共查询到20条相似文献,搜索用时 15 毫秒
1.
The introduction of induced pluripotent stem (iPS) cells has been a milestone in the field of regenerative medicine and drug discovery. iPS cells can provide a continuous and individualized source of stem cells and are considered to hold great potential for economically feasible personalized stem cell therapy. Various diseases might potentially be cured by iPS cell-based therapy including Parkinson’s disease, Alzheimer’s disease, Huntington disease, ischemic heart disease, diabetes and so on. Moreover, iPS cells derived from patients suffering from unique incurable diseases can be developed into patient- and disease-specific cell lines. These cells can be used as an effective approach to study the mechanisms of diseases, providing useful tools for drug discovery, development and evaluation. The development of suitable methods for the culture and expansion of iPS cells and their differentiated progenies make feasible modern drug discovery techniques such as high-throughput screening. Furthermore, iPS cells can be applied in the field of toxicological and pharmacokinetics tests. This review focuses on the applications of iPS cells in the field of pharmaceutical industry. 相似文献
2.
自2006年Takahashi和Yamanaka首次成功地从小鼠成纤维细胞诱导得到诱导多能性干细胞(Induced pluripotent stem cells,iPS细胞)以来,iPS细胞由于其潜在的广阔应用前景而迅速成为干细胞研究领域的新热点;与此同时,iPS细胞的遗传安全性也越来越多地受到人们的关注。文章将对iPS细胞遗传安全性的研究进展进行综述,分析造成iPS细胞遗传不稳定的可能原因,希望可以促进对iPS细胞诱导条件的优化,获得遗传上较为安全的iPS细胞。 相似文献
3.
自2006年Takahashi和Yamanaka首次成功地从小鼠成纤维细胞诱导得到诱导多能性干细胞(Induced pluripotent stem cells, iPS细胞)以来, iPS细胞由于其潜在的广阔应用前景而迅速成为干细胞研究领域的新热点; 与此同时, iPS细胞的遗传安全性也越来越多地受到人们的关注。文章将对iPS细胞遗传安全性的研究进展进行综述, 分析造成iPS细胞遗传不稳定的可能原因, 希望可以促进对iPS细胞诱导条件的优化, 获得遗传上较为安全的iPS细胞。 相似文献
4.
5.
通过外源转录调控因子的诱导,使成体细胞重编程为胚胎干细胞(ES细胞)样的多能细胞,这种细胞称为诱导多能干细胞(iPS细胞),这一方法被称为iPS技术。目前,iPS技术已先后在小鼠、人、猕猴、大鼠和猪中成功应用,建立了相应的iPS细胞系,并获得了iPS细胞嵌合小鼠和四倍体克隆小鼠。尽管iPS与ES细胞在形态和生长特性上有许多相同之处,但iPS细胞的建立需要较独特的诱导培养体系和鉴定方法。以下结合近年来iPS技术的发展和本实验室的相关研究,对iPS细胞的建立和培养体系的优化进行了深入探讨。 相似文献
6.
7.
Introduction (1) Human embryonic stem (ES) cells are pluripotent but are difficult to be used for therapy because of immunological, oncological and ethical barriers. (2) Pluripotent cells exist in vivo, i.e., germ cells and epiblast cells but cannot be isolated without sacrificing the developing embryo. (3) Reprogramming to pluripotency is possible from adult cells using ectopic expression of OKSM and other integrative and non-integrative techniques. (4) Hurdles to overcome include i.e stability of the phenotype in relation to epigenetic memory. Sources of data We reviewed the literature related to reprogramming, pluripotency and fetal stem cells. Areas of agreement (1) Fetal stem cells present some advantageous characteristics compared with their neonatal and postnatal counterparts, with regards to cell size, growth kinetics, and differentiation potential, as well as in vivo tissue repair capacity. (2) Amniotic fluid stem cells are more easily reprogrammed to pluripotency than adult fibroblast. (3) The parental population is heterogeneous and present an intermediate phenotype between ES and adult somatic stem cells, expressing markers of both. Areas of controversy (1) It is unclear whether induced pluripotent stem (iPS) derived from amniotic fluid stem cells are fully or partially reprogrammed. (2) Optimal protocols to ensure highest efficiency and phenotype stability remains to be determined. (3) The “level” of reprogramming, fully vs partial, of iPS derived from amniotic fluid stem cells remain to be determined. Growing points Banking of fully reprogrammed cells may be important both for (1) autologous and allogenic applications in medicine, and (2) disease modeling. 相似文献
8.
9.
10.
Yaghoub Rahimi Amir Mehdizadeh Hojjatollah Nozad Charoudeh Mohammad Nouri Kobra Valaei Shabnam Fayezi Masoud Darabi 《Development, growth & differentiation》2015,57(9):667-674
Stearoyl‐CoA desaturase 1 (SCD1) plays important roles in organ development, glucose tolerance, insulin sensitivity, and cancer. Here, we examined the role of SCD1 for the differentiation of human induced pluripotent stem (hiPS) cells to liver cells by using drug inhibition and biochemical experiments. hiPS cells cultured in a pro‐hepatic medium were exposed to an SCD1 inhibitor at various stages throughout differentiation. Liver‐specific markers, specifically α‐fetoprotein, albumin and urea in conditioned medium, and hepatocyte nuclear factor 4α (HNF4α) and cytochrome P450 7A1 (CYP7A1) gene expressions and triglyceride in cellular extracts were analyzed at various development stages. Measures of hepatocyte‐specific function and triglyceride accumulation in later stages were strongly inhibited a minimum of −29% (P < 0.05) by SCD1 inhibitor in the early stage of hepatic differentiation and effectively reversed (>30%, P < 0.01) by the addition of oleate. The results were also reproducible with human primary mononuclear cells (hPMN). SCD1 inhibitor had no significant effect on liver‐specific markers when it was added in the hepatic maturation stage. However, it strikingly led to higher albumin (1.6‐fold, P = 0.03) and urea (1.9‐fold, P = 0.02) production, and HNF4α (1.9‐fold, P = 0.02) and CYP7A1 (1.3‐fold, P = 0.03) expression upon incubation during the lineage‐commitment stage. Hepatic differentiation from cultured hiPS cells is sensitive to SCD1 inhibition and this sensitivity is affected by the stage of cellular differentiation. Notably, findings also indicate that this notion can be extended to hPMN. The requirement for SCD1 activity in functional differentiation of hepatocytes may have relevance for human liver disease and metabolic dysregulation. 相似文献
11.
Sunil K. Mallanna 《Developmental biology》2010,344(1):16-25
MicroRNAs (miRNAs) have emerged as critical regulators of gene expression. These small, non-coding RNAs are believed to regulate more than a third of all protein coding genes, and they have been implicated in the control of virtually all biological processes, including the biology of stem cells. The essential roles of miRNAs in the control of pluripotent stem cells were clearly established by the finding that embryonic stem (ES) cells lacking proteins required for miRNA biogenesis exhibit defects in proliferation and differentiation. Subsequently, the function of numerous miRNAs has been shown to control the fate of ES cells and to directly influence critical gene regulatory networks controlled by pluripotency factors Sox2, Oct4, and Nanog. Moreover, a growing list of tissue-specific miRNAs, which are silenced or not processed fully in ES cells, has been found to promote differentiation upon their expression and proper processing. The importance of miRNAs for ES cells is further indicated by the exciting discovery that specific miRNA mimics or miRNA inhibitors promote the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. Although some progress has been made during the past two years in our understanding of the contribution of specific miRNAs during reprogramming, further progress is needed since it is highly likely that miRNAs play even wider roles in the generation of iPS cells than currently appreciated. This review examines recent developments related to the roles of miRNAs in the biology of pluripotent stem cells. In addition, we posit that more than a dozen additional miRNAs are excellent candidates for influencing the generation of iPS cells as well as for providing new insights into the process of reprogramming. 相似文献
12.
13.
14.
Proliferation,morphology, and pluripotency of mouse induced pluripotent stem cells in three different types of alginate beads for mass production 下载免费PDF全文
Ikki Horiguchi Mohammad M. Chowdhury Yasuyuki Sakai Yoji Tabata 《Biotechnology progress》2014,30(4):896-904
Induced pluripotent stem cells (iPSCs) are expected to be an ideal cell source for biomedical applications, but such applications usually require a large number of cells. Suspension culture of iPSC aggregates can offer high cell yields but sometimes results in excess aggregation or cell death by shear stress. Hydrogel‐based microencapsulation can solve such problems observed in Suspension culture, but there is no systematic evaluation of the possible capsule formulations. In addition, their biological effects on entrapped cells are still poorly studied so far. We, therefore, immobilized mouse iPSCs in three different types of calcium–alginate (Alg–Ca) hydrogel‐based microcapsules; (i) Alg–Ca capsules without further treatment (Naked), (ii) Alg–Ca capsules with poly‐l ‐lysine (PLL) coating (Coated), and (iii) Alg–PLL membrane capsules with liquid cores (Hollow). After 10 days of culture within the medium containing serum and leukemia inhibitory factor, we obtained good cellular expansions (10–13‐fold) in Coated and Hollow capsules that were similar to Suspension culture. However, 32 ± 9% of cellular leakage and lower cell yield (about threefold) were observed in Naked capsules. This was not observed in Coated and Hollow capsules. In addition, immunostaining and quantitative RT‐PCR showed that the formation of primitive endodermal layers was suppressed in Coated capsules contrary to all other formulations. This agenesis of primitive endoderm layers in Coated capsules is likely to be the main cause of the significantly better pluripotency maintenance in hydrogel‐based encapsulation culture. These results are helpful in further optimizing hydrogel‐based iPSC culture, which can maintain better local cellular environments and be compatible with mass culture. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:896–904, 2014 相似文献
15.
Xuejing Duan Qisheng Tu Jin Zhang Jinhai Ye Cesar Sommer Gustavo Mostoslavsky David Kaplan Pishan Yang Jake Chen 《Journal of cellular physiology》2011,226(1):150-157
Tissue engineering provides a new paradigm for periodontal tissue regeneration in which proper stem cells and effective cellular factors are very important. The objective of this study was, for the first time, to investigate the capabilities and advantages of periodontal tissue regeneration using induced pluripotent stem (iPS) cells and enamel matrix derivatives (EMD). In this study the effect of EMD gel on iPS cells in vitro was first determined, and then tissue engineering technique was performed to repair periodontal defects in three groups: silk scaffold only; silk scaffold + EMD; and silk scaffold + EMD + iPS cells. EMD greatly enhanced the mRNA expression of Runx2 but inhibited the mRNA expression of OC and mineralization nodule formation in vitro. Transplantation of iPS cells showed higher expression levels of OC, Osx, and Runx2 genes, both 12 and 24 days postsurgery. At 24 days postsurgery in the iPS cell group, histological analysis showed much more new alveolar bone and cementum formation with regenerated periodontal ligament between them. The results showed the commitment role that EMD contributes in mesenchymal progenitors to early cells in the osteogenic lineage. iPS cells combined with EMD provide a valuable tool for periodontal tissue engineering, by promoting the formation of new cementum, alveolar bone, and normal periodontal ligament. J. Cell. Physiol. 226: 150–157, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
16.
Cao H Yang P Pu Y Sun X Yin H Zhang Y Zhang Y Li Y Liu Y Fang F Zhang Z Tao Y Zhang X 《International journal of biological sciences》2012,8(4):498-511
Pluripotent stem cells from domesticated animals have potential applications in transgenic breeding. Here, we describe induced pluripotent stem (iPS) cells derived from bovine fetal fibroblasts by lentiviral transduction of Oct4, Sox2, Klf4 and c-Myc defined-factor fusion proteins. Bovine iPS cells showed typical colony morphology, normal karyotypes, stained positively for alkaline phosphatase (AP) and expressed Oct4, Nanog and SSEA1. The CpG in the promoter regions of Oct4 and Nanog were highly unmethylated in bovine iPS cells compared to the fibroblasts. The cells were able to differentiate into cell types of all three germ layers in vitro and in vivo. In addition, these cells were induced into female germ cells under defined culture conditions and expressed early and late female germ cell-specific genes Vasa, Dazl, Gdf9, Nobox, Zp2, and Zp3. Our data suggest that bovine iPS cells were generated from bovine fetal fibroblasts with defined-factor fusion proteins mediated by lentivirus and have potential applications in bovine transgenic breeding and gene-modified animals. 相似文献
17.
Induced pluripotent stem (iPS) cell research has been growing a new height throughout the world due to its potentialities in medical applications. We can explore several therapeutic applications through the iPS cell research. In this review, we have first discussed the development of iPS cells, reprogramming factors, and effectiveness of iPS cells. Then we have emphasized the potential applications of iPS cells in pharmaceutical and medical sectors, such as, study of cellular mechanisms for spectrum of disease entities, disease-specific iPS cell lines for drugs discovery and development, toxicological studies of drugs development, personalized medicine, and regenerative medicine. 相似文献
18.
Induced pluripotent stem cells (iPSCs) have generated hope and excitement because of the potential they possess for generating patient‐specific embryonic‐like stem cells (ESCs). Although many hurdles remain to be solved before the cells can be applied clinically; studies directed toward understanding factors that control differentiation of the cells toward various cell lineages are prerequisites for their future application. In the present study, we generated murine iPSC and assessed their differentiation toward osteogenic lineage. Murine tail tip fibroblasts were reprogrammed into embryonic‐like state by transduction with defined factors (Oct3/4, Sox2, c‐Myc, and klf4) carried in a retroviral vector. The reprogrammed cells expressed ESC markers, gave rise to three germ layers as demonstrated by teratoma formation and immunofluorescence staining. These data confirmed that the reprogrammed cells exhibited ESC‐like state. Treatment of iPSCs‐derived embryoid bodies (EBs) with transforming growth factor beta 1 (TGF‐β1) in the presence of retinoic acid enhanced generation of MSC‐like cells. The MSCs‐like cells expressed putative makers associated with MSCs; the cells deposited calcium in vitro when cultured in osteogenic medium. Interestingly MSCs‐like cells generated from iPSC directed EBs by treatment with retinoic acid and TGF‐β1 deposited more calcium in vitro than cells derived without TGF‐β1 treatment. Taken together, the data demonstrate that iPSC give rise to MSCs‐like state and that the cells have potential to differentiate toward osteoblasts. In addition, brief treatment of iPSC‐derived EBs with TGF‐β1 may be an approach for directing iPSC toward MSC‐like state. J. Cell. Biochem. 109: 643–652, 2010. © 2009 Wiley‐Liss, Inc. 相似文献
19.
Takeshi Ueda Daisuke Hokuto Shogo Kasuda Yoshiyuki Nakajima 《Biochemical and biophysical research communications》2010,391(1):38-42
Induced pluripotent stem (iPS) cells have the pluripotency to differentiate into broad spectrum derivatives of all three embryonic germ layers. However, the in vitro organ differentiation potential of iPS cells to organize a complex and functional “organ” has not yet been demonstrated. Here, we demonstrate that mouse iPS cells have the ability to organize a gut-like organ with motor function in vitro by a hanging drop culture system. This “induced gut (iGut)” exhibited spontaneous contraction and highly coordinated peristalsis accompanied by a transportation of contents. Ultrastructural analysis identified that the iGut had large lumens surrounded by three distinct layers (epithelium, connective tissue and musculature). Immunoreactivity for c-Kit, a marker of interstitial cells of Cajal (ICCs, enteric pacemaker cells), was observed in the wall of the lumen and formed a distinct and dense network. The neurofilament immunoreactivity was identified to form large ganglion-like structures and dense neuronal networks. The iGut was composed of all the enteric components of three germ layers: epithelial cells (endoderm), smooth muscle cells (mesoderm), ICCs (mesoderm), and enteric neurons (ectoderm). This is the first report to demonstrate the in vitro differentiation potential of iPS cells into particular types of functional “organs.” This work not only contributes to understanding the mechanisms of incurable gut disease through disease-specific iPS cells, but also facilitates the clinical application of patient-specific iPS cells for novel therapeutic strategies such as patient-specific “organ” regenerative medicine in the future. 相似文献
20.
Julee Kim Sarah Eligehausen Martin Stehling Sigrid Nikol Kinarm Ko Johannes Waltenberger Rainer Klocke 《Biochemical and biophysical research communications》2014
Functional endothelial cells and their progenitors are required for vascular development, adequate vascular function, vascular repair and for cell-based therapies of ischemic diseases. Currently, cell therapy is limited by the low abundance of patient-derived cells and by the functional impairment of autologous endothelial progenitor cells (EPCs). In the present study, murine germline-derived pluripotent stem (gPS) cells were evaluated as a potential source for functional endothelial-like cells. 相似文献