首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present studies were aimed to evaluate the possibility to use a system for estimation in vitro of the biosynthesis and degradation rates of human skeletal muscle protein. A previously characterized human skeletal muscle preparation was used. Amino acids and insulin stimulated significantly the incorporation rate of leucine into proteins. The effect of amino acids was more pronounced than that of insulin. The stimulatory effect of insulin could be decreased by amino acids. Insulin did not influence the tissue uptake or the oxidation rate of leucine. The release of [14C]leucine deriving from degradation of prelabelled skeletal muscle fibre proteins was linear for at least 2.5 h of incubation and optimal with leucine at concentrations beyond 12.5 mmol/1 or in the presence of puromycin in the incubation medium. The rate of the release of radioactivity was significantly inhibited by amino acids and at borderline significance by insulin but not by puromycin. The specific radioactivity in prelabelled proteins decreased significantly in the presence of puromycin suggesting that leucine derived from protein degradation was reutilized in vitro. This reutilization was found to be 9 +/- 1% of leucine released from degradation of proteins in 30 subjects. A statistically significant positive correlation between the cathepsin D activity in human skeletal muscle tissue and the degradative rate of prelabelled muscle proteins in vitro was observed. The results indicate that biosynthesis and degradation of skeletal muscle proteins in this system in vitro were subjected to control mechanisms. It is suggested that the release of radioactivity from prelabelled muscle fibre proteins during incubation probably only reflects the degradation of some rapidly-turning-over proteins.  相似文献   

2.
The significance of changes in rates of synthesis, export, and degradation of proteins during liver regeneration was assessed. (a) Proteins were pulse labeled by the intravenous injection of radioactive leucine and, 5 min later, pactamycin (an inhibitor of the initiation of protein synthesis). One-half of the protein radioactivity was lost from the normal liver within 3 hours. From the radioactivity of the plasma proteins at that time and a study of the disappearance of these proteins from the circulation, it was calculated that 28% of the newly synthesized proteins were exported. Serum albumin accounted for a third of the exported proteins. Thirty-six hours after partial hepatectomy the proportion of albumin to total protein synthesis remained constant, while that of the other plasma proteins increased by 50%. The fraction of the newly synthesized proteins retained by the liver after 3 hours decreased by 20%. (b) During the first 36 hours of liver regeneration the average rates of protein degradation slowed down to one-half the normal values. This was determined either by the loss of radioactivity from total protein (or the guanidino-C of protein-bound arginine) in livers labeled with [14C]bicarbonate, or calculated as the balance between protein synthesis and net protein gain. (c) From these results, and those of our previous study of the protein synthetic machinery of normal and regenerating livers (Scornik, O.A. (1974)J. Biol. Chem. 249, 3876-3883), we conclude that changes in the rate of protein degradation are the single most important factor determining the increase in protein content during liver compensatory growth.  相似文献   

3.
The effect of hypophysectomy on the protein metabolism of the liver in vivo was studied. Fractional rates of protein synthesis and degradation were determined in the livers of normal and hypophysectomized rats. Synthesis was measured after the injection of massive amounts of radioactive leucine. Degradation was estimated either as the balance between synthesis and accumulation of stable liver proteins or from the disappearance of radioactivity from the proteins previously labelled by the injection of NaH14CO3. The results indicate that: (1) hypophysectomy diminishes the capacity of the liver to synthesize proteins in vivo, mainly of those that are exported as plasma proteins; (2) livers of both normal and hypophysectomized rats show identical protein-degradation rates, whereas plasma proteins are degraded slowly after hypophysectomy.  相似文献   

4.
A study is presented of the liver protein gain during the early stages of postnatal development. Fractional rates of protein synthesis and degradation were determined in vivo in livers of 4-day-old mice. At this age, liver protein accumulated at a rate of 18% per day. Synthesis was measured after the injection of massive amounts of radioactive leucine. Degradation was extimated as the balance between synthesis and accumulation of stable liver proteins, or from the disappearance of radioactivity from liver protein previously labelled by the administration of NaH14CO3. We found that the neonatal livers: (1) synthesize 139% as much protein per unit time and unit mass as adult tissue, which is accounted for by a higher ribosome concentration (synthesis per mg of RNA was the same); (2) retain 39% of the newly synthesized protein as stable liver components (compared with 48% in adult mice); (3) degrade protein at 56% of the rate in the adult liver. This lower rate of degradation is quantitatively the most significant difference between the growing and non-growing liver.  相似文献   

5.
Fractional rates of synthesis and degradation of liver porteins were estimated during the rapid restoration of liver mass observed in protein-depleted mice when they are fed with an adequate diet. 1. Net protein gain was fastest 12h after the nutritional shift, when it reached a rate of 48% per day. 2. The RNA/protein ratio in livers of protein-depleted animals was essentially the same as in normal livers; it increased by a maximum of 13% 12h after the nutritional shift. 3. Rates of protein synthesis in vivo were measured by the incorporation into liver protein of massive amounts of L-[1-14C]leucine. In protein-depleted animals, the rate of synthesis per mg of RNA was 72% of that in normal livers. Normal rates were recovered within 12h of the nutritional shift. 4. The fraction of newly synthesized protein retained by the liver was studied after they were pulse-labelled by the intravenous injection of radioactive leucine, and, 5 min later, pactamycin (an inhibitor of the initiation of protein synthesis); 3h later the livers in both experimental situations retained 58% of the newly synthesized protein. 5. Fractional rates of protein degradation were estimated either from the difference between the synthesis of stable liver proteins and the net protein increase, or by the disappearance of radioactivity from the liver protein previously labelled by the administration to the mice of NaH14CO3. Both procedures demonstrated a large decrease in the rate of protein degradation during liver growth.  相似文献   

6.
The incorporation of [3H]leucine in vivo into very low density lipoproteins (VLDL) from the rat hepatic Golgi apparatus and serum was studied. A Golgi-rich fraction isolated on a discontinuous sucrose gradient between 0.5 and 1.1 M was found to contain VLDL having common antigenic determinants with serum VLDL. The incorporation of the [3H]leucine into the Golgi VLDL and serum VLDL suggested a precursor-product relationship. Analysis of the apoproteins of the Golgi VLDL by polacrylamide gel electrophoresis revealed protein bands with similar mobility to those of serum VLDL, except that the former contained virtually no rapidly migrating peptides with the mobility of serum apo-C-II and apo-C-III. The pattern of incorporation of the [3H]leucine into the apoproteins was similar in VLDL from Golgi apparatus and serum, except for the absence of radioactivity in the area of the gel of Golgi apo-VLDL corresponding to apo-C-II and apo-C-III. The radioactive amino acid was incorporated predominantly into the Golgi apo-VLDL bands with similar mobility to apo-B and an apoprotein or group of apoproteins containing the arginine-rich peptide of serum VLDL. In vitro incubation of the Golgi VLDL with [3H]leucine-labeled HDL resulted in the acquisition of a number of proteins, including the rapidly migrating proteins. Administration of colchicine prior to the injection of [3H]leucine resulted in the appearance of gel bands and radioactivity in the apo-C-II and apo-C-III areas of Golgi apo-VLDL, suggesting that these can be acquired if secretion of VLDL is slowed or inhibited. The hepatic Golgi apparatus was then divided into fractions of predominantly forming face (GF3) or secretory granules (GF1). After polyacrylamide gel electrophoresis of the apo-VLDL from GF, no visible bands or incorporation of [3H]leucine was found in the region of apo-C-II or apo-C-III. However VLDL from GF1, showed visible and radioactive bands in the apo-C-II and apo-C-III area although they represented a much smaller proportion of the total apoprotein than was found in the corresponding serum apo-VLDL. In the isolated perfused liver the percentage incorporation of [3H]leucine into the rapidly migrating apoproteins of Golgi VLDL was considerably less than that found in the corresponding apoproteins of perfusate VLDL, where circulating C lipoproteins are virtually absent. The data indicate that nascent VLDL begins to acquire the C-II and C-III apoproteins during its passage through the Golgi apparatus but that the main acquisition occurs during or after secretion into the space of Disse.  相似文献   

7.
In order to assess metabolic recycling of sialic acid, GM1 ganglioside [nomenclature of Svennerholm (1964) J. Lipid. Res. 5, 145-155; IUPAC-IUB Recommendations (1977) Lipids 12, 455-468], 14C-radiolabelled at the acetyl group of sialic acid, was intravenously injected into Wistar rats, and the presence of radioactive sialic acid in liver sialoglycolipids (gangliosides) and sialoglycoproteins was ascertained. A time-course study (20 min-72 h) showed that the radioactivity present in the liver distributed in the following fractions, with reciprocal proportion varying with time: the protein (glycoprotein) fraction, the ganglioside fraction and the diffusible fraction, which contained low-Mr compounds, including sialic acid. Ganglioside-linked radioactivity gradually decreased with time; protein-linked radioactivity appeared soon after injection (20 min), reached a maximum around 20 h, then slowly diminished; diffusible radioactivity provided a sharp peak at 4 h, then rapidly decreased till disappearing after 40 h. The behaviour of bound radioactivity in the individual liver gangliosides was as follows: (a) rapid diminution with time in GM1, although with a lower rate at the longer times after injection; (b) early appearance (20 min) with a peak at 1 h, followed by continuous diminution, in GM2; (c) early appearance (20 min), peak at 1 h, diminution till 4 h, followed by a plateau, in GM3; (d) appearance at 60 min, maximum around 40 h and slow diminution thereafter, in GD1a, GD1b and GT1b. A detailed study, accomplished at 40 h after injection, demonstrated that almost all radioactivity present in the protein fraction was released by mild acid treatment and recovered in purified sialic acid; most of radioactive glycoprotein-bound sialic acid was releasable by sialidase action. In addition, the radioactivity present in the different gangliosides was exclusively carried by sialic acid and present in both sialidase-resistant and sialidase-labile residues. Only in the case of GD1a was the specific radioactivity of sialidase-resistant sialic acid superior to that of sialidase-releasable sialic acid. The results obtained lead to the following conclusions: (a) radioactive GM3 and GM2 were produced by degradation of GM1 taken up; GM3 originated partly by a process of neosynthesis; (b) radioactive GM1 consisted in part of residual exogenous GM1 and in part of a neosynthetized product; (c) radioactive GD1a originated in part by direct sialylation of GM1 taken up and in part by a neosynthetic process; (d) radioactive GD1b and GT1b resulted only from neosynthesis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
It is demonstrated that RNA isolated from polyribosomes and postmitochondrial fraction of rat liver cells and bound to nitrocellulose filters (Milliport) represent mRNA. RNA taken from the nitrocellulose filters sedimented in sucrose concentration gradient with a wide peak within the range of 18--6S, attaining a maximum at 12S. The (A+U)/(G+C) ratio of this RNA was equal to 1.04. On the other hand, the same ratio for rRNA was 0.64. Specific radioactivity of polysomal mRNA containing poly-A sequences, was significantly lower at 14-hour labelling with 14C-orotate than at 4-hour labelling (control). Inhibitors (cycloheximide, puromycin, ethionine, actinomycin D) stabilized polysomal mRNA. Specific radioactivity of postmitochondrial fraction mRNA was higher at 14-hour labelling than at 4-hour labelling. Specific radioactivity of postmitochondrial fraction mRNA during protein synthesis blocking by different inhibitors was comparable to those of control animals. It is hypothesized that active translation is necessary for the initiation of rat liver mRNA degradation.  相似文献   

9.
10.
1. Methods for the separation of membrane-bound and free ribosomes from rat brain (cortex) and skeletal muscle were described and the preparations characterized by chemical analysis and electron microscopy. The attachment of ribosomes to membranes is not an artifact of the separation procedure. 2. The rate of incorporation of l-[(14)C]leucine into protein in vitro by the membrane-bound and free ribosomes from these two predominantly non-protein-secreting tissues is compared with that by similar preparations from rat liver. With all three tissues the initial rate was higher for the membrane-bound preparations. 3. By using the technique of discharging nascent polypeptide chains by incubation with puromycin followed by treatment with sodium deoxycholate (Redman & Sabatini, 1966), a major difference was observed for the vectorial discharge of nascent protein synthesized both in vivo and in vitro on membrane-bound ribosomes from liver, on the one hand, and brain and muscle, on the other. Whereas a large part of nascent protein synthesized on membrane-bound liver ribosomes was discharged into the membranous vesicles (presumably destined for export from the cell), almost all nascent protein from membrane-bound ribosomes from brain and muscle was released directly into the supernatant. Incorporation of [(3)H]puromycin into peptidyl-[(3)H]puromycin confirmed these findings. There was thus no difference between membrane-bound and free ribosomes from brain on the one hand, and from free polyribosomes from liver on the other, as far as the vectorial release of newly synthesized protein was concerned. 4. Incubation with puromycin also showed that the nascent chains, pre-formed in vivo and in vitro, are not involved in the attachment of ribosomes to membranes of the endoplasmic reticulum. 5. The differences in vectorial discharge from membrane-bound ribosomes from liver as compared with brain and muscle are not due to the different types of messenger RNA in the different tissues. Polyphenylalanine synthesized on incubation with polyuridylic acid was handled in the same way as polypeptides synthesized with endogenous messenger. 6. It is concluded that there is a major difference in the attachment of ribosomes to the membranes of the endoplasmic reticulum of secretory and non-secretory tissues, which results in a tissue-specific difference in the vectorial discharge of nascent proteins.  相似文献   

11.
Polysomes were isolated from Aspergillus niger and were characterized on sucrose gradients in several ways. First, they were found to be susceptible to degradation by treatment with RNase or EDTA. Second, they were labeled after treating mycelia with short pulses of [3H]uridine or [3H]leucine prior to polysome isolation. Third, they were capable of stimulating incorporation of [3H]leucine into trichloroacetic acid-precipitable material in a chick reticulocyte cell-free protein-synthesizing system. When isolated [3H]leucine pulse-labeled polysomes were treated with either EDTA-RNase or puromycin, 80–90% of the radioactivity was released, indicating that only the nascent polypeptide chains were labeled. After exposing mycelia for 1 min to [14C]mannose, the polysomes were exclusively labeled, indicating that initial glycosylation takes place on nascent polypeptide chains. Preincubation of mycelia with 2-deoxyglucose followed by pulse-labeling with [3H]leucine and [14C]mannose showed that 2-deoxy-d-glucose inhibits both protein synthesis and glycosylation. However, similar preincubation with tunicamycin caused an 80% drop in [14C]mannose label in the polysomes, but only a 10–20% drop of [3H]leucine label, suggesting that glycosylation of nascent chains in A. niger involves an oligosaccharide-lipid intermediate, since it has been shown that tunicamycin inhibits the synthesis of such an intermediate. When isolated polysomes were placed into an in vitro glycosylating mixture containing Mn2+, GDP-[14C]mannose, and smooth membranes from A. niger nascent chains were labeled. This reaction was shown to be dependent on addition of polysomes to the mixture and was not inhibited by 2-deoxy-d-glucose or tunicamycin. Both in vivo and in vitro glycosylated nascent chains were found to have about the same size range, and so it is suggested that in vitro no new oligosaccharide chains were synthesized, but preexisting chains were extended.  相似文献   

12.
Polysomes consisting of two to eight monosomes were isolated from yeast mitochondria by lysing the mitochondria with Triton X-100 and centrifugation in a 20 to 40% linear sucrose gradient. When yeast spheroplasts were pulse-labeled with [3H]-Leucine in the presence of cycloheximide to block cytoplasmic protein synthesis, radioactivity which was trichloroacetic acid-precipitable was present mainly in the polysome region. Incorporation of leucine was blocked by erythromycin, a specific inhibitor of mitochondrial protein synthesis. Release of radioactivity to the top of the gradient resulted from treating labeled polysomes with either puromycin or ribonuclease (in the latter case with the breakdown of polysomes), indicating that the radioactivity was present in nascent polypeptide chains. Yeast cells were grown in chloramphenicol for 3 hours and in fresh medium for 1 hour and then pulse-labeled with either [3H]leucine or [14C]formate. Three parameters showed a 2-fold increase in cells grown in chloramphenicol prior to pulse labeling: the polysome to monosome ratio, the amount of labeled precursor incorporated into proteins, and the rate of polypeptide chain initiation as judged by the formation of fMet-puromycin. Conversely, these parameters were all decreased approximately 50% in cells treated with cycloheximide prior to pulse labeling. Mitochondria were also isolated from cells previously grown in chloramphenicol or cycloheximide and incubated in vitro with [3H]leucine under optimal conditions. Acid-precipitable radioactivity in the polysome region was increased 3-fold in mitochondria from cells grown previously in chloramphenicol and decreased 75% in those grown in cycloheximide. Furthermore, chain initiation was deomonstrated in the isolated mitochondria by formation of fMet-puromycin. The rate of chain initiation in vitro was increased 2-fold in mitochondria isolated from chloramphenicol-treated cells.  相似文献   

13.
The axonal transport of labelled proteins was studied in the optic system of adult rabbits after an intraocular injection of [3H]Ieucine. It was demonstrated that the precursor was incorporated into protein, which was transported along the axons of the retinal ganglion cells. Intraocularly injected puromycin inhibited protein synthesis in the retina and markedly inhibited the appearance of labelled protein in the optic nerve and tract. It was further demonstrated by intracisternal injection of [3H]leucine that an intraocular injection of puromycin did not affect the local protein synthesis in the optic nerve and tract. Cell fractionation studies of the optic nerve and tract showed that the rapidly migrating component, previously described as moving at an average rate of 110-150 mm/day, was largely associated with the microsomal fraction. About 40 per cent of the total protein-bound radioactivity in this component was found in the microsomal fraction and about 15 per cent was recovered in the soluble protein fraction. Most of the labelled material moving at a rate of 1-5-2 mm/day was soluble protein. The specific radioactivity of this component was about ten times greater than that of the fast one. In the slow component about 50 per cent of the radioactivity was found in the soluble protein fraction and about 10 per cent of the radioactivity was recovered in the microsomal fraction. Radioautography demonstrated incorporated label in the neuropil structures in the lateral geniculate body as early as 4-8 hr after intraocular injection. The labelling of the neuropil increased markedly during the first week, and could be observed after 3 weeks.  相似文献   

14.
Rat embryo fibroblasts were grown in Eagle's minimal essential medium with 10% serum and cell proteins prelabelled with L-[1-(14)C]leucine, followed by a 24h chase. When transferred to medium deprived of serum these cells showed a 2--3-fold increase in the production of trichloroacetic acid-soluble radioactivity during a 4h observation period. The microtubular poisons vinblastine, vincristine and colchicine partially inhibited this induced proteolysis, but had no effect on the proteolytic rate of cells maintained in medium with 10% serum. A similar discriminating effect on induced proteolysis was observed with cycloheximide, puromycin and insulin. The inhibitory effects of cycloheximide and vinblastine were not additive. These data support the hypothesis that, in addition to the basal turnover of cell proteins, a second mechanism of protein degradation involving cytoplasmic autophagy can be activated by nutritional step-down and is selectively inhibited by agents that interfere with microtubular function and protein synthesis.  相似文献   

15.
Protein-degradation rates in developing rat brain were estimated from the decay in total radioactivity in proteins labelled by a single intraperitoneal injection of NaH14CO3 to 5-day-old animals. In contrast with previous reports, our results indicate that degradation rates are lower in developing than in adult brain and suggest that in brain, as has been observed in liver, adrenal gland, muscle, cultured mammalian cells and bacteria, reduced rates of protein degradation contribute to the increase in protein content under conditions of rapid growth.  相似文献   

16.
The vectorial release of nascent immunoglobulin peptides   总被引:3,自引:1,他引:2  
A microsomal preparation from a mouse plasmacytoma, MOPC 47A, that secretes immunoglobulin A was used to study the release of nascent immunoglobulin peptides in vitro. Nascent chains were released with puromycin and characterized with specific antiserum against the immunoglobulin product of the tumour. When the tissue had been prelabelled with [(3)H]leucine the experiments were complicated by the large background of completed radioactive polypeptides in the microsomal preparation. Up to one-third of the released radioactivity in the microsomal preparation could be recognized as immunoglobulin. With [(3)H]-puromycin as the radioactive label, however, the results are much easier to interpret, although the proportion of released radioactivity that can be identified as immunoglobulin is lower (up to one-tenth). Both types of experiment demonstrate that all of the recognizable nascent immunoglobulin chains remain in association with the microsomal vesicles after release from the ribosomes.  相似文献   

17.
The cellular site of initial glycosylation of proteins from Saccharomyces cerevisiae has been studied. Short pulses of [U-14C]mannose label the ribosomal fraction of the yeast. Most of the label was associated with polysomes; monosomes contained only a small amount of radioactivity. All of the radioactivity present in the polysomal fraction was accounted by mannose and smaller amounts of glucose and glucosamine. Puromycin treatment detached more than 50% of the radioactivity from the polysomes; treatment of polysomes at pH 10.0 also caused the release of radioactivity. These results indicate that initial sugar binding occurs while the nascent polypeptide chains are still growing on the ribosomes. When the cells were preincubated with 2-deoxy-D-glucose, incorporation of [U-14C]mannose into the polysomes and the cell wall was inhibited, whereas its incorporation into membrane fractions was unimpaired. It was concluded that 2-deoxy-D-glucose inhibited the synthesis of glycoproteins by interference with the initial glycosylation steps at the ribosomal level.  相似文献   

18.
Uptake and degradation of lysozyme in the rat kidney were studied in vivo. The protein was labeled with 125I by way of a moiety (tyramine-cellobiose or 'TC') which remained trapped inside the cells even after proteolysis of the peptide chain (in contrast, the label from conventionally labeled proteins escapes after degradation). Following the injection of 'trapped-label' lysozyme, the radioactivity in the kidneys represented the total amount of lysozyme that was taken up during the experiment. Proteolysis could be followed by determining the amount of acid-soluble degradation products. By adding the radioactivity in the urine to that in the kidneys, a measure of the total filtered load was obtained. When only a trace dose of 125I-labeled TC lysozyme was injected into rats, the amount of radioactivity in the kidneys increased on average by 0.09% per min, after the concentration in the blood had become nearly stable. After 100 min, 30% of the injected dose was recovered in the kidneys. The labeled protein was degraded to acid-soluble molecules of Mr less than 1000. There was apparently a 'lag period' between the endocytosis in the kidneys and the start of degradation. 40 min after the injection of a trace dose, about 0.6% of the 'trapped-label' lysozyme in the kidneys was degraded per min.; subsequently, there was a decline in the fraction which was degraded per min. The amount of lysozyme in the urine increased after the injection of increasing amounts of lysozyme, showing that the capacity of the uptake mechanism was being exceeded, but truly saturating levels of lysozyme could not be reached in vivo.  相似文献   

19.
Abstract— The process of protein synthesis in the brain of Octopus vulgaris Lam has been examined after systemic administration of [3H]leucine and upon incubation of the tissue in sea water containing the radioactive precursor. After injection of [3H]leucine in the branchial heart, the radioactivity of the TCA-soluble fractions of the three main brain divisions reached a maximum in about 30 min and decreased thereafter, while incorporation into the protein fractions was complete in approx. 2 h. Per unit wet weight the radioactivity of brain proteins was higher than that of most other organs. In vitro the rate of incorporation of [3H]leucine in the protein fraction of the optic lobe remained low for more than 1 h, but increased several fold thereafter. Preincubation of the tissue in sea water abolished the lag period. Similar effects were observed in the vertical lobe as well as in the optic lobe of young and adult octopuses but not in the white body, a non-nervous organ. The process of protein synthesis in the optic lobe is markedly inhibited by puromycin, cycloheximide and chloramphenicol. Electrophoretic analysis on polyacrylamide gels indicated that the soluble proteins labelled in vitro and in vivo are similar.  相似文献   

20.
Rats were injected with a single or repeated doses of hemin intraperitoneally, and the effect on liver catalase [EC 1.11.1.6] was studied. A single administration of hemin caused a reduction in the concentration of liver catalase, both in enzymatic activity and in catalase protein determined immunochemically. The reduction occurred a few hours after the hemin injection, and is probably due to stimulated degradation. Disappearance of radioactivity from liver catalase prelabelled with [14C]leucine was enhanced following the administration of hemin. No evidence for a repression in vivo incorporation of [14C]leucine and [3H]sigma-aminolevulinic acid into liver catalase was obtained with hemin-treated rats. When the hemin was given repeatedly at 12-h intervals, the level of liver catalase decreased considerably. However, the impairment in catalase-synthesizing activity of liver cells of rats thus treated was rather slight, when examined in a cell-free system. Some differences were noted between the results in the present study and those in previous investigations with Sedormid-treated rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号