首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of P2X7 on erythroid cells is well established, but its physiological role remains unclear. The current study aimed to determine if P2X7 activation induces reactive oxygen species (ROS) formation in murine erythroleukaemia (MEL) cells, a commonly used erythroid cell line. ATP induced ROS formation in a time- and concentration-dependent fashion. The most potent P2X7 agonist, 2′(3′)-O-(4-benzoylbenzoyl)ATP, but not UTP or ADP, also induced ROS formation. The P2X7 antagonist, A-438079, impaired ATP-induced ROS formation. The ROS scavenger, N-acetyl-l-cysteine, and the ROS inhibitor, diphenyleneiodonium, also impaired P2X7-induced ROS formation, but use of enzyme-specific ROS inhibitors failed to identify the intracellular source of P2X7-induced ROS formation. P2X7-induced ROS formation was impaired partly by physiological concentrations of Ca2+ and Mg2+ and almost completely in cells in N-methyl-d-glucamine chloride medium. The p38 MAPK inhibitors SB202190 and SB203580, and the caspase inhibitor Z-VAD-FMK, but not N-acetyl-l-cysteine, impaired P2X7-induced MEL cell apoptosis. ATP also stimulated p38 MAPK and caspase activation, both of which could be impaired by A-438079. In conclusion, these findings indicate that P2X7 activation induces ROS formation in MEL cells and that this process may be involved in events downstream of P2X7 activation, other than apoptosis, in erythroid cells.  相似文献   

2.
Interaction of P2X7 receptor with P2X4 receptor has recently been suggested, but it remains unclear whether P2X4 receptor is involved in P2X7 receptor-mediated events, such as cell death of macrophages induced by high concentrations of extracellular ATP. Here, we present evidence that P2X4 receptor does play a role in P2X7 receptor-dependent cell death. Treatment of mouse macrophage RAW264.7 cells with 1mM ATP induced Ca(2+) influx, non-selective large pore formation, activation of extracellular signal-regulated protein kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK), and cell death via activation of P2X7 receptor. P2X4-knockdown cells, established by transfecting RAW264.7 cells with two short hairpin RNAs (shRNAs) targeting P2X4 receptor, showed a decrease of the initial peak of intracellular Ca(2+) after treatment with ATP, though pore formation and the P2X7-mediated activation of ERK1/2 and p38 MAPK were not affected. Intriguingly, P2X4 knockdown resulted in significant suppression of cell death induced by ATP or P2X7 agonist BzATP. In conclusion, our results suggest that P2X4 receptor is involved in P2X7 receptor-mediated cell death, but not pore formation or MAPK signaling.  相似文献   

3.
In human and rodent macrophages, activation of the P2X7 nucleotide receptor stimulates interleukin-1beta processing and release, apoptosis, and killing of intracellular Mycobacterium tuberculosis. Signaling pathways downstream of this ionotropic ATP receptor are poorly understood. Here we describe the rapid activation of the stress-activated protein kinase (SAPK)/JNK pathway in BAC1 murine macrophages stimulated by extracellular ATP. Brief exposure of the cells to ATP (10-30 min) was sufficient to trigger a rapid accumulation of activated SAPK that was then sustained for >120 min. Several observations indicated that the P2X7 receptor mediated this effect. 1) ATP and 3'-O-(4-benzoyl)benzoyl-ATP were the only agonistic nucleotides. 2) The effect was inhibited by oxidized ATP and the isoquinoline KN-62, two known P2X7 receptor antagonists. 3) ATP-induced SAPK activation could be recapitulated in P2X7 receptor-transfected HEK293 cells, but not in wild-type HEK293 cells. Because P2X7 receptor stimulation can rapidly activate caspase family proteases that have been implicated in the induction of the SAPK pathway, we investigated whether ATP-dependent SAPK activation involved such proteases. Brief exposure of BAC1 macrophages to extracellular ATP induced DNA fragmentation, alpha-fodrin breakdown, and elevated levels of caspase-3-type activity. Asp-Glu-Val-Asp-cho, a caspase-3 inhibitor, inhibited ATP-induced DNA fragmentation and alpha-fodrin proteolysis, but had no effect on ATP-induced SAPK activation. Tyr-Val-Ala-Asp-chloromethyl ketone, a caspase-1 inhibitor, prevented ATP-induced release of processed interleukin-1beta, but not ATP-dependent SAPK activity. We conclude that activation of ionotropic P2X7 nucleotide receptors triggers a strong activation of SAPK via a pathway independent of caspase-1- or caspase-3-like proteases.  相似文献   

4.
The roles of intracellular reactive oxygen species (ROS) and related signalling pathways in mycobacterial infection are largely unknown. Here we show that tuberculin purified protein derivative (PPD)/Toll-like receptor (TLR) 2/ROS signalling through activation of apoptosis-regulating signal kinase (ASK) 1 and p47phox pathways is responsible for the induction of proinflammatory responses during tuberculosis (TB) infection. Tuberculin PPD stimulation resulted in rapid activation of mitogen-activated protein kinases (MAPKs) and an early burst of ROS in monocytes/macrophages in a TLR2-dependent manner. PPD-induced ROS production led to robust activation of ASK1 upstream of p38 MAPK, via TLR2. Interestingly, phosphorylation of the cytosolic NADPH oxidase subunit p47phox and ASK1 activation are mutually dependent on PPD/TLR2-mediated signalling. Furthermore, active pulmonary TB patients showed upregulated ROS generation, as well as enhanced activation of ASK1/p38/p47phox pathways in their primary monocytes compared with healthy controls, which suggests a systemic primed status during TB. Taken together, these results indicate that activation of the ASK1/p38 MAPK/p47phox cascade plays a central role in PPD/TLR2-induced ROS generation and suggests the existence of a 'ROS/ASK1' inflammatory amplification feedback loop in monocytes/macrophages. The altered regulation of this axis with an increasing free-radical burden may contribute to the immunopathogenesis of human TB.  相似文献   

5.
Mycobacterium tuberculosis survives within host macrophages by actively inhibiting phagosome fusion with lysosomes. Treatment of infected macrophages with ATP induces both cell apoptosis and rapid killing of intracellular mycobacteria. The following studies were undertaken to characterize the effector pathway(s) involved. Macrophages were obtained from p47(phox) and inducible NO synthase gene-disrupted mice (which are unable to produce reactive oxygen and nitrogen radicals, respectively) and P2X(7) gene-disrupted mice. RAW murine macrophages transfected with either the natural resistance-associated macrophage protein gene 1 (Nramp1)-resistant or Nramp1-susceptible gene were also used. The cells were infected with bacille Calmette-Guérin (BCG), and intracellular mycobacterial trafficking was analyzed using confocal and electron microscopy. P2X(7) receptor activation was essential for effective ATP-induced mycobacterial killing, as its bactericidal activity was radically diminished in P2X(7)(-/-) macrophages. ATP-mediated killing of BCG within p47(phox-/-), inducible NO synthase(-/-), and Nramp(s) cells was unaffected, demonstrating that none of these mechanisms have a role in the ATP/P2X(7) effector pathway. Following ATP stimulation, BCG-containing phagosomes rapidly coalesce and fuse with lysosomes. Blocking of macrophage phospholipase D activity with butan-1-ol blocked BCG killing, but not macrophage death. ATP stimulates phagosome-lysosome fusion with concomitant mycobacterial death via P2X(7) receptor activation. Macrophage death and mycobacterial killing induced by the ATP/P2X(7) signaling pathway can be uncoupled, and diverge proximal to phospholipase D activation.  相似文献   

6.
Macrophage activation is critical in the innate immune response and can be regulated by the nucleotide receptor P2X7. In this regard, P2X7 signaling is not well understood but has been implicated in controlling reactive oxygen species (ROS) generation by various leukocytes. Although ROS can contribute to microbial killing, the role of ROS in nucleotide-mediated cell signaling is unclear. In this study, we report that the P2X7 agonists ATP and 3'-O-(4-benzoyl) benzoic ATP (BzATP) stimulate ROS production by RAW 264.7 murine macrophages. These effects are potentiated in lipopolysaccharide-primed cells, demonstrating an important interaction between extracellular nucleotides and microbial products in ROS generation. In terms of nucleotide receptor specificity, RAW 264.7 macrophages that are deficient in P2X7 are greatly reduced in their capacity to generate ROS in response to BzATP treatment (both with and without LPS priming), thus supporting a role for P2X7 in this process. Because MAP kinase activation is key for nucleotide regulation of macrophage function, we also tested the hypothesis that P2X7-mediated MAP kinase activation is dependent on ROS production. We observed that BzATP stimulates MAP kinase (ERK1/ERK2, p38, and JNK1/JNK2) phosphorylation and that the antioxidants N-acetylcysteine and ascorbic acid strongly attenuate BzATP-mediated JNK1/JNK2 and p38 phosphorylation but only slightly reduce BzATP-induced ERK1/ERK2 phosphorylation. These studies reveal that P2X7 can contribute to macrophage ROS production, that this effect is potentiated upon lipopolysaccharide exposure, and that ROS are important participants in the extracellular nucleotide-mediated activation of several MAP kinase systems.  相似文献   

7.
ATP has been known to act as an extracellular signal and to be involved in various functions of kidney. Renal proximal tubular reabsorption of phosphate (Pi) contributes to the maintenance of phosphate homeostasis, which is regulated by Na+/Pi cotransporter. However, the effects of ATP on Na+/Pi cotransporters were not elucidated in proximal tubule cells (PTCs). Thus, the effects of ATP on Na+/Pi cotransporter and its related signal pathways are examined in the primary cultured renal PTCs. In the present study, ATP inhibited Pi uptake in a time (> 1 h) and dose (>10(-6)M) dependent manner. ATP-induced inhibition of Pi uptake was correlated with the decrease of type II Na+/Pi cotransporter mRNA. ATP-induced inhibition of Pi uptake may be mediated by P2Y receptor activation, since suramin (non-specific P2 receptor antagonist) and RB-2 (P2Y receptor antagonist) blocked it. ATP-induced inhibition of Pi uptake was blocked by neomycin, U73122 (phospholipase C (PLC) inhibitors), bisindolylmaleimide I, H-7, and staurosporine (protein kinase C (PKC) inhibitors), suggesting the role of PLC/PKC pathway. ATP also increased inositol phosphates (IPs) formation and induced PKC translocation from cytosolic fraction to membrane fraction. In addition, ATP-induced inhibition of Pi uptake was blocked by SB 203580 [a p38 mitogen activated protein kinase (MAPK) inhibitor], but not by PD 98059 (a p44/42 MAPK inhibitor). Indeed, ATP induced phosphorylation of p38 MAPK, which was not blocked by PKC inhibitor. In conclusion, ATP inhibited Pi uptake via PLC/PKC as well as p38 MAPK in renal PTCs.  相似文献   

8.
Shikonin derivatives exert powerful cytotoxic effects, induce apoptosis and escape multidrug resistance in cancer. However, the diverse mechanisms underlying their anticancer activities are not completely understood. Here, we demonstrated that shikonin-induced apoptosis is caused by reactive oxygen species (ROS)-mediated activation of Akt/ASK1/p38 mitogen-activated protein kinase (MAPK) and downregulation of p21Cip1. In the presence of shikonin, inactivation of Akt caused apoptosis signal-regulating kinase 1 (ASK1) dephosphorylation at Ser83, which is associated with ASK1 activation. Shikonin-induced apoptosis was enhanced by inhibition of Akt, whereas overexpression of constitutively active Akt prevented apoptosis through modulating ASK1 phosphorylation. Silencing ASK1 and MKK3/6 by siRNA reduced the activation of MAPK kinases (MKK) 3/6 and p38 MAPK, and apoptosis, respectively. Antioxidant N-acetyl cysteine attenuated ASK1 dephosphorylation and p38 MAPK activation, indicating that shikonin-induced ROS is involved in the activation of Akt/ASK1/p38 pathway. Expression of p21Cip1 was significantly induced in early response, but gradually decreased by prolonged exposure to shikonin. Overexpression of p21Cip1 have kept cells longer in G1 phase and attenuated shikonin-induced apoptosis. Depletion of p21Cip1 facilitated shikonin-induced apoptosis, implying that p21Cip1 delayed shikonin-induced apoptosis via G1 arrest. Immunohistochemistry and in vitro binding assays showed transiently altered localization of p21Cip1 to the cytoplasm by shikonin, which was blocked by Akt inhibition. The cytoplasmic p21Cip1 actually binds to and inhibits the activity of ASK1, regulating the cell cycle progression at G1. These findings suggest that shikonin-induced ROS activated ASK1 by decreasing Ser83 phosphorylation and by dissociation of the negative regulator p21Cip1, leading to p38 MAPK activation, and finally, promoting apoptosis.  相似文献   

9.
This study was designed to explore the effect of P2X7 receptor (P2X7R) activation on the expression of p38 MAP kinase (p38 MAPK) enzyme in hippocampal slices of wild-type (WT) and P2X7R−/− mice using the Western blot technique and to clarify its role in P2X7 receptor mediated [3H]glutamate release. ATP (1 mM) and the P2X7R agonist BzATP (100 μM) significantly increased p38 MAPK phosphorylation in WT mice, and these effects were absent in the hippocampal slices of P2X7R−/− mice. Both ATP- and BzATP-induced p38 MAPK phosphorylations were sensitive to the p38 MAP kinase inhibitor, SB203580 (1 μM). ATP elicited [3H]glutamate release from hippocampal slices, which was significantly attenuated by SB203580 (1 μM) but not by the extracellular signal-regulated kinase (ERK1/2) inhibitor, PD098095 (10 μM). Consequently, we suggest that P2X7Rs and p38 MAPK are involved in the stimulatory effect of ATP on glutamate release in the hippocampal slices of WT mice.  相似文献   

10.

Background

Activation of ATP-gated P2X7 receptors (P2X7R) in macrophages leads to production of reactive oxygen species (ROS) by a mechanism that is partially characterized. Here we used J774 cells to identify the signaling cascade that couples ROS production to receptor stimulation.

Methods

J774 cells and mP2X7-transfected HEK293 cells were stimulated with Bz-ATP in the presence and absence of extracellular calcium. Protein inhibitors were used to evaluate the physiological role of various kinases in ROS production. In addition, phospho-antibodies against ERK1/2 and Pyk2 were used to determine activation of these two kinases.

Results

ROS generation in either J774 or HEK293 cells (expressing P2X7, NOX2, Rac1, p47phox and p67phox) was strictly dependent on calcium entry via P2X7R. Stimulation of P2X7R activated Pyk2 but not calmodulin. Inhibitors of MEK1/2 and c-Src abolished ERK1/2 activation and ROS production but inhibitors of PI3K and p38 MAPK had no effect on ROS generation. PKC inhibitors abolished ERK1/2 activation but barely reduced the amount of ROS produced by Bz-ATP. In agreement, the amount of ROS produced by PMA was about half of that produced by Bz-ATP.

Conclusions

Purinergic stimulation resulted in calcium entry via P2X7R and subsequent activation of the PKC/c-Src/Pyk2/ERK1/2 pathway to produce ROS. This signaling mechanism did not require PI3K, p38 MAPK or calmodulin.

General significance

ROS is generated in order to kill invading pathogens, thus elucidating the mechanism of ROS production in macrophages and other immune cells allow us to understand how our body copes with microbial infections.  相似文献   

11.
12.
Activation of the P2X7 receptor of macrophages plays an important role in inflammation. We recently reported that co-expression of P2X4 receptor with P2X7 receptor facilitates P2X7 receptor-mediated cell death via Ca(2+) influx. However, it remained unclear whether P2X4 receptor is involved in P2X7 receptor-mediated inflammatory responses, such as cytokine production. Here, we present evidence that P2X4 receptor modulates P2X7 receptor-dependent inflammatory functions. Treatment of mouse macrophage RAW264.7 cells with 1mM ATP induced high mobility group box 1 (HMGB1) release and IL-1β production via activation of P2X7 receptor. Knockdown of P2X4 receptor or removal of extracellular Ca(2+) suppressed ATP-induced release of both HMGB1 and IL-1β. On the other hand, knockdown of P2X4 receptor or removal of extracellular Ca(2+) enhanced P2X7-dependent LC3-II expression (an index of autophagy), suggesting that P2X4 receptor suppresses P2X7-mediated autophagy. Since LC3-II expression was inhibited by pretreatment with antioxidant and NADPH oxidase inhibitor, we examined P2X7-mediated production of reactive oxygen species (ROS). We found that activation of P2X7 receptor-mediated production of ROS was significantly facilitated in P2X4-knockdown cells, suggesting that co-expression of P2X4 receptor with P2X7 receptor may suppress anti-inflammatory function-related autophagy via suppression of ROS production. We conclude that co-expression of P2X4 receptor with P2X7 receptor enhances P2X7-mediated inflammation through both facilitation of release of cytokines and suppression of autophagy.  相似文献   

13.
The function of P2X(7) receptors (ATP-gated ion channels) in innate immune cells is unclear. In the setting of Toll-like receptor (TLR) stimulation, secondary activation of P2X(7) ion channels has been linked to pro-caspase-1 cleavage and cell death. Here we show that cell death is a surprisingly early triggered event. We show using live-cell imaging that transient (1-4 min) stimulation of mouse macrophages with high extracellular ATP ([ATP]e) triggers delayed (hours) cell death, indexed as DEVDase (caspase-3 and caspase-7) activity. Continuous or transient high [ATP]e did not induce cell death in P2X(7)-deficient (P2X(7)(-/-)) macrophages or neutrophils (in which P2X(7) could not be detected). Blocking sustained Ca(2+) influx, a signature of P2X(7) ligation, was highly protective, whereas no protection was conferred in macrophages lacking caspase-1 or TLR2 and TLR4. Furthermore, pannexin-1 (Panx1) deficiency had no effect on transient ATP-induced delayed cell death or ATP-induced Yo-Pro-1 uptake (an index of large pore pathway formation). Thus, "transient" P2X(7) receptor activation and Ca(2+) overload act as a death trigger for native mouse macrophages independent of Panx1 and pro-inflammatory caspase-1 and TLR signaling.  相似文献   

14.
Mycobacterium bovis bacillus Calmette-Guérin (BCG) induces innate immune responses through Toll-like receptor (TLR) 2 and TLR4. We investigated the role of apoptosis-regulating signal kinase (ASK) 1 in reactive oxygen species (ROS)-mediated innate immune responses induced by BCG mycobacterial infection. In macrophages, M. bovis BCG stimulation resulted in rapid activation of mitogen-activated protein kinases (MAPKs), secretion of inflammatory cytokines, such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-6, and ROS generation in a TLR2- and TLR4-dependent manner. M. bovis BCG-induced ROS production led to robust activation of ASK1 upstream of the c-jun-N-terminal kinase and p38 MAPK, but not extracellular-regulated kinase 1/2. Blocking ASK1 activity markedly attenuated M. bovis BCG-induced TNF-alpha and IL-6 production by macrophages. Both TLR2 and TLR4 were required for optimal activation of ASK1 in response to M. bovis BCG. Furthermore, we present evidence that TNF receptor-associated factor (TRAF) 6 activities were essential for ROS-mediated ASK1 activation by M. bovis BCG. Finally, ASK1 activities were required for effective control of intracellular mycobacterial survival. Thus, the results of this study suggest a novel role of the TLR-ROS-TRAF6-ASK1 axis in the innate immune response to mycobacteria as a signaling intermediate.  相似文献   

15.
Primary rat microglia stimulated with either ATP or 2'- and 3'-O-(4-benzoylbenzoyl)-ATP (BzATP) release copious amounts of superoxide (O(2)(-)*). ATP and BzATP stimulate O(2)(-)* production through purinergic receptors, primarily the P2X(7) receptor. O(2)(-)* is produced through the activation of the NADPH oxidase. Although both p42/44 MAPK and p38 MAPK were activated rapidly in cells stimulated with BzATP, only pharmacological inhibition of p38 MAPK attenuated O(2)(-)* production. Furthermore, an inhibitor of phosphatidylinositol 3-kinase attenuated O(2)(-)* production to a greater extent than an inhibitor of p38 MAPK. Both ATP and BzATP stimulated microglia-induced cortical cell death indicating this pathway may contribute to neurodegeneration. Consistent with this hypothesis, P2X(7) receptor was specifically up-regulated around beta-amyloid plaques in a mouse model of Alzheimer's disease (Tg2576).  相似文献   

16.
The stress-activated protein kinases (SAPKs, also called c-Jun NH(2)-terminal kinases) and the p38s, two mitogen-activated protein kinase (MAPK) subgroups activated by cytokines of the tumor necrosis factor (TNF) family, are pivotal to the de novo gene expression elicited as part of the inflammatory response. Apoptosis signal-regulating kinase 1 (ASK1) is a MAPK kinase kinase (MAP3K) that activates both the SAPKs and p38s in vivo. Here we show that TNF receptor (TNFR) associated factor 2 (TRAF2), an adapter protein that couples TNFRs to the SAPKs and p38s, can activate ASK1 in vivo and can interact in vivo with the amino- and carboxyl-terminal noncatalytic domains of the ASK1 polypeptide. Expression of the amino-terminal noncatalytic domain of ASK1 can inhibit TNF and TRAF2 activation of SAPK. TNF can stimulate the production of reactive oxygen species (ROS), and the redox-sensing enzyme thioredoxin (Trx) is an endogenous inhibitor of ASK1. We also show that expression of TRAF2 fosters the production of ROS in transfected cells. We demonstrate that Trx significantly inhibits TRAF2 activation of SAPK and blocks the ASK1-TRAF2 interaction in a reaction reversed by oxidants. Finally, the mechanism of ASK1 activation involves, in part, homo-oligomerization. We show that expression of ASK1 with TRAF2 enhances in vivo ASK1 homo-oligomerization in a manner dependent, in part, upon the TRAF2 RING effector domain and the generation of ROS. Thus, activation of ASK1 by TNF requires the ROS-mediated dissociation of Trx possibly followed by the binding of TRAF2 and consequent ASK1 homo-oligomerization.  相似文献   

17.
Acute myeloid leukemia (AML) cell lines treated by genotoxic agents or by Tumor Necrosis Factor alpha (TNFalpha) acquire potent cytotoxicity towards myeloid cells through activation of granzyme B (GrB)/perforin (PFN) system. Here we first extend this observation to another death receptor activator, Fas Ligand (FasL). Moreover, we analyzed GrB induction signalling pathway in TNFalpha- and FasL-stimulated AML cells. The effects of TNFalpha and FasL on GrB expression were specifically mediated by p38MAPK (Mitogen-activated-protein-kinase) activation. Otherwise, TNFalpha and FasL stimulation led to radical oxygen species (ROS) generation and ASK1 (Apoptosis-signal-regulating-kinase-1) activation. Endogenous activation of ASK1 by either H2O2 or thioredoxin (Trx) reductase inhibition had the same effects as TNFalpha and FasL on GrB up regulation. Altogether, our results suggest that TNFalpha- and FasL-stimulated AML cell lytic induction is regulated by a signalling pathway involving sequentially, ROS generation, Trx oxidation, ASK1 activation, p38MAPK stimulation and GrB induction at mRNA and protein levels.  相似文献   

18.
Extracellular ATP causes apoptosis and/or necrosis of the hemopoietic lineage through the activation of P2X7 receptors. In this study, we investigated P2X7 receptor-mediated cell death during murine T cell maturation. The expression level and activity of P2X7 receptors, as measured by induction of cell death and pore formation, were higher in splenocytes than thymocytes. Flow cytometric analysis revealed that cell shrinkage was induced by activation of the P2X7 receptor in murine lymphocytes and the responding cells were T cells. Splenic T cells were more responsive than their thymic counterpart. These observations indicate that the system of P2X7 receptor-mediated cell death in T cells could be modulated during T cell maturation. Furthermore, decreased extracellular Cl- suppressed ATP-induced cell shrinkage in splenocytes without inhibiting ERK1/2 phosphorylation, which is reported to mediate necrotic cell death. Treatment with U0126 (a MEK inhibitor) suppressed ATP-induced ERK1/2 phosphorylation without inhibiting cell shrinkage. Moreover, decreased extracellular Cl- and treatment with U0126 suppressed ATP-induced cell death. These observations indicate that the activation of P2X7 receptor leads to T cell death by two independent pathways, one of which is cell shrinkage dependent and the other of which involves the phosphorylation of ERK1/2. In conclusion, we demonstrate increasing P2X7 receptor activity during T cell maturation and the existence of two essential pathways in P2X7 receptor-mediated T cell death. Our findings suggest that ATP-induced cell death of peripheral T lymphocytes is important in P2X7 receptor-regulated immune responses.  相似文献   

19.
Anandamide is a neuroimmunoregulatory molecule that triggers apoptosis in a number of cell types including PC12 cells. Here, we investigated the molecular mechanisms underlying anandamide-induced cell death in PC12 cells. Anandamide treatment resulted in the activation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and p44/42 MAPK in apoptosing cells. A selective p38 MAPK inhibitor, SB203580, or dn-JNK, JNK1(A-F) or SAPKbeta(K-R), blocked anandamide-induced cell death, whereas a specific inhibitor of MEK-1/2, U0126, had no effect, indicating that activation of p38 MAPK and JNK is critical in anandamide-induced cell death. An important role for apoptosis signal-regulating kinase 1 (ASK1) in this event was also demonstrated by the inhibition of p38 MAPK/JNK activation and death in cells overexpressing dn-ASK1, ASK1 (K709M). Conversely, the constitutively active ASK1, ASK1DeltaN, caused prolonged p38 MAPK/JNK activation and increased cell death. These indicate that ASK1 mediates anandamide-induced cell death via p38 MAPK and JNK activation. Here, we also found that activation of p38 MAPK/JNK is accompanied by cytochrome c release from the mitochondria and caspase activation (which can be inhibited by SB203580), suggesting that anandamide triggers a mitochondrial dependent apoptotic pathway. The caspase inhibitor, zVAD, and the mitochondrial pore opening inhibitor, cyclosporine A, blocked anandamide-induced cell death but not p38 MAPK/JNK activation, suggesting that activation of these kinases may occur upstream of mitochondrial associated events.  相似文献   

20.
Previously, we reported that p38, which belongs to the mitogen-activated protein kinase (MAPK) superfamily, has an important role in the induction of apoptosis of cultured cerebellar granule neurons. However, the molecular mechanisms upstream of p38 activation remain unclear. Apoptosis signal-regulating kinase-1 (ASK1), a MAPK kinase kinase (MAPKKK) protein, is known to activate both c-Jun N-terminal kinase (JNK) and p38 via MAPK kinase (MKK) 4/7 and MKK3/6, respectively. Here, we examined whether ASK1 is involved in the activation of p38 in the low potassium (LK)-induced apoptosis of cerebellar granule neurons. We found that ASK1 was activated after a change to LK medium. In addition, the expression of ASK1-KM, a dominant-negative form of ASK1, using an adenovirus system was found to inhibit the activation of p38 and c-Jun and to prevent apoptosis. On the other hand, the expression of ASK1-DeltaN, a constitutively active form of ASK1, activated p38 and c-Jun, but not JNK, another possible downstream target of ASK1. Furthermore, we examined the relationship between phosphatidylinositol 3-kinase (PI3-K) and ASK1. The addition of LY294002, a specific inhibitor of PI3-K, enhanced the ASK1 activity. These results indicate that ASK1 works downstream of PI3-K to regulate the p38-c-Jun pathway and apoptosis in cultured cerebellar granule neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号