首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 88 毫秒
1.
Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.  相似文献   

2.
Proper completion of mitosis requires careful coordination of numerous cellular events. It is crucial, for example, that cells do not initiate spindle disassembly and cytokinesis until chromosomes have been properly segregated. Cells have developed numerous safeguards or checkpoints to delay exit from mitosis and initiation of the next cell cycle in response to defects in late mitosis. In this review, we discuss recent work on two homologous signaling pathways in budding and fission yeast, termed the mitotic exit network (MEN) and septation initiation network (SIN), respectively, that are essential for coordinating completion of mitosis and cytokinesis with other mitotic events.  相似文献   

3.
Centrosomes (spindle pole body in yeast) constitute the two poles of the bipolar mitotic spindle and play a prominent role in the segregation of chromosomes during mitosis. Like chromosomes, the centrosome inherited from the progenitor cell duplicates once in each division cycle, following which the sister centrosomes segregate away from each other to assemble a short spindle upon initiation of mitosis. Cdh1, an activator of the E3 ubiquitin ligase APC (Anaphase Promoting Complex), is a potent inhibitor of centrosome segregation and suppresses spindle assembly during S phase by mediating proteolytic destruction of the microtubule associated proteins (MAPs) required for centrosome separation. A recent study in yeast suggests that concerted action by two prominent kinases Cdk1 and polo are required to bring this destruction to a halt by inactivating Cdh1 and to facilitate spindle assembly. This is an effective strategy for the modulation of the activities of cell cycle regulators that require multiple phosphorylation. The control circuit involving Cdh1, Cdk1, Polo and MAPs may be also targeted by other cellular networks in contexts that demand the restraining of spindle dynamics.  相似文献   

4.
J H Thomas  D Botstein 《Cell》1986,44(1):65-76
We describe the phenotypes caused by a cold-sensitive lethal mutation (ndc1-1) that defines the NDC1 gene of yeast. Incubation of ndc1-1 at a nonpermissive temperature causes failure of chromosome separation in mitosis but does not block the cell cycle. This defect results in an asymmetric cell division in which one daughter cell doubles in ploidy and the other inherits no chromosomes. The spindle poles are properly segregated to the two daughter cells. The primary visible defect is that the chromosomes remain associated with only one pole, and are thus delivered to one daughter cell. Meiosis II, but not meiosis I, is sensitive to the ndc1-1 defect, suggesting that NDC1 is required for some feature common to mitosis and meiosis II. ndc1-1 appears to define a new class of cell cycle gene required for the attachment of chromosomes to the spindle pole.  相似文献   

5.
Accurate chromosome segregation depends on precise regulation of mitosis by the spindle checkpoint. This checkpoint monitors the status of kinetochore-microtubule attachment and delays the metaphase to anaphase transition until all kinetochores have formed stable bipolar connections to the mitotic spindle. Components of the spindle checkpoint include the mitotic arrest defective (MAD) genes MAD1-3, and the budding uninhibited by benzimidazole (BUB) genes BUB1 and BUB3. In animal cells, all known spindle checkpoint proteins are recruited to kinetochores during normal mitoses. In contrast, we show that whereas Saccharomyces cerevisiae Bub1p and Bub3p are bound to kinetochores early in mitosis as part of the normal cell cycle, Mad1p and Mad2p are kinetochore bound only in the presence of spindle damage or kinetochore lesions that interfere with chromosome-microtubule attachment. Moreover, although Mad1p and Mad2p perform essential mitotic functions during every division cycle in mammalian cells, they are required in budding yeast only when mitosis goes awry. We propose that differences in the behavior of spindle checkpoint proteins in animal cells and budding yeast result primarily from evolutionary divergence in spindle assembly pathways.  相似文献   

6.
Mana-Hox is a synthetic analog of manzamines, which are beta-carboline alkaloids isolated from marine sponges. Mana-Hox exhibited cytotoxicity against various tumor cell lines with the IC(50) range from 1 to 5 microM. Cell cycle synchronization and flow cytometric analysis showed that Mana-Hox delayed cell cycle progression at mitosis. At the concentration that delayed mitotic progression, bipolar spindle with lagged chromosomes and multipolar spindle with disorganized chromosomes were detected. The presence of such aberrant mitotic cells accompanied by the activation of spindle checkpoint that delayed cells exit from mitosis. However, after a short delay, lagged chromosomes were able to display in the abnormal metaphase plates, and subsequent cell division resulting in chromosome missegregation. Furthermore, the aberrant mitotic cells showed lower viability, indicating that Mana-Hox-induced cell death resulting from chromosome missegregation. This study is the first to explore cytotoxic mechanism of a manzamine-related compound and understand its potential as a lead compound for the development of future anticancer agents.  相似文献   

7.
We have used a yeast two-hybrid interaction assay to identify Chromator, a novel chromodomain containing protein that interacts directly with the putative spindle matrix protein Skeletor. Immunocytochemistry demonstrated that Chromator and Skeletor show extensive co-localization throughout the cell cycle. During interphase Chromator is localized on chromosomes to interband chromatin regions in a pattern that overlaps that of Skeletor. However, during mitosis both Chromator and Skeletor detach from the chromosomes and align together in a spindle-like structure. Deletion construct analysis in S2 cells showed that the COOH-terminal half of Chromator without the chromodomain was sufficient for both nuclear as well as spindle localization. Analysis of P-element mutations in the Chromator locus shows that Chromator is an essential protein. Furthermore, RNAi depletion of Chromator in S2 cells leads to abnormal microtubule spindle morphology and to chromosome segregation defects. These findings suggest that Chromator is a nuclear protein that plays a role in proper spindle dynamics during mitosis.  相似文献   

8.
A temperature-sensitive Syrian hamster mutant cell line, ts-745, exhibiting novel mitotic events has been isolated. The cells show normal growth and mitosis at 33 degrees C, the permissive temperature. At the nonpermissive temperature of 39 degrees C, mitotic progression becomes aberrant. Metaphase cells and those cells still able to form a metaphase configuration continue through and complete normal cell division. However, cells exposed to 39 degrees C for longer than 15 min can not form a normal metaphase spindle. Instead, the chromosomes are distributed in a spherical shell, with microtubules (MT) radiating to the chromosomes from four closely associated centrioles near the center of the cell. The cells progress from the spherical monopolar state to other monopolar orientations conical in appearance with four centrioles in the apex region. Organized chromosome movement is present, from the spherical shell state to the asymmetrical orientations. Chromosomes remain in the metaphase configuration without chromatid separation. Prometaphase chromosome congression appears normal, as the chromosomes and MT form a stable monopolar spindle, but bipolar spindle formation is apparently blocked in a premetaphase state. When returned from 39 degrees to 33 degrees C, the defective phenotype is readily reversible. At 39 degrees C, the mitotic abnormality lasts 3-5 h, followed by reformation of a single nucleus and cell flattening in an interphase- like state. Subsequent cell cycle events appear to occur, as the cells duplicate chromosomes and initiate a second round of abnormal mitosis. Cell cycle traversion continues for at least 5 d in some cells despite abnormal mitosis resulting in cells accumulating several hundred chromosomes.  相似文献   

9.
Proper kinetochore function is essential for the accurate segregation of chromosomes during mitosis. Kinetochores provide the attachment sites for spindle microtubules and are required for the alignment of chromosomes at the metaphase plate (chromosome congression). Components of the conserved NDC80 complex are required for chromosome congression, and their disruption results in mitotic arrest accompanied by multiple spindle aberrations. To better understand the function of the NDC80 complex, we have identified two novel subunits of the human NDC80 complex, termed human SPC25 (hSPC25) and human SPC24 (hSPC24), using an immunoaffinity approach. hSPC25 interacted with HEC1 (human homolog of yeast Ndc80) throughout the cell cycle and localized to kinetochores during mitosis. RNA interference-mediated depletion of hSPC25 in HeLa cells caused aberrant mitosis, followed by cell death, a phenotype similar to that of cells depleted of HEC1. Loss of hSPC25 also caused multiple spindle aberrations, including elongated, multipolar, and fractured spindles. In the absence of hSPC25, MAD1 and HEC1 failed to localize to kinetochores during mitosis, whereas the kinetochore localization of BUB1 and BUBR1 was largely unaffected. Interestingly, the kinetochore localization of MAD1 in cells with a compromised NDC80 function was restored upon microtubule depolymerization. Thus, hSPC25 is an essential kinetochore component that plays a significant role in proper execution of mitotic events.  相似文献   

10.
M Murone  V Simanis 《The EMBO journal》1996,15(23):6605-6616
Premature initiation of cytokinesis can lead to loss of chromosomes, and 'cutting' of the nucleus. Therefore, the proper spatial and temporal co-ordination of mitosis and cytokinesis is essential for maintaining the integrity of the genome. The fission yeast cdc16 gene is implicated both in the spindle assembly checkpoint and control of septum formation. To identify other proteins involved in these controls, we have isolated multicopy suppressors of the cdc16-116 mutation, and the characterization of one of these, dma1 (defective in mitotic arrest), is presented here. dma1 is not an essential gene, but in a dma1 null background (dma1-D1) the function of the spindle assembly checkpoint is compromised. If assembly of the spindle is prevented, dma1-D1 cells do not arrest, the activity of cdc2 kinase decays and cells form a division septum without completing a normal mitosis. dma1-D1 cells also show an increased rate of chromosome loss during exponential growth. Upon ectopic expression from an inducible promoter, dma1p delays progress through mitosis and inhibits septum formation, giving rise to elongated, multinucleate cells. We propose that dma1 is a component of the spindle assembly checkpoint, required to prevent septum formation and premature exit from mitosis if spindle function is impaired.  相似文献   

11.
The spindle assembly checkpoint monitors proper chromosome attachment to spindle microtubules and is conserved from yeast to humans. Checkpoint components reside on kinetochores of chromosomes and show changes in phosphorylation and localization as cells proceed through mitosis. Adaptation to prolonged checkpoint arrest can occur by inhibitory phosphorylation of Cdc2.  相似文献   

12.
Mitotic spindle assembly and chromosome segregation are controlled by the cell cycle machinery and by the guanosine triphosphatase Ran (RanGTPase). We developed a spatial model that allows us to simulate RanGTP production with different degrees of chromosome alignment in mitosis. Aided by this model, we defined three factors that modulate mitotic RanGTP gradients and mitotic progression in somatic cells. First, the concentration of RanGTPtransport-receptor (represented by RanGTP-importin β) and its spatial distribution are very sensitive to the level of RanBP1. Reduction of RanBP1 leads to an elevated RanGTP-transport receptor concentration throughout the cell, which disrupts spindle assembly and weakens spindle checkpoint control. Second, the completion of chromosome alignment at the metaphase plategenerates highest local RanGTP concentrations on chromosomes that could lead to spindle checkpoint silencing and metaphase-anaphase transition. Finally, chromosomal RanGTP production could be dampened by a reduction of RCC1 phosphorylation in mitosis. Our spatialsimulation of RanGTP production using individual chromosomes should provide means to further understand how the Ran system and the cell cycle machinery coordinately regulate mitosis.  相似文献   

13.
Many organisms divide chromosomes within the confines of the nuclear envelope (NE) in a process known as closed mitosis. Thus, they must ensure coordination between segregation of the genetic material and division of the NE itself. Although many years of work have led to a reasonably clear understanding of mitotic spindle function in chromosome segregation, the NE division mechanism remains obscure. Here, we show that fission yeast cells overexpressing the transforming acid coiled coil (TACC)-related protein, Mia1p/Alp7p, failed to separate the spindle pole bodies (SPBs) at the onset of mitosis, but could assemble acentrosomal bipolar and antiparallel spindle structures. Most of these cells arrested in anaphase with fully extended spindles and nonsegregated chromosomes. Spindle poles that lacked the SPBs did not lead the division of the NE during spindle elongation, but deformed it, trapping the chromosomes within. When the SPBs were severed by laser microsurgery in wild-type cells, we observed analogous deformations of the NE by elongating spindle remnants, resulting in NE division failure. Analysis of dis1Δ cells that elongate spindles despite unattached kinetochores indicated that the SPBs were required for maintaining nuclear shape at anaphase onset. Strikingly, when the NE was disassembled by utilizing a temperature-sensitive allele of the Ran GEF, Pim1p, the abnormal spindles induced by Mia1p overexpression were capable of segregating sister chromatids to daughter cells, suggesting that the failure to divide the NE prevents chromosome partitioning. Our results imply that the SPBs preclude deformation of the NE during spindle elongation and thus serve as specialized structures enabling nuclear division during closed mitosis in fission yeast.  相似文献   

14.
The mitotic checkpoint blocks cell cycle progression before anaphase in case of mistakes in the alignment of chromosomes on the mitotic spindle. In budding yeast, the Mad1, 2, 3, and Bub1, 2, 3 proteins mediate this arrest. Vertebrate homologues of Mad1, 2, 3, and Bub1, 3 bind to unattached kinetochores and prevent progression through mitosis by inhibiting Cdc20/APC-mediated proteolysis of anaphase inhibitors, like Pds1 and B-type cyclins. We investigated the role of Bub2 in budding yeast mitotic checkpoint. The following observations indicate that Bub2 and Mad1, 2 probably activate the checkpoint via different pathways: (a) unlike the other Mad and Bub proteins, Bub2 localizes at the spindle pole body (SPB) throughout the cell cycle; (b) the effect of concomitant lack of Mad1 or Mad2 and Bub2 is additive, since nocodazole-treated mad1 bub2 and mad2 bub2 double mutants rereplicate DNA more rapidly and efficiently than either single mutant; (c) cell cycle progression of bub2 cells in the presence of nocodazole requires the Cdc26 APC subunit, which, conversely, is not required for mad2 cells in the same conditions. Altogether, our data suggest that activation of the mitotic checkpoint blocks progression through mitosis by independent and partially redundant mechanisms.  相似文献   

15.
Fission yeast temperature-sensitive mutants cut3-477 and cut14-208 fail to condense chromosomes but small portions of the chromosomes can separate along the spindle during mitosis, producing phi-shaped chromosomes. Septation and cell division occur in the absence of normal nuclear division, causing the cut phenotype. Fluorescence in situ hybridization demonstrated that the contraction of the chromosome arm during mitosis was defective. Mutant chromosomes are apparently not rigid enough to be transported poleward by the spindle. Loss of the cut3 protein by gene disruption fails to maintain the nuclear chromatin architecture even in interphase. Both cut3 and cut14 proteins contain a putative nucleoside triphosphate (NTP)-binding domain and belong to the same ubiquitous protein family which includes the budding yeast Smc1 protein. The cut3 mutant was suppressed by an increase in the cut14+ gene dosage. The cut3 protein, having the highest similarity to the mouse protein, is localized in the nucleus throughout the cell cycle. Plasmids carrying the DNA topoisomerase I gene partly suppressed the temperature sensitive phenotype of cut3-477, suggesting that the cut3 protein might be involved in chromosome DNA topology.  相似文献   

16.
Zhu M  Wang F  Yan F  Yao PY  Du J  Gao X  Wang X  Wu Q  Ward T  Li J  Kioko S  Hu R  Xie W  Ding X  Yao X 《The Journal of biological chemistry》2008,283(27):18916-18925
Chromosome segregation in mitosis is orchestrated by dynamic interaction between spindle microtubules and the kinetochore. Septin (SEPT) belongs to a conserved family of polymerizing GTPases localized to the metaphase spindle during mitosis. Previous study showed that SEPT2 depletion results in chromosome mis-segregation correlated with a loss of centromere-associated protein E (CENP-E) from the kinetochores of congressing chromosomes (1). However, it has remained elusive as to whether CENP-E physically interacts with SEPT and how this interaction orchestrates chromosome segregation in mitosis. Here we show that SEPT7 is required for a stable kinetochore localization of CENP-E in HeLa and MDCK cells. SEPT7 stabilizes the kinetochore association of CENP-E by directly interacting with its C-terminal domain. The region of SEPT7 binding to CENP-E was mapped to its C-terminal domain by glutathione S-transferase pull-down and yeast two-hybrid assays. Immunofluorescence study shows that SEPT7 filaments distribute along the mitotic spindle and terminate at the kinetochore marked by CENP-E. Remarkably, suppression of synthesis of SEPT7 by small interfering RNA abrogated the localization of CENP-E to the kinetochore and caused aberrant chromosome segregation. These mitotic defects and kinetochore localization of CENP-E can be successfully rescued by introducing exogenous GFP-SEPT7 into the SEPT7-depleted cells. These SEPT7-suppressed cells display reduced tension at kinetochores of bi-orientated chromosomes and activated mitotic spindle checkpoint marked by Mad2 and BubR1 labelings on these misaligned chromosomes. These findings reveal a key role for the SEPT7-CENP-E interaction in the distribution of CENP-E to the kinetochore and achieving chromosome alignment. We propose that SEPT7 forms a link between kinetochore distribution of CENP-E and the mitotic spindle checkpoint.  相似文献   

17.
INTRODUCTION: During anaphase B in mitosis, polymerization and sliding of overlapping spindle microtubules (MTs) contribute to the outward movement the spindle pole bodies (SPBs). To probe the mechanism of spindle elongation, we combine fluorescence microscopy, photobleaching, and laser microsurgery in the fission yeast Schizosaccharomyces pombe. RESULTS: We demonstrate that a green laser cuts intracellular structures in yeast cells with high spatial specificity. By using laser microsurgery, we cut mitotic spindles labeled with GFP-tubulin at various stages of anaphase B. Although cutting generally caused early anaphase spindles to disassemble, midanaphase spindle fragments continued to elongate. In particular, when the spindle was cut near a SPB, the larger spindle fragment continued to elongate in the direction of the cut. Photobleach marks showed that sliding of overlapping midzone MTs was responsible for the elongation of the spindle fragment. Spindle midzone fragments not connected to either of the two spindle poles also elongated. Equatorial microtubule organizing center (eMTOC) activity was not affected in cells with one detached pole but was delayed or absent in cells with two detached poles. CONCLUSIONS: These studies reveal that the spindle midzone is necessary and sufficient for the stabilization of MT ends and for spindle elongation. By contrast, SPBs are not required for elongation, but they contribute to the attachment of the nuclear envelope and chromosomes to the spindle, and to cell cycle progression. Laser microsurgery provides a means by which to dissect the mechanics of the spindle in yeast.  相似文献   

18.
We have identified Klp2p, a new kinesin-like protein (KLP) of the KAR3 subfamily in fission yeast. The motor domain of this protein is 61% identical and 71% similar to Pkl1p, another fission yeast KAR3 protein, yet the two enzymes are different in behavior and function. Pkl1p is nuclear throughout the cell cycle, whereas Klp2p is cytoplasmic during interphase. During mitosis Klp2p enters the nucleus where it forms about six chromatin-associated dots. In metaphase-arrested cells these migrate back and forth across the nucleus. During early anaphase they segregate with the chromosomes into two sets of about three, fade, and are replaced by other dots that form on the spindle interzone. Neither klp2(+) nor pkl1(+) is essential, and the double deletion is also wild type for both vegetative and sexual reproduction. Each deletion rescues different alleles of cut7(ts), a KLP that contributes to spindle formation and elongation. When either or both deletions are combined with a dynein deletion, vegetative growth is normal, but sexual reproduction fails: klp2 Delta,dhc1-d1 in karyogamy, pkl1 Delta,dhc1-d1 in multiple phases of meiosis, and the triple deletion in both. Deletion of Klp2p elongates a metaphase-arrested spindle, but pkl1 Delta shortens it. The anaphase spindle of klp2 Delta becomes longer than the cell, leading it to curl around the cell's ends. Apparently, Klp2p promotes spindle disassembly and contributes to the behavior of mitotic chromosomes.  相似文献   

19.
Early cell biologists perceived centrosomes to be permanent cellular structures. Centrosomes were observed to reproduce once each cycle and to orchestrate assembly a transient mitotic apparatus that segregated chromosomes and a centrosome to each daughter at the completion of cell division. Centrosomes are composed of a pair of centrioles buried in a complex pericentriolar matrix. The bulk of microtubules in cells lie with one end buried in the pericentriolar matrix and the other extending outward into the cytoplasm. Centrioles recruit and organize pericentriolar material. As a result, centrioles dominate microtubule organization and spindle assembly in cells born with centrosomes. Centrioles duplicate in concert with chromosomes during the cell cycle. At the onset of mitosis, sibling centrosomes separate and establish a bipolar spindle that partitions a set of chromosomes and a centrosome to each daughter cell at the completion of mitosis and cell division. Centriole inheritance has historically been ascribed to a template mechanism in which the parental centriole contributed to, if not directed, assembly of a single new centriole once each cell cycle. It is now clear that neither centrioles nor centrosomes are essential to cell proliferation. This review examines the recent literature on inheritance of centrioles in animal cells.Key words: centrosome, centriol, spindle, mitosis, microtubule, cell cycle, checkpoints  相似文献   

20.
The fission yeast top2 locus is defined by five temperature-sensitive mutations that cause heat-labile activity of type II DNA topoisomerase in the cell extracts. We show that the top2 locus is a structural gene for type II topoisomerase by cloning a genomic DNA fragment that complements top2. The top2 mutants at restrictive temperature produce abnormal chromosomes at the time of mitosis; these are transiently extended into filamentous structures along with the elongating mitotic spindle but are not separated. A primary defect in top2 appears to be the formation of aberrant mitotic chromosomes inseparable by the force generated by the spindle apparatus. Consistently, the top2 cells that become lethal during mitosis contain a catenated dimer of an ARS plasmid. DNA and RNA continue to be synthesized if cytokinesis is blocked. Uncoordinated mitosis, that is the occurrence of spindle dynamics without chromosome separation, is revealed in top2, and is discussed in relation to mitotic regulation. Different phenotypes between top2 and top1-top2 described in the present paper can be explained by a previously proposed hypothesis that type II topoisomerase has dual in vivo functions: one that decatenates and unknots duplex DNAs is essential in mitosis, whereas the other which relaxes supercoils is required throughout the cell cycle if type I topoisomerase is absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号