首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Eukaryotic cells represent an intricate collaboration between multiple genomes, even down to the level of multi‐subunit complexes in mitochondria and plastids. One such complex in plants is the caseinolytic protease (Clp), which plays an essential role in plastid protein turnover. The proteolytic core of Clp comprises subunits from one plastid‐encoded gene ( clpP1 ) and multiple nuclear genes. The clpP1 gene is highly conserved across most green plants, but it is by far the fastest evolving plastid‐encoded gene in some angiosperms. To better understand these extreme and mysterious patterns of divergence, we investigated the history of clpP1 molecular evolution across green plants by extracting sequences from 988 published plastid genomes. We find that clpP1 has undergone remarkably frequent bouts of accelerated sequence evolution and architectural changes (e.g. a loss of introns and RNA ‐editing sites) within seed plants. Although clpP1 is often assumed to be a pseudogene in such cases, multiple lines of evidence suggest that this is rarely true. We applied comparative native gel electrophoresis of chloroplast protein complexes followed by protein mass spectrometry in two species within the angiosperm genus Silene , which has highly elevated and heterogeneous rates of clpP1 evolution. We confirmed that clpP1 is expressed as a stable protein and forms oligomeric complexes with the nuclear‐encoded Clp subunits, even in one of the most divergent Silene species. Additionally, there is a tight correlation between amino acid substitution rates in clpP1 and the nuclear‐encoded Clp subunits across a broad sampling of angiosperms, suggesting continuing selection on interactions within this complex.  相似文献   

2.
The hypothesis of a universal molecular clock holds that divergent lineages exhibit approximately constant rates of nucleotide substitution over evolutionary time for a particular macromolecule. We compare divergences of ribosomal DNA for aphids (Insecta) and Buchnera, the maternally transmitted, endosymbiotic bacteria that have cospeciated with aphids since initially infecting them over 100 million years ago. Substitution rates average 36 times greater for Buchnera than for their aphid hosts for regions of small-subunit rDNA that are homologous for prokaryotes and eukaryotes. Aphids exhibit 18S rDNA substitution rates that are within the range observed in related insects. In contrast, 16S rDNA evolves about twice as fast in Buchnera as in related free-living bacterial lineages. Nonetheless, the difference between Buchnera and aphids is much greater, suggesting that rates may be generally higher in bacteria. This finding adds to evidence that molecular clocks are only locally rather than universally valid among taxonomic groups. It is consistent with the hypothesis that rates of sequence evolution depend on generation time.  相似文献   

3.
Summary Evolution and divergence among, species within the genusLathyrus have involved an approximately fivefold increase in the amounts of nuclear DNA. Most species inLathyrus are diploids with the same chromosome number, 2n=14. Significant changes in the amounts of repetitive sequences have accounted for much of the evolutionary DNA variation between species. Seven diploidLathyrus species with a twofold variation in nuclear DNA amounts between them were investigated. Using higher derivative analysis of the thermal denaturation profiles of the reassociated repetitive DNA, the reiteration frequency and divergence of repetitive families were compared. Much variation in the reiteration frequency was observed within and between species. In species with larger 2C DNA amounts repetitive families had on average greater amounts of DNA. Despite the massive differences in DNA amounts, six species were consistently similar in the number of repetitive families in their genomes, and they showed a similar pattern in base sequence divergence. In terms of base sequence relationships the repetitive families appeared to be heterogeneous. The evolutionary significance is discussed.  相似文献   

4.
Quantifying rates of morphological evolution is important in many macroevolutionary studies, and critical when assessing possible adaptive radiations and episodes of punctuated equilibrium in the fossil record. However, studies of morphological rates of change have lagged behind those on taxonomic diversification, and most authors have focused on continuous characters and quantifying patterns of morphological rates over time. Here, we provide a phylogenetic approach, using discrete characters and three statistical tests to determine points on a cladogram (branches or entire clades) that are characterized by significantly high or low rates of change. These methods include a randomization approach that identifies branches with significantly high rates and likelihood ratio tests that pinpoint either branches or clades that have significantly higher or lower rates than the pooled rate of the remainder of the tree. As a test case for these methods, we analyze a discrete character dataset of lungfish, which have long been regarded as "living fossils" due to an apparent slowdown in rates since the Devonian. We find that morphological rates are highly heterogeneous across the phylogeny and recover a general pattern of decreasing rates along the phylogenetic backbone toward living taxa, from the Devonian until the present. Compared with previous work, we are able to report a more nuanced picture of lungfish evolution using these new methods.  相似文献   

5.
On the rate of DNA sequence evolution inDrosophila   总被引:30,自引:0,他引:30  
Summary Analysis of the rate of nucleotide substitution at silent sites inDrosophila genes reveals three main points. First, the silent rate varies (by a factor of two) among nuclear genes; it is inversely related to the degree of codon usage bias, and so selection among synonymous codons appears to constrain the rate of silent substitution in some genes. Second, mitochondrial genes may have evolved only as fast as nuclear genes with weak codon usage bias (and two times faster than nuclear genes with high codon usage bias); this is quite different from the situation in mammals where mitochondrial genes evolve approximately 5–10 times faster than nuclear genes. Third, the absolute rate of substitution at silent sites in nuclear genes inDrosophila is about three times hihger than the average silent rate in mammals.  相似文献   

6.
DNA turnover and the molecular clock   总被引:7,自引:0,他引:7  
Summary Many detailed studies on the mechanisms by which different components of eukaryotic nuclear genomes have diverged reveal that the majority of sequences are seemingly not passively accumulating base substitutions in a clocklike manner solely determined by laws of diffusion at the population level. It appears that variation in the rates, units, biases, and gradients of several DNA turnover mechanisms are contributing to the course of DNA divergence. Turnover mechanisms have the potential to retard, maintain, or accelerate the rate of DNA differentiation between populations. Furthermore, examples are known of coding and noncoding DNA subject to the simultaneous operation of several turnover mechanisms leading to complex patterns of fine-scale restructuring and divergence, generally uninterpretable using selection and/or neutral drift arguments in isolation. Constancy in the rate of divergence, where observed over defined periods of time, could be a reflection of constancy in the rates and units of turnover. However, a consideration of the generally large disparity between rates of turnover and mutation reveals that DNA clocks, which would be independently driven by turnover in separate genomic components, would tend to be episodic. The utility of any given DNA sequence for measuring time and species relationships, like individual proteins, is proportional to the extent to which all contributing forces to the evolution of the sequence, internal and external, are understood.  相似文献   

7.
Summary LHP is a suitable protein for studying evolution in flies (Diptera). This blood protein, which occurs at high concentration late in larval development, was purified to homogeneity from 5 species of Drosophilidae and one species each of Tephritidae and Calliphoridae. Rabbit antisera to the purified LHPs allowed immunological comparisons to be made with the micro-complement fixation technique. Various indirect tests indicated that immunological distance is a reliable estimator of the degree of amino acid sequence difference between LHPs from different species. An evolutionary tree for the 7 LHPs was constructed from the immunological distances with the method of Fitch and Margoliash (1967) to provide the branching order and the method of Chakraborty (1977) to provide the branch lengths. A modified method of tree construction allowed LHPs from 10 additional species to be attached to this tree. The resulting LHP tree for 17 species agrees approximately in branching order with that based on Throckmorton's study of 60 anatomical traits. However, the ratio of anatomical change to LHP change along branches within the tree varies widely, confirming the independence of organismal and molecular evolution. The LHP tree thus provides a new perspective on evolution within and among the families of higher Diptera.  相似文献   

8.
9.
Polymerase chain reaction (PCR)-amplified, sequenced, and digitally typed intergenic spacers (IGSs) of the ribosomal (r)DNA in D. melanogaster reveal unexpected features of the mechanisms of turnover involved with the concerted evolution of the gene family. Characterization of the structure of three isolated IGS length variants reveals breakage hot spots within the 330-base-pair (bp) subrepeat array found in the spacers. Internal mapping of variant repeats within the 240-bp subrepeat array using a novel digital DNA typing procedure (minisatellite variant repeat [MVR]-PCR) shows an unexpected pattern of clustering of variant repeats. Each 240-bp subrepeat array consists of essentially two halves with the repeats in each half identified by specific mutations. This bipartite structure, observed in a cloned IGS unit, in the majority of genomic DNA of laboratory and wild flies and in PCR-amplified products, has been widely homogenized yet is not predicted by a model of unequal crossing over with randomly placed recombination breakpoints. Furthermore, wild populations contain large numbers of length variants in contrast to uniformly shared length variants in laboratory stocks. High numbers of length variants coupled to the observation of a homogenized bipartite structure of the 240-bp subrepeat array suggest that the unit of turnover and homogenization is smaller than the IGS and might involve gene conversion. The use of PCR for the structural analysis of members of the rDNA gene family coupled to digital DNA typing provides powerful new inroads into the mechanisms of DNA turnover affecting the course of molecular evolution in this family. Correspondence to: G. A. Dover  相似文献   

10.
The evolution of two mitochondrial genes, cytochrome b and cytochrome c oxidase subunit II, was examined in several eutherian mammal orders, with special emphasis on the orders Artiodactyla and Rodentia. When analyzed using both maximum parsimony, with either equal or unequal character weighting, and neighbor joining, neither gene performed with a high degree of consistency in terms of the phylogenetic hypotheses supported. The phylogenetic inconsistencies observed for both these genes may be the result of several factors including differences in the rate of nucleotide substitution among particular lineages (especially between orders), base composition bias, transition/transversion bias, differences in codon usage, and different constraints and levels of homoplasy associated with first, second, and third codon positions. We discuss the implications of these findings for the molecular systematics of mammals, especially as they relate to recent hypotheses concerning the polyphyly of the order Rodentia, relationships among the Artiodactyla, and various interordinal relationships.Correspondence to: R.L. Honeycutt  相似文献   

11.
The technique of DNA flow cytometry was used to study variation in DNA content among different ploidy levels, as well as among diploid species, of Vaccinium section Cyanococcus. In a sample of plants of varying ploidy level, the relative fluorescence intensity (RFI) of nuclei stained with propidium iodide was a function of the number of chromosome sets (x), as represented by the linear equation RFI=3.7x-2.3 (r2=95%). The data indicated that DNA flow cytometry could be useful for the determination of ploidy level at the seedling stage in blueberry. They also suggest that conventional polyploid evolution has occurred in this section of the genus Vaccinium with an increase in nuclear DNA content concurrent with the increase in chromosome number. The nuclear DNA content of diploid species of Vaccinium section Cyanococcus was estimated from the relationship of the observed RFI to an internal known DNA standard (trout red blood cells). A nested analysis of variance indicated significant variation among species, as well as among populations within species, in nuclear DNA content, although this variation was small compared to the variation among ploidy levels. The variation in nuclear DNA content corresponded to the phylogenetic relationships among species determined from previous studies.  相似文献   

12.
13.
In mammals pituitary growth hormone (GH) shows a slow basal rate of evolution (0.22 ± 0.03 × 10–9 substitutions/amino acid site/year) which appears to have increased by at least 25–50-fold on two occasions, during the evolution of primates (to at least 10.8 ± 1.3 X 10–9 substitutions/amino acid site/year) and artiodactyl ruminants (to at least 5.6 ± 1.3 X 10–9 substitutions/amino acid site/year). That these rate increases are real, and not due to inadvertent comparison of nonorthologous genes, was established by showing that features of the GH gene sequences that are not expressed as mature hormone do not show corresponding changes in evolutionary rate. Thus, analysis of nonsynonymous substitutions in the coding sequence for the mature protein confirmed the rate increases seen in the primate and ruminant GHs, but analysis of nonsynonymous substitutions in the signal peptide sequence, synonymous substitutions in the coding sequence for signal peptide or mature protein, and 5 and 3 untranslated sequences showed no statistically significant changes in evolutionary rate. Evidence that the increases in evolutionary rate are probably due to positive selection is provided by the observation that in the cases of both ruminant and primate GHs the periods of rapid evolution were followed by a return to a slow rate similar to the basal rate seen in other mammalian GHs. Differences between the biological properties of GHs have been identified which may relate to these periods of rapid adaptive molecular evolution. On the basis of sequence data currently available (but excluding rodent GHs which show an intermediate rate, the basis of which is not clear) for most (90%) of evolutionary time mammalian GHs have been in the slow phase of evolution, with possibly most of the few amino acid substitutions that have occurred being neutral in nature. But most (80%) of the amino acid substitutions that have been introduced into GH during the course of mammalian evolution have been accepted during the rapid phases and were adaptive in nature.  相似文献   

14.
Summary Yolk proteins are transported from the hemolymph into the oocytes of insects during vitellogenesis by receptor-mediated endocytosis. Since other hemolymph proteins, both native and foreign, are not accumulated in the oocyte, the process of uptake is selective for yolk proteins. Peptide domains within the yolk proteins must therefore be involved in receptor recognition. With the longterm aim of identifying these domains and to open the possibility of understanding the molecular basis of receptor-mediated endocytosis of yolk proteins, we began investigating how well this mechanism has been conserved in evolution. We studied the uptake of yolk proteins from 13 different Drosophila species and five other dipteran species, namely, Calliphora erythrocephala, Sarcophaga argyrostoma, Musca domestica, Lucilia servicata, and Protophormia terrae-novae, into the ovaries of Drosophila melanogaster and Drosophila funebris. The results from these experiments showed that in all cases the foreign yolk proteins were taken up by the host ovaries, indicating that the mechanism and peptide domains of the yolk proteins involved in recognition of the receptor have been well conserved in dipteran evolution. Offprint requests to: M. Bownes  相似文献   

15.
Summary The sequence homology in the single copy DNA of sea stars has been measured. Labeled single copy DNA fromPisaster ochraceus was reannealed with excess genomic DNA fromP. brevispinus, Evasterias troschelii, Pycnopodia helianthoides, Solaster stimpsoni, andDermasterias imbricata. Reassociation reactions were performed under two criteria of salt and temperature. The extent of reassociation and thermal denaturation characteristics of hybrid single copy DNA molecules follow classical taxonomic lines.P. brevispinus DNA contains essentially all of the sequences present inP. ochraceus single copy tracer whileEvasterias andPycnopodia DNAs contain 52% and 46% of such sequences respectively. Reciprocal reassociation reactions with labeledEvasterias single copy DNA confirm the amount and fidelity of the sequence homology. There is a small definite reaction of uncertain homology betweenP. ochraceus single copy DNA andSolaster orDermasterias DNA. SimilarlySolaster DNA contains sequences homologous to approximately 18% ofDermasterias unique DNA. The thermal denaturation temperatures of heteroduplexes indicate that the generaPisaster andEvasterias diverged shortly after the divergence of the subfamilies Pycnopodiinae and Asteriinae. The twoPisaster species diverged more recently, probably in the most recent quarter of the interval since the separation of the generaPisaster andEvasterias.  相似文献   

16.
17.
Summary The 68C puff is a highly transcribed region of theDrosophila melanogaster salivary gland polytene chromosomes. Three different classes of messenger RNA originate in a 5000-bp region in the puff; each class is translated to one of the salivary gland glue proteins sgs-3, sgs-7, or sgs-8. These messenger RNA classes are coordinately controlled, with each RNA appearing in the third larval instar and disappearing at the time of puparium formation. Their disappearance is initiated by the action of the steroid hormone ecdysterone. In the work reported here, we studied evolution of this hormone-regulated gene cluster in themelanogaster species subgroup ofDrosophila. Genome blot hybridization experiments showed that five other species of this subgroup have DNA sequences that hybridize toD. melanogaster 68C sequences, and that these sequences are divided into a highly conserved region, which does not contain the glue genes, and an extraordinarily diverged region, which does. Molecular cloning of this DNA fromD. simulans, D. erecta, D. yakuba, andD. teissieri confirmed the division of the region into a slowly and a rapidly evolving protion, and also showed that the rapidly evolving region of each species codes for third instar larval salivary gland RNAs homologous to theD. melanogaster glue mRNAs. The highly conserved region is at least 13,000 bp long, and is not known to code for any RNAs.  相似文献   

18.
Summary The major families of repeated DNA sequences in the genome of tomato (Lycopersicon esculentum) were isolated from a sheared DNA library. One thousand clones, representing one million base pairs, or 0.15% of the genome, were surveyed for repeated DNA sequences by hybridization to total nuclear DNA. Four major repeat classes were identified and characterized with respect to copy number, chromosomal localization by in situ hybridization, and evolution in the family Solanaceae. The most highly repeated sequence, with approximately 77000 copies, consists of a 162 bp tandemly repeated satellite DNA. This repeat is clustered at or near the telomeres of most chromosomes and also at the centromeres and interstitial sites of a few chromosomes. Another family of tandemly repeated sequences consists of the genes coding for the 45 S ribosomal RNA. The 9.1 kb repeating unit in L. esculentum was estimated to be present in approximately 2300 copies. The single locus, previously mapped using restriction fragment length polymorphisms, was shown by in situ hybridization as a very intense signal at the end of chromosome 2. The third family of repeated sequences was interspersed throughout nearly all chromosomes with an average of 133 kb between elements. The total copy number in the genome is approximately 4200. The fourth class consists of another interspersed repeat showing clustering at or near the centromeres in several chromosomes. This repeat had a copy number of approximately 2100. Sequences homologous to the 45 S ribosomal DNA showed cross-hybridization to DNA from all solanaceous species examined including potato, Datura, Petunia, tobacco and pepper. In contrast, with the exception of one class of interspersed repeats which is present in potato, all other repetitive sequences appear to be limited to the crossing-range of tomato. These results, along with those from a companion paper (Zamir and Tanksley 1988), indicate that tomato possesses few highly repetitive DNA sequences and those that do exist are evolving at a rate higher than most other genomic sequences.  相似文献   

19.
Summary Comparative, quantitative Southern analysis of genomic DNA, using single-copy sequence probes, potentially is valuable for phylogenetic analysis. We have examined 27Drosophila species, belonging to two subgenera, seven species groups, and ten subgroups, using a variety of cloned and characterized probes: twelve cloned sequences fromD. melanogaster, two fromD. pseudoobscura, and two fromD. grimshawi. The data are generally congruent with accepted phylogenetic relationships inDrosophila, and confirm or clarify some previously uncertain relationships. The potential and limitations of the method are discussed.Presented at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986  相似文献   

20.
Summary The evolutionary and phylogenetic relationships of sevenDrosophila species groups (represented byD. melanogaster, D. mulleri, D. mercatorum, D. robusta, D. virilis, D. immigrans, D. funebris, andD. melanica) were investigated by the use of two-dimensional electrophoresis. The resulting phylogeny is congruent with the current views of evolution among these groups based on morphological characters and immunological distances. Previous studies indicated that the ability of one-dimensional electrophoresis to resolve relationships between distantly related taxa extended to about the Miocene [25 million years (Myr) ago], but the present study demonstrates that two-dimensional electrophoresis is a useful indicator of phylogeny even back to the Paleocene (65 Myr ago). In addition, two-dimensional electrophoresis is shown to be a useful technique for detecting slowly evolving structural proteins such as actins and tropomyosins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号