonate may also explain the inhibition of vegetative growth that coincides with bud growth. Interestingly, many genes that were upregulated by cold treatment are homologous for genes involved in flower induction and vernalization in Arabidopsis, indicating that processes regulating flowering induction and those regulating reproductive bud dormancy release may use similar pathways and effector molecules.  相似文献   

17.
Leaf expiants from vegetative plants of the short-day plantStreptocarpus nobilis (C. B. Clarke) developed flower budsin vitro when cultured in 8 h photoperiods. Tn non-inductive photoperiods only vegetative buds were formed.In vitro photoinduction was demonstrated by giving the expiants short-day (SD) cycles and then transferring them to non-inductive photoperiods for expression of flowering. On medium containing 6-benzylaminopurine (BAP) organogenesis was initiated during the photoinductive treatments. Photoinduction of leaf tissue without adventitious bud development was obtained on medium without BAP. The photoinductive state of the leaf tissue was fairly stable, being expressed after 2–3 weeks in non-inductive photoperiods when adventitious buds were formed. The quantitativein vitro flowering response to the endogenous floral stimuli, resulting from photoinduction, could provide the basis of a bioassay for presumptive flower inducing chemicals.  相似文献   

18.
In a crop of blackcurrant (Ribes nigrum), cv. Baldwin in Eire, chlorotic mottling and ringspot symptoms in leaves on plants and severe crop loss was associated with infection with arabis mosaic nepovirus (ArMV) and the presence in the soil of its nematode vector, Xiphinema diversicaudatum. This is only the second report of ArMV damaging a crop of blackcurrant. Tomato black ring (TBRV) and raspberry ringspot nepoviruses were detected in single plants of redcurrant (R. rubrum) in England and flowering currant (R. sanguineum) in Scotland respectively; each of these infected plants showed foliar chlorotic line-pattern symptoms. This is the first record of TBRV in redcurrant. A single blackcurrant plant in New Zealand showing symptoms typical of those described for interveinal white mosaic disease, contained alfalfa mosaic virus (AMV). When AMV particles were purified and concentrated from herbaceous test plants and mechanically inoculated to young blackcurrant plants, several became infected with AMV and most infected plants developed systemic symptoms typical of the original disease. This provides the strongest evidence to date that AMV is the causal agent of interveinal white mosaic disease.  相似文献   

19.
Fire can influence reproductive phenology of plants, enhancing the reproductive rate of many species. Disturbances such as fire can promote the proliferation of exotic species in native plant communities. In this study we analyze the effect of fire on reproductive phenology in three native species (a shrub: Berberis buxifolia and two small trees: Maytenus boaria and Schinus patagonicus) and in an exotic shrub (Rosa rubiginosa). Flowering and fruiting phenology was monitored in neighbouring burned and unburned forests. The shrubs flowered and fruited in both sites, but the small trees did so only in the unburned site. There is no overlapping in the flowering and fruiting phenophases between the natives and the exotic species. Therefore, they do not compete in resource offering to pollinators and seed dispersers. Consequently, R. rubiginosa has a ‘competition-free’ space enhanced by fire, from the reproductive phenology perspective.  相似文献   

20.
The effects of shoot girdling on stomatal conductance (g s), leaf photosynthesis (P N), concentrations of carbohydrates, nitrogen and chlorophyll (Chl) in leaves, areal leaf mass (ALM), the diameter and length of shoots, and bud abscission in pistachio were investigated. Girdling individual shoots at the base of the current year’s shoot (girdle I), separating inflorescent buds on the terminal current year’s shoot from the developing fruits on the previous year’s shoot, reduced inflorescent bud abscission by 70% in comparison to nongirdled controls. Girdle I significantly reduced concentrations of nitrogen in leaves but increased those of nonstructural carbohydrates particularly of starch. Shoot diameter increased by 13.1% and 26.4% at 33 and 81 days after girdling (DAG), respectively, compared to 1% and 3.4% in the control, respectively. Both the leaf dry mass/fresh mass ratio and ALM were increased significantly by girdle I from 12 DAG. The concentrations of Chl a, Chl b, Chl (a+b), as well as the ratio of Chl a/b, all decreased with girdle I. The greatest negative effect of girdle I was on g s and P N. P N was reduced by 55% of its initial value and was 44% less than in the control leaves at 10 DAG, and fell to approximately 30% that of the control from 21 DAG. In contrast, girdling at the base of one-year-old shoots (girdle II), thus not separating fruits from the inflorescent buds, did not significantly affect g s or P N. The effect of girdling on P N and the possible factors that are involved in the reduction of photosynthesis in pistachio are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号