首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Introduced Spartina alterniflora (smooth cordgrass) is rapidly invading intertidal mudflats in San Francisco Bay, California. At several sites, S. alterniflora co-occurs with native S. foliosa (California cordgrass), a species endemic to California salt marshes. In this study, random amplified polymorphic DNA markers (RAPDs) specific to each Spartina species were identified and used to test for hybridization between the native and introduced Spartina species in the greenhouse and in the field. Greenhouse crosses were made using S. alterniflora as the pollen donor and S. foliosa as the maternal plant, and these crosses produced viable seeds. The hybrid status of the crossed offspring was confirmed with the RAPD markers. Hybrids had low self-fertility but high fertility when back-crossed with S. foliosa pollen. Hybrids were also found established at two field sites in San Francisco Bay; these hybrids appeared vigorous and morphologically intermediate between the parental species. Field observations suggested that hybrids were recruiting more rapidly than the native S. foliosa. Previous work identified competition from introduced S. alterniflora as a threat to native S. foliosa. In this study, we identify introgression and the spread of hybrids as an additional, perhaps even more serious threat to conservation of S. foliosa in San Francisco Bay.  相似文献   

2.
Reciprocal hybrid formation of Spartina in San Francisco Bay   总被引:6,自引:0,他引:6  
Diversity in the tRNALEU1 intron of the chloroplast genome of Spartina was used to study hybridization of native California cordgrass, Spartina foliosa, with S. alterniflora, introduced to San Francisco Bay approximately 25 years ago. We sequenced 544 bases of the tRNALEU1 intron and found three polymorphic sites, a pyrimidine transition at site 126 and transversions at sites 382 and 430. Spartina from outside of San Francisco Bay, where hybridization between these species is impossible, gave cpDNA genotypes of the parental species. S. foliosa had a single chloroplast haplotype, CCT, and this was unique to California cordgrass. S. alterniflora from the native range along the Atlantic coast of North America had three chloroplast haplotypes, CAT, TAA, and TAT. Hybrids were discriminated by random amplified polymorphic DNA (RAPD) phenotypes developed in a previous study. We found one hybrid that contained a cpDNA haplotype unknown in either parental species (TCT). The most significant finding was that hybridization proceeds in both directions, assuming maternal inheritance of cpDNA; 26 of the 36 hybrid Spartina plants from San Francisco Bay contained the S. foliosa haplotype, nine contained haplotypes of the invading S. alterniflora, and one had the cpDNA of unknown origin. Furthermore, cpDNA of both parental species was distributed throughout the broad range of RAPD phenotypes, suggesting ongoing contributions to the hybrid swarm from both. The preponderance of S. foliosa cpDNA has entered the hybrid swarm indirectly, we propose, from F1s that backcross to S. foliosa. Flowering of the native precedes by several weeks that of the invading species, with little overlap between the two. Thus, F1 hybrids would be rare and sired by the last S. foliosa pollen upon the first S. alterniflora stigmas. The native species produces little pollen and this has low viability. An intermediate flowering time of hybrids as well as pollen that is more vigourous and abundant than that of the native species would predispose F1s to high fitness in a vast sea of native ovules. Thus, spread of hybrids to other S. foliosa marshes could be an even greater threat to the native species than introductions of alien S. alterniflora.  相似文献   

3.
We report the discovery and spread of a dwarf ecotype of Spartina alterniflora in San Francisco Bay. Relative to typical S. alterniflora, this dwarf ecotype has one-fifth the tiller height (~21 cm), tenfold the tiller density (~4000 tillers/m(2)), and is restricted to growth in the upper intertidal zone. Chromosome counts of the dwarfs are identical to typical smooth cordgrass (2n = 62), and smooth cordgrass-specific random amplified DNA markers confirm the species identity of the dwarf. Field-collected clonal fragments of the dwarf grown for 2 yr under high-nutrient conditions maintained the dwarf syndrome, as did plants grown from the seed of a dwarf. The dwarf condition is not caused by endophytic fungi. The first dwarf smooth cordgrass patch was discovered in 1991, and by 1996 five separate dwarf patches had appeared within 200 m of the original. Since 1991, total area covered by the dwarf ecotype has increased sixfold to 140 m(2). The ecological range of the dwarf smooth cordgrass ecotype is similar to that of S. patens, a competitor on the Atlantic coast. We suggest that the absence of S. patens from most of San Francisco Bay has allowed the dwarf ecotype of smooth cordgrass to survive and spread.  相似文献   

4.
The distribution and abundance of Enchytraeidae and Tubificidae in and around Spartina alterniflora plants in a tidal salt marsh on Sapelo Island, Georgia, USA were studied using two different sampling techniques: wet funnel extraction and stem dissection. At least 80% of all worms inhabited leaf sheaths at the bases of S. alterniflora plants, and densities were low in sediment, root and surface debris samples. Oligochaete densities were dependent on the position within the marsh, the height on stems and the stage of sheath decay. Six predominant species were identified and included Marionina appendiculata, Marionina spartinae, Marionina waltersi, Marionina paludis, and Monopylephorus parvus. Individual species were distributed differently on stems and enchytraeids were more common than tubificids on standing-dead and further up S. alterniflora stems. Estimates of oligochaete densities in salt marsh habitats are increased dramatically when the numbers of worms on stems are considered. Possible advantages of the stem microhabitat are discussed in relation to the biology and ecology of oligochaetes.  相似文献   

5.
A number of antibiotics were used to suppress bacterial activity in decomposing Spartina alterniflora. The effectiveness of each treatment was quantified using INT formazan vital staining and epifluorescent microscopy. Bacterial suppression of selected treatments was verified using standard plate count procedures. Chloramphenicol treated samples (exhibiting 87–90% bacterial suppression) were analyzed respirometrically and found to consume only 30% less O2 than controls. Non-bacterial respiration (probably fungal) accounted for 70% of the respiration.  相似文献   

6.
Rapid evolution in contemporary time can result when related species, brought together through human-aided introduction, hybridize. The significant evolutionary consequences of post-introduction hybridization range from allopolyploid speciation to extinction of species through genetic amalgamation. Both processes are known to occur in the perennial cordgrass genus, Spartina. Here we report the existence of a third recent Spartina hybridization, discovered in 2002, between introduced S. densiflora and native S. foliosa in San Francisco Bay, California, USA. We used nuclear and chloroplast DNA analysis and nuclear DNA content with chromosome counts to examine plants of morphology intermediate between S. densiflora and S. foliosa in a restored marsh in Marin County, California. We found 32 F(1) diploid hybrids and two triploid plants, all having S. densiflora and S. foliosa as parents; there is also evidence of a genetic contribution of S. alterniflora in some hybrids. None of these hybrids set germinable seed. In 2007 we found a hybrid over 30 miles away in a marsh where both parental species occurred, suggesting hybridization may not be a localized phenomenon. The presence of diploid and triploid hybrids is important because they indicate that several avenues existed that may have given rise to a new allopolyploid species. However, such an event is now unlikely because all hybrids are targets of eradication efforts.  相似文献   

7.
The magnitude of inbreeding depression in invading plant populations is often presumed to be small and of little consequence. The purpose of this study was to assess the magnitude of inbreeding depression in a pollen-limited, partially self-incompatible, invading plant population. The magnitude and timing of inbreeding depression were compared among ten maternal plants sampled from a population of smooth cordgrass (Spartina alterniflora) invading San Francisco Bay. Selfed and outcrossed progeny were compared for embryo abortion, survival of seedlings, and growth/survival at the end of the first growing season in three greenhouse environments. Estimates of inbreeding depression varied among environments, with competitive environment > high-nutrient environment > low-nutrient environment. Population-level estimates of inbreeding depression ranged from 0.61 to 0.81; however, maternal plants varied significantly in their magnitude of inbreeding depression, ranging from 0.1 to 0.97. The 95% confidence interval for inbreeding depression for some maternal plants included zero. There was a significant negative correlation between the overall magnitude of inbreeding depression and self-fertility rate among maternal plants. The few maternal plants with high self-fertility carried relatively little genetic load, and their selfed progeny are likely to survive on open mudflats. The noncompetitive, pollen-limited growing conditions associated with invasion may allow self-fertility to spread in this population.  相似文献   

8.
The first distribution, biomass and toxicity study of a newly established bloom of the colonial cyanobacteria Microcystis aeruginosa was conducted on October 15, 2003 in the upper San Francisco Bay Estuary. Microcystis aeruginosa was widely distributed throughout 180 km of waterways in the upper San Francisco Bay Estuary from freshwater to brackish water environments and contained hepatotoxic microcystins at all stations. Other cyanobacteria toxins were absent or only present in trace amounts. The composition of the microcystins among stations was similar and dominated by demethyl microcystin-LR followed by microcystin-LR. In situ toxicity computed for the >75 m cell diameter size fraction was well below the 1 g l–1 advisory level set by the World Health Organization for water quality, but the toxicity of the full population is unknown. The toxicity may have been greater earlier in the year when biomass was visibly higher. Toxicity was highest at low water temperature, water transparency and salinity. Microcystins from the bloom entered the food web and were present in both total zooplankton and clam tissue. Initial laboratory feeding tests suggested the cyanobacteria was not consumed by the adult copepod Eurytemora affinis, an important fishery food source in the estuary.  相似文献   

9.
Summary Lacunal allocation as the fraction of the total cross sectional area of leaves, stem bases, rhizomes, and roots was determined in both tall and short growth forms of Spartina alterniflora collected from natural monospecific stands. The results indicate that in both growth forms lacunal allocation is greater in stem bases and rhizomes than in leaves and roots and that tall form plants allocate more of their stem and rhizome to lacunae than short form plants.Measurements made in natural stands of Spartina alterniflora suggest that total lacunal area of the stem base increases with increasing stem diameter and that stem diameter increases with increasing plant height and above-ground biomass. However, the fraction of cross section allocated to lacunae was relatively constant and increased only with the formation of a central lacuna.Experimental manipulations of surface and subsurface water exchange were carried out to test the influence of flooding regime on aerenchyma formation. No significant differences in lacunal allocation were detected between plants grown in flooded (reduced) and drained (oxidized) sediments in either laboratory or field experiments. While aerenchyma formation in Spartina alterniflora may be an adaptation to soil waterlogging/anoxia, our results suggest that lacunal formation is maximized as a normal part of development with allocation constrained structurally by the size of plants in highly organic New England and Mid-Atlantic marshes.The cross sectional area of aerenchyma for gas transport was found to be related to the growth of Spartina alterniflora with stands of short form Spartina alterniflora exhibiting a lower specific gas transport capacity (lacunal area per unit below ground biomass) than tall form plants despite having a similar below-ground biomass supported by a 10 fold higher culm density. The increased specific gas transport capacity in tall vs. short plants may provide a new mechanism to explain the better aeration, higher nutrient uptake rates and lower frequency of anaerobic respiration in roots of tall vs. short Spartina alterniflora.  相似文献   

10.
We report on the habitat dependent invasion and control pattern of the English cordgrass, Spartina anglica C. E. Hubbard, in Puget Sound, Washington. In 36 years, the plant has successfully invaded 73 sites, affecting 3311 ha of marine intertidal habitat, which if allowed to solidly fill, would equal 400ha. Invasion and control both depend on habitat type. Mudflats and low salinity marshes have significantly more solid area of S. anglica than do high salinity marshes and cobble beaches. Control efforts since 1997 have resulted in a 13% decline of the grass. We find that high salinity marshes have the greatest decline ( 70%), low salinity marshes have the lowest decline ( 10%), and mudflat ( 29%) and cobble beaches ( 21%) have intermediate losses. We hypothesize that invasion success and control are dependent on a relatively complex interplay between habitat physical conditions and species interactions.  相似文献   

11.
The effect of brassinolide (BL) on cultured calluses of Spartina patens (Ait.) Muhl. (Poaceae), a halophyte monocot was studied. BL at 0.03–0.04 mg l–1 at fixed concentrations of IAA (0.2 mg l–1) and BA (3.0 mg l–1) added in MS medium increased the ratio for fresh weight (CIRFW) to dry weight (CIRDW) by 96–111% and 235–326%. Similarly, in callus regeneration capacity, BL at 0.03 mg l–1 was most effective, increasing the shoot regeneration ratio (SRR) by 425%. BL at 0.04 mg l–1 had not such an increasing effect as BL at 0.03 mg l–1, which increased SRR by 79%. However, BL at 0.005 mg l–1 promoted regenerated shoot growth most significantly, increasing the shoot height increasing ratio (SHIR) by 395% after a 40-day culture. BL at 0.05 mg l–1 was least effective in the callus regeneration and regenerated shoot growth, decreasing SRR by 27% and SHIR by 52%. Present results suggest that BL at 0.03 mg l–1 is suitable for the callus growth and shoot regeneration, while BL at 0.005 mg l–1 effectively enhanced the regenerated shoot growth.  相似文献   

12.
Summary Soil waterlogging responses were examined in three Spartina patens populations along a steep flooding gradient in coastal Louisiana. Root anatomy and physiological indicators of anaerobic metabolism were examined to identify and compare flooding responses in dune, swale and marsh populations, while soil physicochemical factors were measured to characterize the three habitats. Soil waterlogging increased along the gradient from dune to marsh habitats and was accompanied by increases in root porosity (aerenchyma). Aerenchyma in marsh roots was apparently insufficient to provide enough oxygen for aerobic respiratory demand, as indicated by high root alcohol dehydrogenase activities and low energy charge ratios. Patterns of root metabolic indicators suggest that dune and swale roots generally respired aerobically, while anaerobic metabolism was important in marsh roots. However, in each population, relatively greater soil waterloging was accompanied by differences in enzyme activities leading to malate accumulation. In dune and swale roots under these circumstances, depressed adenylate energy charge ratios may have been the result of an absence of increased ethanol fermentation. These trends suggest that: 1) Aerenchyma formation was an important, albeit incomplete, long-term adaptation to the prevalent degree of soil waterlogging. 2) All populations adjusted root metabolism in response to a relative (short-term) increase in soil waterlogging.  相似文献   

13.
The aboveground production of Spartina alterniflora in a salt marsh in Barataria Bay, Louisiana, USA was estimated using five different harvest methods: peak standing crop (PSC), Milner-Hughes, Smalley, Wiegert-Evans, and Lomnicki et al., and a non-destructive method based on measurement of stem density and longevity. Annual production estimates were 831 ± 41, 831 ± 62, 1231 ± 252, 1873 ± 147 and 1437 ± 96 g dry wt m–2 for each method, respectively. The average longevity of individually tagged young shoots was 5.2 ± 0.2 months, equivalent to an annual turnover rate of 2.3 crops per year. Among the five methods, Wiegert-Evans and Lomnicki et al. were considered more accurate than the other three because they corrected for mortality losses between sampling times. The Lomnicki et al. method was preferred over the Wiegert-Evans method because of its greater simplicity.  相似文献   

14.
Patterns in the spatial arrangement of invasive plant populations can provide opportunity for strategic placement of control efforts. Smooth cordgrass (Spartina alterniflora) is rapidly invading the intertidal mudflats of Pacific Coast estuaries. Its pattern of spread is distinctive. Seedlings establish in open mud and then grow vegetatively to form expanding circular patches, which dot the mudflats and eventually coalesce into a contiguous monospecific meadow. The invasion typically begins in the upper tide zone and then moves down the tidal gradient. A spatially explicit model was used to simulate the spread of S. alterniflora and compare various strategies for control in a situation where only a fraction of the total infestation could be controlled each year. A strategy of killing outlying patches first and then attacking the dense meadows (moving up the tidal gradient) led to eradication with up to 44% less time and effort than a strategy of attacking the dense meadows first and outlying patches second (moving down the tidal gradient). In the control of contiguous meadows located adjacent to the shoreline, the best strategy was to approach one end of the infestation, moving across the meadow to the other end. Suppression of seeds was not an effective control strategy. In general, effective control strategies were those that first eliminate the plant in areas where current or future vegetative growth is greatest. Application of these results in control programs for S. alterniflora and similar invasive species could greatly reduce the costs of control work and improve the likelihood of local or complete eradication.  相似文献   

15.
Spartina alterniflora, smooth cordgrass, native to the eastern USA, was introduced into south San Francisco Bay ≈ 25 years ago. It has spread by purposeful introduction of rooted plants and dispersal of seeds on the tides. Previous work suggested that S. alterniflora was competitively superior to the native California cordgrass, S. foliosa, and that the two species hybridized. The present study determined the spread of S. alterniflora and S. foliosa × alterniflora hybrids in California and examined the degree of hybridization. We used nuclear DNA markers diagnostic for each species to detect the parental species and nine categories of hybrids. The California coast outside San Francisco Bay contained only the native species. All hybrid categories exist in the Bay, implying that several generations of crossing have occurred and that hybridization is bidirectional. Hybrids were found principally near sites of deliberate introduction of the exotic species. Where S. alterniflora was deliberately planted, we found approximately equal numbers of S. alterniflora and hybrid individuals; S. foliosa was virtually absent. Marshes colonized by water-dispersed seed contained the full gamut of phenotypes with intermediate-type hybrids predominating. The proliferation of hybrids could result in local extinction of S. foliosa. What is more, S. alterniflora has the ability to greatly modify the estuary ecosystem to the detriment of other native species and human uses of the Bay. To the extent that they share these engineering abilities, the proliferation of cordgrass hybrids could grossly alter the character of the San Francisco Bay.  相似文献   

16.
Impounded tidal conditions often compromise coastal marsh restoration goals, through vegetation loss and other biogeochemical feedbacks. To determine if episodic marsh impoundments could be partially responsible for the observed cordgrass (Spartina foliosa) dieback at Crissy Field, Golden Gate National Recreation Area, we examined sulfur chemistry and plant stress along transects between and during tidal inlet closure events from 2007 to 2008. During closures, porewater sulfide (PW S2?) concentrations did not respond consistently among sites, nor did they increase to levels likely to cause stress damage to cordgrass (>1 mM). However, sediment solid‐phase total reduced sulfur (TRS) concentrations did respond strongly to closures both at surface and subsurface depth intervals, and they were greatest in sites with high organic matter content (>5%). The temporal patterns of both PW S2? and TRS suggest that while sulfate reduction may be enhanced during closure events, the free sulfide produced is largely precipitated into solid‐phase minerals. Even without millimolar levels of PW S2?, plant stress was observed during closures, as indicated by a buildup of ethanol in root tissues, a by‐product of fermentative respiration brought on by limited oxygen availability. Further, enhanced sulfate reduction may be related to the higher relative concentrations of methylmercury in low intertidal surface sediments observed during closure events. These data suggest that, in support of vegetated tidal marsh restoration goals, tidal flows should be maintained actively to reduce the impact of impoundment events on marsh biogeochemistry and productivity.  相似文献   

17.
The perennial smooth cordgrass, Spartina alterniflora, has been successfully introduced in salty ecosystems for revegetation or agricultural use. However, it remains unclear whether it can be introduced in arid ecosystems. The aim of this study was to investigate the physiological response of this species to water deficiency in a climate-controlled greenhouse. The experiment consisted of two levels of irrigation modes, 100 and 50% field capacities (FC). Although growth, photosynthesis, and stomatal conductance of plants with 50% FC were reduced at 90 days from the start of the experiment, all of the plants survived. The water-stressed plants exhibited osmotic adjustment and an increase in the maximum elastic modulus that is assumed to be effective to enhance the driving force for water extraction from the soil with small leaf water loss. An increase in the water use efficiency was also found in the water-stressed plants, which could contribute to the maintenance of leaf water status under drought conditions. It can be concluded that S. alterniflora has the capacity to maintain leaf water status and thus survive in arid environment.  相似文献   

18.
We investigated the evolutionary dynamics of duplicated copies of the granule-bound starch synthase I gene (GBSSI or Waxy) within polyploid Spartina species. Molecular cloning, sequencing, and phylogenetic analyses revealed incongruences between the expected species phylogeny and the inferred gene trees. Some genes within species were more divergent than expected from ploidy level alone, suggesting the existence of paralogous sets of Waxy loci in Spartina. Phylogenetic analyses indicate that this paralogy originated from a duplication that occurred prior to the divergence of Spartina from other Chloridoideae. Gene tree topologies revealed three divergent homoeologous sequences in the hexaploid S. alterniflora that are consistent with the proposal of an allopolyploid origin of the hexaploid clade. Waxy sequences differ in insertion–deletion events in introns, which may be used to diagnose gene copies. Both paralogous and homoeologous coding regions appear to evolving under selective constraints.  相似文献   

19.
We report the occurrence of the orange-striped green anemone Diadumene lineata (Verrill 1871) (=Haliplanella lineata) in salt marshes at the Bahía Blanca Estuary for the first time in August 2005. We also found this species attached to roots and stems of Spartina alterniflora, an association that has never been registered before. After their determination, sampling was performed during a year to evaluate seasonal abundance of this sea anemone. Results showed that D. lineata was present through the whole year, indicating the existence of a stable population. All individuals sampled were found attached to roots or stems of S. alterniflora, with the higher abundances detected in summer. Further studies are necessary to precise the potential effects of this exotic sea anemone on salt marsh communities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号