首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy characteristics (power spectra) of short-term (less than 1 s) EEG-reactions were studied in dogs in the course of instrumental conditioning. These reactions were observed in different areas of the cortex during selective attention in response to positive conditioned stimuli. They immediately preceded strong blow with a paw on the pedal of feeding cup and taking the reward. The EEG power at these moments was 1.5-3 times higher than the baseline EEG power level in a prestimulus period. The high-frequency structure of corresponding EEG reactions comprised discrete individual spectral peaks both in traditional (1-30 Hz) and gamma (30-80 Hz) ranges and higher-frequency components (80-200 Hz) as well. In some cases, the higher-frequency components (80-200 Hz) were most pronounced.  相似文献   

2.
With the advancement of contemporary techniques for studies of high-frequency electroencephalograms (EEGs), possible contamination of the EEG with the electromyogram (EMG) of pericranial muscles has raised more and more concern. The aim of the present study was to demonstrate if certain EEG correlates of mental activities can be revealed in a high-frequency scalp EEG in spite of EMG contamination. Nineteen healthy women who performed similar test tasks before and after cosmetic injections of Dysport in various facial regions for reduction of the activity of facial muscles took part in the study. Inductions of emotional states with different valences, memory storing, and extraction of verbal information were used in the test tasks. The default state of rest was examined as well. During performance of the tasks, parallel registrations of the EEG from the scalp surface (19 channels) and EMG from several facial muscles (6 channels) were carried out. Changes in the spectral power in β2 and low γ frequency bands (18–40 Hz) in EEG- and EMG-derivations after Dysport injections were analyzed. Changes in the spectral power in the same bands in pairwise comparisons for the test tasks before and after Dysport injections were also analyzed separately. It was demonstrated that Dysport injections lead to reduction of the EMG power in areas of the injections and to reduction of EEG power in the frontal and temporal derivations. However, the EEG-correlates revealed when comparing different test tasks remained qualitatively invariable as for after and before Disport injections. These facts confirm that EMG makes a noticeable contribution to the electric activity registered from the scalp in the frequency ranges greater than 18 Hz. At the same time, one can see that at least in certain experimental situations the influence of EMG does not make impossible identification of EEG-correlates of mental activity with EEG registration from the head surface at least in the β2 and low γ frequency bands (18–40 Hz).  相似文献   

3.
Power spectra of short-term (less than 1 s) EEG-reactions (in the frequency band of 1-225 Hz) were studied in dogs in the course of instrumental food conditioning. These reactions were observed in different areas of the cortex in response to positive and differentiated conditioned stimuli. Regional features between the spectra were found both in the power level and frequency structure. The power of the reactions in the visual and parietal areas of the left hemisphere was higher than in the motor areas. Power spectra of reactions to differentiated stimuli were significantly lower than the spectra of reactions to positive stimuli mainly owing to the high-frequency components (80-225 Hz). In these both cases, prestimulus power spectra did not differ. The frequency structure of corresponding EEG-reactions consisted of individual spectral peaks, mainly both gamma (30-80 Hz) and higher-frequency (80-225 Hz) bands.  相似文献   

4.
The EEG effects of intake of the mean therapeutic single dose of cholinomimetic amiridin (20 mg) or cholinolytic amizyl (2 mg) were studied in 7 healthy subjects. After the intake of the drugs with agonistic and antagonistic action, significant opposite changes in the EEG spectral density were observed in the frequency ranges of 0.6-6.7, 7.7-11.4, and 24.8-29.7 Hz. Amizyl produced an enhancement of the spectral density of the delta-, theta- and beta 2 activity and reduction of the alpha-rhythm power, while under the action of amiridin the spectral density of these rhythms changed in opposite directions. The oppositely directed changes in the alpha range were most pronounced. The peak frequency of amiridin-induced shift was equal to 9.8-10 Hz, and the same value of the spectral change induced by amizyl was 10.8-11.4 Hz. It is suggested that the spectral power density of the alpha-rhythm is an EEG index of the level of cholinergic activation.  相似文献   

5.
The work is a logical continuation of previous studies (analysis of the background electrical activity in the band 1-100 Hz in interstimulus intervals in the process of lever pressing alimentary conditioning in dogs) and it is dedicated to correlation-spectral analysis of prestimulus periods and EEG-reactions to conditioned stimuli, previous to conditioned lever pressing. Visually the EEG reactions present discharges of high-frequency (40-100 Hz) synchronized activity preceding for 40-300 ms the beginning of the changes in EMG of the "working" limb. It is shown that EEG reactions are characterized (in comparison with the background activity) by a higher energetic level and a greater expression of the high coherence (I greater than 0.75) and also by greater phase shifts, in counterbalance to the domination of little phase shifts in the background activity. It is assumed that the patterns of EEG reactions may participate in trigger mechanisms either eliciting conditioned motor reactions (to positive conditioned stimuli) or preventing them (to inhibitory conditioned stimuli).  相似文献   

6.
ECG and EEG signals were simultaneously recorded in lizards, Gallotia galloti, both in control conditions and under autonomic nervous system (ANS) blockade, in order to evaluate possible relationships between the ANS control of heart rate and the integrated central nervous system activity in reptiles. The ANS blockers used were prazosin, propranolol, and atropine. Time-domain summary statistics were derived from the series of consecutive R-R intervals (RRI) of the ECG to measure beat-to-beat heart rate variability (HRV), and spectral analysis techniques were applied to the EEG activity to assess its frequency content. Both prazosin and atropine did not alter the power spectral density (PSD) of the EEG low frequency (LF: 0.5-7.5 Hz) and high frequency (HF: 7.6-30 Hz) bands, whereas propranolol decreased the PSD in these bands. These findings suggest that central beta-adrenergic receptor mechanisms could mediate the reptilian waking EEG activity without taking part any alpha(1)-adrenergic and/or cholinergic receptor systems. In 55% of the lizards in control conditions, and in approximately 43% of the lizards under prazosin and atropine, a negative correlation between the coefficient of variation of the series of RRI value (CV(RRI)) and the mean power frequency (MPF) of the EEG spectra was found, but not under propranolol. Consequently, the lizards' HRV-EEG-activity relationship appears to be independent of alpha(1)-adrenergic and cholinergic receptor systems and mediated by beta-adrenergic receptor mechanisms.  相似文献   

7.
The electrophysiological correlates of major depression disorder with anxious distress in patients of different age groups have been investigated. The spectral characteristics of 19-channel background EEG were analyzed and the power spectra recorded with the eyes closed vs. eyes open in 64 patients with anxiety–depressive disorder and in 194 healthy subjects were compared. The subjects were divided into the two age groups: 18–39 and 40–76 years old. The spectral parameters were calculated for 5 main EEG frequency bands: θ (4–8 Hz), α (8–12 Hz), β1 (12–20 Hz), β2 (20–30 Hz), and γ (30–40 Hz). The most statistically significant differences between the groups were found in the α, β, and γ bands. Lower values of spectral power of the α rhythm in occipital areas and the higher values of spectral power of the β and γ rhythms in the frontocentral region were recorded in the group of 18-to-39-year-old patients with the eyes closed. Higher values of spectral power of the β rhythm in the fronto-central region and in the left temporal lobe were recorded in the group of 40-to-76-year-old patients with both the eyes closed and the eyes open. The higher β-activity in the fronto-central regions in both groups of patients may be caused by increased excitability of the cerebral cortex and decreased activity of inhibitory processes. Increased activation of the left temporal lobe in older subjects is probably associated with the severity of anxiety symptoms and may be a distinctive marker of mixed anxiety and depressive disorder. The lower values of α-power revealed only in the group of younger subjects are probably associated with age-related reorganization of EEG in older subjects.  相似文献   

8.
Independent Component Analysis (ICA) was used for 19-channel resting EEG analysis 111 patients at early stages of depressive disorder and 526 age-matched healthy subjects. Comparison of independent components power spectra in depressed patients and healthy subjects in two states: Eyes closed and Eyes open, has revealed significant differences between groups for three frequency bands: Theta (4-7.5 Hz), Alpha (7.5-14 Hz), and Beta (14-20 Hz). Increased power of alpha and theta activity in depressed patients at parietal and occipital sites may be caused by decreased cortical activation of these regions. Diffuse enhancement of beta activity level can correlate with anxiety symptoms which take an important place in clinical picture of depressive disorder at early stages. Using of ICA method for comparison of spectral characteristics of EEG in groups of patients with different brain pathology and healthy subjects gives a possibility to localize more precisely the discovered differences as compare to traditional analysis of EEG spectra.  相似文献   

9.
A new computerized method for EEG rhythms extraction is proposed as a development of the idea of adjustable boundaries of frequency components that was put forward in previous investigations. Principle component analysis of the correlation matrix of EEG spectra with subsequent rotation of factor solutions was used for decomposition of a spectrum into physically meaningful spectral components. The method was tested on EEG of 14 healthy subjects recorded in 17 functional waking states. Fourteen independent spectral components in the spectral range from 0 to 100 Hz were extracted and their frequency boundaries were consistent with the current knowledge on frequency components of EEG oscillations. Main advantage of the described method is the adjustable estimation of EEG frequency oscillators taking into account characteristic properties of individual EEGs. Possible area of application might be the correct evaluation of spectral power of the EEG rhythms, EEG coherence and other spectral characteristics in clinical and experimental research, studies of the frequency characteristics of the EEG rhythms in different human functional states, changes in frequency characteristics of the EEG rhythms during maturation and in mental pathology.  相似文献   

10.
During the past decade, spectral analysis has become indispensable instrument for different kinds of EEG processing. With the development of dedicated computer system, investigation of shifts in human EEG rhythm under various conditions has improved considerably. However, it is difficult to make general conclusions from this line of research, since a large number of studies are carried out using the ambiguous experimental approaches and different methods. Present paper aims to evaluate a modern state of the art in the field of human EEG rhythmical structure investigation. The results from recent relevant articles are briefly reviewed according to the universal scheme (EEG rhythm--experimental condition--observed effect). Due to such presentation, the obtained results have been summarized and some tendencies of modern investigations have been revealed. The extension of studied frequency range of rhythmical EEG components to both high (> 35 Hz) and low (< 1 Hz) frequencies, the shift to a more detailed spectral structure analysis simultaneously with ignoring the fixed boundaries of traditional EEG rhythms, the growing attempts to reveal EEG rhythmical structure correlates of cognitive activity, and a wide utilization of dynamic approaches for the analysis of brain electrical activity are discussed in some detail. The observed data are indicate of high functional significance and perspectives of human EEG rhythmical structure investigation.  相似文献   

11.
Analysis of EEG spectral power values and quantitative clinical scores of depressive conditions has been carried out in the dynamics of the treatment of 40 patients with endogenous depression, with the main goal to study the neurophysiological correlates and to search for possible predictors of therapeutic outcome. The reduction of depressive symptoms by the end of the treatment course was associated with EEG signs of improvement of the brain’s functional state. Significant correlations have been revealed between the EEG narrow-band spectral power values and clinical scores. As well, significant correlations have been revealed between some initial (before the beginning of the treatment) EEG parameters and quantitative clinical scores at the initial stage of remission. The values of EEG β1 and β2 spectral power appeared to be predictors, while initially larger values of EEG spectral power were associated with the high manifestation of residual depressive symptoms after the treatment. The results support the basic views on the brain’s mechanisms of various aspects of depressive disorders and reveal the possible neurophysiological predictors of the efficacy of the treatment of endogenous depression.  相似文献   

12.
The resting EEGs of several brain structures (motor and visual cortex, caudate nucleus and intralaminar thalamic nuclei) were submitted to spectral and coherence computer analyses in two rat strains. Genetically predisposed to convulsive state KM rats were shown to differ from nonpredisposed Wistar rats in EEG spectral properties. KM rats EEG pattern was characterized by increase of low frequencies (1-2 Hz) power and decrease of faster activity (5-12 Hz) power in cortical spectrograms as well as by decrease of caudate nucleus EEG absolute power. The coherence value between cortical or subcortical structures at below 4 Hz was intensified in KM rats. Reinforcement of cortical auto-oscillating properties manifested by ECoG synchronization in cortical-thalamic resonance interaction as well as weakening of striatal inhibitory system may constitute neurophysiological mechanisms of enhanced convulsive readiness. The probable role of mediator imbalance in these mechanisms is discussed.  相似文献   

13.
Fedotchev AI 《Biofizika》2001,46(1):112-117
The features of resonance phenomena in high-resolution EEG structure were analyzed for two intensities and three values of duration of exposure to 20 constant frequencies of intermittent photic stimulation in a range of 1-20 Hz with 1 Hz steps. It was shown that with a 6 s step duration, an irregular activation of multiple spectral EEG components for both light intensities occurs. With longer durations (12 and 18 s) of fixed-frequency stimulation, the EEG reactions are of resonance nature. Low-intensity flashes cause only the resonance activation of the intrinsic oscillator in the range of dominant alpha-EEG frequency. During a more intensive stimulation, the resonance EEG phenomena are observed for the whole range of stimulation frequencies. The interval of 6-12 s is supposed to be the relaxation period for a system of brain electrical activity generation. After this time, the low-intensity stimuli cause the adaptation of the system to light, whereas more intensive flashes cause more pronounced resonance EEG phenomena and physiological effects.  相似文献   

14.
The development of the resonance EEG responses of the left and right occipital areas was studied in right-handed men during prolonged (12 or 120 s) rhythmic, photostimulation with the intensity of 0.7 J and frequencies of 6, 10, and 16 Hz. Analysis of the EEG fine spectral structure was applied to compare the accumulated baseline EEG spectra and EEG spectra during photostimulation, to observe the dynamics of the short-term spectra and to detect power changes in the EEG narrow spectral band sharply coincident with the stimulation frequency. The more pronounced EEG responses to photostimulation were observed in subjects with the initially low EEG baseline, α-rhythm. Two-minute flash trains produced a substantial increase in the EEG power within the stimulation frequency with superposed oscillatory processes with different periods. These fluctuations are considered a reflection of intricate interaction between the adaptive and resonance EEG responses to the presented intermittent stimulation. Under 12-s stimulation the resonance EEG responses are steadily recorded within the first 3 s of stimulation and immediately after the flash cessation EEG power at the stimulation frequency returns to the initial level. The resonance EEG responses were more pronounced in the right hemisphere than in the left one, especially, at the stimulation frequencies of 6 and 16 Hz. With increasing the stimulation frequency, the maximum of resonance EEG responses was reached earlier. Under the stimulation frequency of 6 Hz, the maximal response was recorded 9–12 s after the beginning of flashes, at the frequencies of 10 and 16 Hz, it was recorded within 3–6 and 3 s, respectively.  相似文献   

15.
In order to evaluate the influence of the respiratory cycle on the EEG, we compared the power spectral analysis of the EEG performed by fast Fourier transformation during inspirium and exspirium in 10 healthy subjects. The measurement was performed during spontaneous breathing and then during eupnoe (0.25 Hz), bradypnoe (0.1 Hz) and tachypnoe (0.5 Hz) paced by a metronome. In the course of spontaneous breathing and bradypnoe, there was an increase in the delta power and in the total power in the anterior temporal region during inspirium in comparison with exspirium. The eupnoe was characterized by an inspiratory decrease in the delta power in the parietal region and in the total power in the frontal region. The tachypnoe resulted in a decrease of the beta power in the central region and a decrease of the theta power in the posterior temporal and in the occipital region during inspirium. In comparison of the EEG in eupnoe, bradypnoe and tachypnoe, a decrease of spectral power of all spectral bands was found except for delta during faster breathing frequencies and vice versa with a significant difference which was found mostly between bradypnoe and tachypnoe, less frequently between eupnoe and tachypnoe.  相似文献   

16.
Exposure to chorioamnionitis is strongly associated with neurodevelopmental disability after premature birth; however, it remains unclear whether subclinical infection affects functional EEG maturation. Chronically instrumented 103-104-day-old (0.7 gestational age: term 147 days) fetal sheep in utero were randomized to receive either gram-negative LPS by continuous low-dose infusion (100 ng iv over 24 h, followed by 250 ng/24 h for 4 days; n = 6) or the same volume of normal saline (n = 9). Arterial plasma cortisol, ACTH, and IL-6 were measured. The delta (0-3.9 Hz), theta (4-7.9 Hz), alpha (8-12.9 Hz), and beta (13-22 Hz) components of the EEG were determined by power spectral analysis. Brains were taken after 10 days for histopathology. There were no changes in blood gases, cardiovascular variables, or EEG power during LPS infusion, but a transient rise in plasma cortisol and IL-6 (P < 0.05). LPS infusion was associated with loss of the maturational increase to higher frequency activity, with reduced alpha and beta power, and greater delta power than saline controls from 6 to 10 days (P < 0.05). Histologically, LPS was associated with increased numbers of microglia and TNF-α-positive cells in the periventricular white matter and frontoparietal cortex, increased caspase-3-positive cells in white matter, but no loss of CNPase-positive oligodendrocytes, Nurr-1 subplate cells, or gyral complexity. These data suggest that low-dose endotoxin exposure can impair EEG maturation in preterm fetal sheep in association with neural inflammation but without hemodynamic disturbances or cortical injury.  相似文献   

17.
Maintenance of wakefulness is established to accomplish muscarinic (M-) cholinergic receptor activation in the ventrolateral preoptic area of the hypothalamus. The "muscarinic" wakefulness is characterized by enhancement of electroencephalogram (EEG) power spectra in the 0.75-12 Hz band and by increase in brain temperature. Activation of nicotinic (N-) cholinergic receptors of the area produces an increase in the duration of slow wave sleep, EEG power spectra reduction in the 0.75-7 Hz band, a decrease in brain temperature. And its hyperactivation leads to wakefulness, during its episodes the brain temperature decreases. During M- and N-cholinergic receptor blockade, the sleep-wakefulness and thermoregulation changes opposite to their activation were found. It is suggested that M- and N-cholinergic receptors of the ventrolateral preoptic area in pigeons participate in the sleep-wakefulness regulation and this effect is related to influence of this area on GABA-ergic system.  相似文献   

18.

Background

Previous studies have observed an altitude-dependent increase in central apneas and a shift towards lighter sleep at altitudes >4000 m. Whether altitude-dependent changes in the sleep EEG are also prevalent at moderate altitudes of 1600 m and 2600 m remains largely unknown. Furthermore, the relationship between sleep EEG variables and central apneas and oxygen saturation are of great interest to understand the impact of hypoxia at moderate altitude on sleep.

Methods

Fourty-four healthy men (mean age 25.0±5.5 years) underwent polysomnographic recordings during a baseline night at 490 m and four consecutive nights at 1630 m and 2590 m (two nights each) in a randomized cross-over design.

Results

Comparison of sleep EEG power density spectra of frontal (F3A2) and central (C3A2) derivations at altitudes compared to baseline revealed that slow-wave activity (SWA, 0.8–4.6 Hz) in non-REM sleep was reduced in an altitude-dependent manner (∼4% at 1630 m and 15% at 2590 m), while theta activity (4.6–8 Hz) was reduced only at the highest altitude (10% at 2590 m). In addition, spindle peak height and frequency showed a modest increase in the second night at 2590 m. SWA and theta activity were also reduced in REM sleep. Correlations between spectral power and central apnea/hypopnea index (AHI), oxygen desaturation index (ODI), and oxygen saturation revealed that distinct frequency bands were correlated with oxygen saturation (6.4–8 Hz and 13–14.4 Hz) and breathing variables (AHI, ODI; 0.8–4.6 Hz).

Conclusions

The correlation between SWA and AHI/ODI suggests that respiratory disturbances contribute to the reduction in SWA at altitude. Since SWA is a marker of sleep homeostasis, this might be indicative of an inability to efficiently dissipate sleep pressure.  相似文献   

19.
Two sinusoidal signals, one with a constant frequency of 13 Hz and the other with a frequency continuously changing from 1 to 6 Hz and back, were presented simultaneously to subjects through spectacles with light-emitting diodes either to both eyes as a product (amplitude modulation of a constant frequency by a variable one) or to each eye separately. Both kinds of variable frequency exposure revealed a rhomboid pattern of the resonance activation of the EEG spectrum, similar to the spectral dynamics of a signal subject to amplitude modulation. This testifies to the key role of EEG amplitude modulation in the responses of the nervous system to variable frequency rhythmic stimuli. Both types of photic stimulation led to a substantial increase in EEG spectral density and improved the subjects' self-rating of the overall state of well-being, activity, and mood. In addition, separate stimulation of each eye led to an improvement in the anxiety and exercise performance indices (the Luscher color test) and a significant correlation between the intensity of EEG responses and changes in the general state. These differences are explained in terms of the involvement of the interhemispheric interaction mechanisms in the processing of complex rhythmic signals by the brain.  相似文献   

20.

Objective

According to previous EEG reports of indicative disturbances in Alpha and Beta activities, a systematic search for distinct EEG abnormalities in a broader population of Ecstasy users may especially corroborate the presumed specific neurotoxicity of Ecstasy in humans.

Methods

105 poly-drug consumers with former Ecstasy use and 41 persons with comparable drug history without Ecstasy use, and 11 drug naives were investigated for EEG features. Conventional EEG derivations of 19 electrodes according to the 10-20-system were conducted. Besides standard EEG bands, quantitative EEG analyses of 1-Hz-subdivided power ranges of Alpha, Theta and Beta bands have been considered.

Results

Ecstasy users with medium and high cumulative Ecstasy doses revealed an increase in Theta and lower Alpha activities, significant increases in Beta activities, and a reduction of background activity. Ecstasy users with low cumulative Ecstasy doses showed a significant Alpha activity at 11 Hz. Interestingly, the spectral power of low frequencies in medium and high Ecstasy users was already significantly increased in the early phase of EEG recording. Statistical analyses suggested the main effect of Ecstasy to EEG results.

Conclusions

Our data from a major sample of Ecstasy users support previous data revealing alterations of EEG frequency spectrum due rather to neurotoxic effects of Ecstasy on serotonergic systems in more detail. Accordingly, our data may be in line with the observation of attentional and memory impairments in Ecstasy users with moderate to high misuse. Despite the methodological problem of polydrug use also in our approach, our EEG results may be indicative of the neuropathophysiological background of the reported memory and attentional deficits in Ecstasy abusers. Overall, our findings may suggest the usefulness of EEG in diagnostic approaches in assessing neurotoxic sequela of this common drug abuse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号