首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xer-mediated dimer resolution at the mwr site of the multiresistance plasmid pJHCMW1 is osmoregulated in Escherichia coli containing either the Escherichia coli Xer recombination machinery or Xer recombination elements from K. pneumoniae. In the presence of K. pneumoniae XerC (XerC(Kp)), the efficiency of recombination is lower than that in the presence of the E. coli XerC (XerC(Ec)) and the level of dimer resolution is insufficient to stabilize the plasmid, even at low osmolarity. This lower efficiency of recombination at mwr is observed in the presence of E. coli or K. pneumoniae XerD proteins. Mutagenesis experiments identified a region near the N terminus of XerC(Kp) responsible for the lower level of recombination catalyzed by XerC(Kp) at mwr. This region encompasses the second half of the predicted alpha-helix B and the beginning of the predicted alpha-helix C. The efficiencies of recombination at other sites such as dif or cer in the presence of XerC(Kp) or XerC(Ec) are comparable. Therefore, XerC(Kp) is an active recombinase whose action is impaired on the mwr recombination site. This characteristic may result in restriction of the host range of plasmids carrying this site, a phenomenon that may have important implications in the dissemination of antibiotic resistance genes.  相似文献   

2.
The Escherichia coli arginine repressor (ArgR) controls expression of the arginine biosynthetic genes and acts as an accessory protein in Xer site-specific recombination at cer and related plasmid recombination sites. The hexameric wild-type protein shows L -arginine-dependent DNA binding. In this work, ArgR mutants that are defective in trimer–trimer interactions and bind DNA as trimers in an L -arginine-independent manner are isolated and characterized. Whereas the wild-type ArgR hexamer exhibits high-affinity binding to two repeated ARG boxes separated by 3 bp (each ARG box containing two identical dyad symmetrical 9 bp half-sites), the trimeric mutants bind to and footprint three adjacent half-sites of this 'idealized' substrate. Trimeric ArgR is impaired in its ability to repress the arginine biosynthetic genes and in Xer site-specific recombination. In the absence of L -arginine, residual wild-type ArgR-binding occurs as trimers. The binding of an N-terminal 77-amino-acid DNA-binding domain to idealized ARG boxes is also characterized.  相似文献   

3.
Homologous recombination between circular chromosomes generates dimers that cannot be segregated at cell division. Escherichia coli Xer site-specific recombination converts chromosomal and plasmid dimers to monomers. Two recombinases, XerC and XerD, act at the E. coli chromosomal recombination site, dif, and at related sites in plasmids. We demonstrate that Xer recombination at plasmid dif sites occurs efficiently only when FtsK is present and under conditions that allow chromosomal dimer formation, whereas recombination at the plasmid sites cer and psi is independent of these factors. We propose that the chromosome dimer- and FtsK-dependent process that activates Xer recombination at plasmid dif also activates Xer recombination at chromosomal dif. The defects in chromosome segregation that result from mutation of the FtsK C-terminus are attributable to the failure of Xer recombination to resolve chromosome dimers to monomers. Conditions that lead to FtsK-independent Xer recombination support the hypothesis that FtsK acts on Holliday junction Xer recombination intermediates.  相似文献   

4.
A simple, effective method of unlabeled, stable gene insertion into bacterial chromosomes has been developed. This utilizes an insertion cassette consisting of an antibiotic resistance gene flanked by dif sites and regions homologous to the chromosomal target locus. dif is the recognition sequence for the native Xer site-specific recombinases responsible for chromosome and plasmid dimer resolution: XerC/XerD in Escherichia coli and RipX/CodV in Bacillus subtilis. Following integration of the insertion cassette into the chromosomal target locus by homologous recombination, these recombinases act to resolve the two directly repeated dif sites to a single site, thus excising the antibiotic resistance gene. Previous approaches have required the inclusion of exogenous site-specific recombinases or transposases in trans; our strategy demonstrates that this is unnecessary, since an effective recombination system is already present in bacteria. The high recombination frequency makes the inclusion of a counter-selectable marker gene unnecessary.  相似文献   

5.
Chromosome dimers, formed by homologous recombination between sister chromosomes, normally require cell division to be resolved into monomers by site-specific recombination at the dif locus of Escherichia coli. We report here that it is not in fact cell division per se that is required for dimer resolution but the action of the cytoplasmic domain of FtsK, which is a bifunctional protein required both for cell division and for chromosome partition.  相似文献   

6.
Bacteria with circular chromosomes have evolved systems that ensure multimeric chromosomes, formed by homologous recombination between sister chromosomes during DNA replication, are resolved to monomers prior to cell division. The chromosome dimer resolution process in Escherichia coli is mediated by two tyrosine family site-specific recombinases, XerC and XerD, and requires septal localization of the division protein FtsK. The Xer recombinases act near the terminus of chromosome replication at a site known as dif (Ecdif). In Bacillus subtilis the RipX and CodV site-specific recombinases have been implicated in an analogous reaction. We present here genetic and biochemical evidence that a 28-bp sequence of DNA (Bsdif), lying 6 degrees counterclockwise from the B. subtilis terminus of replication (172 degrees ), is the site at which RipX and CodV catalyze site-specific recombination reactions required for normal chromosome partitioning. Bsdif in vivo recombination did not require the B. subtilis FtsK homologues, SpoIIIE and YtpT. We also show that the presence or absence of the B. subtilis SPbeta-bacteriophage, and in particular its yopP gene product, appears to strongly modulate the extent of the partitioning defects seen in codV strains and, to a lesser extent, those seen in ripX and dif strains.  相似文献   

7.
The 56-kb class II toluene catabolic transposon Tn4651 from Pseudomonas putida plasmid pWW0 is unique in that (i) its efficient resolution requires, in addition to the 0.2-kb resolution (res) site, the two gene products TnpS and TnpT and (ii) the 2.4-kb tnpT-res-tnpS region is 48 kb apart from the tnpA gene (M. Tsuda, K.-I. Minegishi, and T. Iino, J. Bacteriol. 171:1386-1393, 1989). Detailed analysis of the 2.4-kb region revealed that the tnpS and tnpT genes encoding the putative 323- and 332-amino-acid proteins, respectively, were transcribed divergently with an overlapping 59-bp sequence in the 203-bp res site. The motifs (the R-H-R-Y tetrad in domains I and II with proper spacing) commonly conserved in the integrase family of site-specific recombinases were found in TnpS. In contrast, TnpT did not show any significant amino acid sequence homology to the other proteins that are directly or indirectly involved in recombination. Analysis of site-specific recombination under the Escherichia coli recA cells indicated that (i) the site-specific resolution between the two copies of the res site on a single molecule was catalyzed by TnpS, (ii) the functional res site was located within a 95-bp segment, and (iii) TnpT appeared to have the role of enhancing the site-specific resolution. It was also found that TnpS catalyzed the site-specific recombination between the res sites located at two different molecules to form a cointegrate molecule. Site-specific mutagenesis of the conserved tyrosine residue in TnpS led to the loss of both the resolution and the integration activities, indicating that such a residue took part in both types of recombination.  相似文献   

8.
The crystal structure of the catalytic domain of the site-specific recombination enzyme gamma delta resolvase has been determined at 2.7 A resolution. Its first 120 amino acids form a central five-stranded, beta-pleated sheet surrounded by five alpha helices. In one of the four dyad-related dimers, the two active site Ser-10 residues are 19 A apart, perhaps close enough to contact and become covalently linked to the DNA at the recombination site. This dimer also forms the only closely packed tetramer found in the crystal. The subunit interface at a second dyad-related dimer is more extensive and more highly conserved among the homologous recombinases; however, its active site Ser-10 residues are more than 30 A apart. Side chains, identified by mutations that eliminate catalysis but not DNA binding, are located on the subunit surface near the active site serine and at the interface between a third dyad-related pair of subunits of the tetramer.  相似文献   

9.
In Bacillus subtilis, chromosome dimers that block complete segregation of sister chromosomes arise in about 15% of exponentially growing cells. Two dedicated recombinases, RipX and CodV, catalyze the resolution of dimers by site-specific recombination at the dif site, which is located close to the terminus region on the chromosome. We show that the two DNA translocases in B. subtilis, SftA and SpoIIIE, synergistically affect dimer resolution, presumably by positioning the dif sites in close proximity, before or after completion of cell division, respectively. Furthermore, we observed that both recombinases, RipX and CodV, assemble on the chromosome at the dif site throughout the cell cycle. The preassembly of recombinases probably ensures that dimer resolution can occur rapidly within a short time window around cell division.  相似文献   

10.
Genetic recombination is central to DNA metabolism. It promotes sequence diversity and maintains genome integrity in all organisms. However, it can have perverse effects and profoundly influence the cell cycle. In bacteria harbouring circular chromosomes, recombination frequently has an unwanted outcome, the formation of chromosome dimers. Dimers form by homologous recombination between sister chromosomes and are eventually resolved by the action of two site-specific recombinases, XerC and XerD, at their target site, dif, located in the replication terminus of the chromosome. Studies of the Xer system and of the modalities of dimer formation and resolution have yielded important knowledge on how both homologous and site-specific recombination are controlled and integrated in the cell cycle. Here, we briefly review these advances and highlight the important questions they raise.  相似文献   

11.
Corre J  Patte J  Louarn JM 《Genetics》2000,154(1):39-48
A prophage lambda inserted by homologous recombination near dif, the chromosome dimer resolution site of Escherichia coli, is excised at a frequency that depends on its orientation with respect to dif. In wild-type cells, terminal hyper- (TH) recombination is prophage specific and undetectable by a test involving deletion of chromosomal segments between repeats identical to those used for prophage insertion. TH recombination is, however, detected in both excision and deletion assays when Deltadif, xerC, or ftsK mutations inhibit dimer resolution: lack of specialized resolution apparently results in recombinogenic lesions near dif. We also observed that the presence near dif of the prophage, in the orientation causing TH recombination, inhibits dif resolution activity. By its recombinogenic effect, this inhibition explains the enhanced prophage excision in wild-type cells. The primary effect of the prophage is probably an alteration of the dimer resolution regional control, which requires that dif is flanked by suitably oriented (polarized) stretches of DNA. Our model postulates that the prophage inserted near dif in the deleterious orientation disturbs chromosome polarization on the side of the site where it is integrated, because lambda DNA, like the chromosome, is polarized by sequence elements. Candidate sequences are oligomers that display skewed distributions on each oriC-dif chromosome arm and on lambda DNA.  相似文献   

12.
Chromosome dimers in Escherichia coli are resolved at the dif locus by two recombinases, XerC and XerD, and the septum-anchored FtsK protein. Chromosome dimer resolution (CDR) is subject to strong spatiotemporal control: it takes place at the time of cell division, and it requires the dif resolution site to be located at the junction between the two polarized chromosome arms or replichores. Failure of CDR results in trapping of DNA by the septum and RecABCD recombination (terminal recombination). We had proposed that dif sites of a dimer are first moved to the septum by mechanisms based on local polarity and that normally CDR then occurs as the septum closes. To determine whether FtsK plays a role in the mobilization process, as well as in the recombination reaction, we characterized terminal recombination in an ftsK mutant. The frequency of recombination at various points in the terminus region of the chromosome was measured and compared with the recombination frequency on a xerC mutant chromosome with respect to intensity, the region affected, and response to polarity distortion. The use of a prophage excision assay, which allows variation of the site of recombination and interference with local polarity, allowed us to find that cooperating FtsK-dependent and -independent processes localize dif at the septum and that DNA mobilization by FtsK is oriented by the polarity probably due to skewed sequence motifs of the mobilized material.  相似文献   

13.
The dif locus is a site-specific recombination site located within the terminus region of the chromosome of Escherichia coli. Recombination at dif resolves circular dimer chromosomes to monomers, and this recombination requires the XerC, XerD and FtsK proteins, as well as cell division. In order to characterize other enzymes that interact at dif, we tested whether quinolone-induced cleavage occurs at this site. Quinolone drugs, such as norfloxacin, inhibit the type 2 topoisomerases, DNA gyrase and topoisomerase IV, and can cleave DNA at sites where these enzymes interact with the chromosome. Using strains in which either DNA gyrase or topoisomerase IV, or both, were resistant to norfloxacin, we determined that specific interactions between dif and topoisomerase IV caused cleavage at that site. This interaction required XerC and XerD, but did not require the C-terminal region of FtsK or cell division.  相似文献   

14.
The septum-located DNA translocase, FtsK, acts to co-ordinate the late steps of Escherichia coli chromosome segregation with cell division. The FtsK γ regulatory subdomain interacts with 8 bp KOPS DNA sequences, which are oriented from the replication origin to the terminus region ( ter ) in each arm of the chromosome. This interaction directs FtsK translocation towards ter where the final chromosome unlinking by decatenation and chromosome dimer resolution occurs. Chromosome dimer resolution requires FtsK translocation along DNA and its interaction with the XerCD recombinase bound to the recombination site, dif , located within ter . The frequency of chromosome dimer formation is ∼15% per generation in wild-type cells. Here we characterize FtsK alleles that no longer recognize KOPS, yet are proficient for translocation and chromosome dimer resolution. Non-directed FtsK translocation leads to a small reduction in fitness in otherwise normal cell populations, as a consequence of ∼70% of chromosome dimers being resolved to monomers. More serious consequences arise when chromosome dimer formation is increased, or their resolution efficiency is impaired because of defects in chromosome organization and processing. For example, when Cre– loxP recombination replaces XerCD– dif recombination in dimer resolution, when functional MukBEF is absent, or when replication terminates away from ter .  相似文献   

15.
The dif locus is a RecA-independent resolvase site in the terminus region of the chromosome of Escherichia coli . The locus reduces dimer chromosomes, which result from sister chromatid exchange, to monomers. A density label assay demonstrates that recombination occurs at dif , and that it requires XerC and XerD. The frequency of this recombination is ≈14% per site per generation, which is doubled in polA12 mutants. We have determined that recombination occurs late in the cell cycle, and that resolution is blocked if cell division is inhibited with cephalexin or by a ftsZts mutation. Fluorescence microscopy has demonstrated that abnormal nucleoids are present in cells incubated in cephalexin, and this is increased in polA12 mutants.  相似文献   

16.
Tian DQ  Wang YM  Zheng T 《遗传》2012,34(8):1003-1008
大约10%~15%的大肠杆菌在染色体复制过程中会形成染色体二聚体。大肠杆菌染色体编码的重组酶XerC和XerD作用于染色体复制终点区的dif序列,以同源重组的方式将染色体二聚体解离为单体,使细菌得以正常复制分裂。编码霍乱毒素的噬菌体CTXΦ以位点特异的方式整合入霍乱弧菌染色体,但其基因组中不含有任何重组酶基因,其整合过程需要细菌染色体编码的XerC和XerD重组酶,且整合位点与大肠杆菌dif序列相似。XerCD重组酶基因和dif位点在细菌染色体广泛存在,表明其可能是染色体二聚体解离,噬菌体及其他外源基因成分整合入染色体过程中一种广泛存在的途径。文章对XerCD/dif位点特异性重组在细菌染色体二聚体解离、外源基因整合的研究进展进行综述。  相似文献   

17.
A simple, effective method of unlabeled, stable gene insertion into bacterial chromosomes has been developed. This utilizes an insertion cassette consisting of an antibiotic resistance gene flanked by dif sites and regions homologous to the chromosomal target locus. dif is the recognition sequence for the native Xer site-specific recombinases responsible for chromosome and plasmid dimer resolution: XerC/XerD in Escherichia coli and RipX/CodV in Bacillus subtilis. Following integration of the insertion cassette into the chromosomal target locus by homologous recombination, these recombinases act to resolve the two directly repeated dif sites to a single site, thus excising the antibiotic resistance gene. Previous approaches have required the inclusion of exogenous site-specific recombinases or transposases in trans; our strategy demonstrates that this is unnecessary, since an effective recombination system is already present in bacteria. The high recombination frequency makes the inclusion of a counter-selectable marker gene unnecessary.  相似文献   

18.
Escherichia coli FtsK protein couples cell division and chromosome segregation. It is a component of the septum essential for cell division. It also acts during chromosome dimer resolution by XerCD-specific recombination at the dif site, with two distinct activities: DNA translocation oriented by skewed sequence elements and direct activation of Xer recombination. Dimer resolution requires that the skewed elements polarize in opposite directions 30-50 kb on either side of dif. This constitutes the DIF domain, approximately coincident with the region where replication terminates. The observation that the ftsK1 mutation increases recombination near dif was exploited to determine whether the chromosome region on which FtsK acts is limited to the DIF domain. A monitoring of recombination activity at multiple loci in a 350 kb region to the left of dif revealed (i) zones of differing activities unconnected to dimer resolution and (ii) a constant 10-fold increase of recombination in the 250 kb region adjacent to dif in the ftsK1 mutant. The latter effect allows definition of an FTSK domain whose total size is at least fourfold that of the DIF domain. Additional analyses revealed that FtsK activity responds to polarization in the whole FTSK domain and that displacement of the region where replication terminates preserves differences between recombination zones. Our interpretation is that translocation by FtsK occurs mostly on DNA belonging to a specifically organized domain of the chromosome, when physical links between either dimeric or still intercatenated chromosomes force this DNA to run across the septum at division.  相似文献   

19.
20.
Plasmid pSC101 harbors a 28-bp sequence which is homologous to dif, the target site of the XerC/XerD-dependent recombination system in Escherichia coli. Using a technique which allows very sensitive detection of plasmid loss, we show that recombination at this site, termed psi for pSC101 stabilized inheritance, causes a moderate increase in pSC101 stability. The role of the psi sequence in site-specific recombination has been explored in two other contexts. It was cloned in a derivative of plasmid p15A and inserted into the chromosome in place of dif. In the first situation, psi activity requires accessory sequences and results in multimer resolution; in the second situation, it suppresses the effects of the dif deletion and can promote intermolecular exchanges. Thus, psi is a site whose recombinational activity depends on the context, the first in the cer/dif family known to exhibit such flexibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号