首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyzed the protective mechanisms induced against respiratory syncytial virus subgroup A (RSV-A) infection in the lower and upper respiratory tracts (LRT and URT) of BALB/c mice after intraperitoneal immunization with a recombinant fusion protein incorporating residues 130 to 230 of RSV-A G protein (BBG2Na). Mother-to-offspring antibody (Ab) transfer and adoptive transfer of BBG2Na-primed B cells into SCID mice demonstrated that Abs are important for LRT protection but have no effect on URT infection. In contrast, RSV-A clearance in the URT was achieved in a dose-dependent fashion after adoptive transfer of BBG2Na-primed T cells, while it was abolished in BBG2Na-immunized mice upon in vivo depletion of CD4(+), but not CD8(+), T cells. Furthermore, the conserved RSV-A G protein cysteines and residues 193 and 194, overlapping the recently identified T helper cell epitope on the G protein (P. W. Tebbey et al., J. Exp. Med. 188:1967-1972, 1998), were found to be essential for URT but not LRT protection. Taken together, these results demonstrate for the first time that CD4(+) T cells induced upon parenteral immunization with an RSV G protein fragment play a critical role in URT protection of normal mice against RSV infection.  相似文献   

2.
BALB/c mice immunized with a vaccinia virus expressing the attachment (G) glycoprotein of respiratory syncytial virus (RSV) develop a virus-specific CD4(+) T cell response that consists of a mixture of Th1 and Th2 CD4(+) T cells following intranasal infection with live RSV. Recent work has shown that both Th1 and Th2 CD4(+) T cells are elicited to a single region comprising aa 183-197 of the G protein. To more precisely define the CD4(+) T cell epitope(s) contained within this region, we created a panel of amino- and carboxyl-terminal truncated as well as single alanine-substituted peptides spanning aa 183-197. These peptides were used to examine the ex vivo cytokine response of memory effector CD4(+) T cells infiltrating the lungs of G-primed RSV-infected mice. Analysis of lung-derived memory effector CD4(+) T cells using intracellular cytokine staining and/or ELISA of effector T cell culture supernatants revealed a single I-E(d)-restricted CD4(+) T cell epitope with a core sequence mapping to aa 185-193. In addition, we examined the T cell repertoire of the RSV G peptide-specific CD4(+) T cells and show that the CD4(+) T cells directed to this single immunodominant G epitope use a restricted range of TCR Vss genes and predominantly express Vss14 TCR.  相似文献   

3.
CTL play a major role in the clearance of respiratory syncytial virus (RSV) during experimental pulmonary infection. The fusion (F) glycoprotein of RSV is a protective Ag that elicits CTL and Ab response against RSV infection in BALB/c mice. We used the strategy of screening a panel of overlapping synthetic peptides corresponding to the RSV F protein and identified an immunodominant H-2K(d)-restricted epitope (F(85-93); KYKNAVTEL) recognized by CD8(+) T cells from BALB/c mice. We enumerated the F-specific CD8(+) T cell response in the lungs of infected mice by flow cytometry using tetramer staining and intracellular cytokine synthesis. During primary infection, F(85-93)-specific effector CD8(+) T cells constitute approximately 4.8% of pulmonary CD8(+) T cells at the peak of the primary response (day 8), whereas matrix 2-specific CD8(+) T cells constituted approximately 50% of the responding CD8(+) T cell population in the lungs. When RSV F-immune mice undergo a challenge RSV infection, the F-specific CD8(+) T cell response is accelerated and dominates, whereas the primary response to the matrix 2 epitope in the lungs is reduced by approximately 20-fold. In addition, we found that activated F-specific effector CD8(+) T cells isolated from the lungs of RSV-infected mice exhibited a lower than expected frequency of IFN-gamma-producing CD8(+) T cells and were significantly impaired in ex vivo cytolytic activity compared with competent F-specific effector CD8(+) T cells generated in vitro. The significance of these results for the regulation of the CD8(+) T cell response to RSV is discussed.  相似文献   

4.
Secondary exposure to respiratory syncytial virus (RSV) can lead to immunopathology and enhanced disease in vaccinated individuals. Vaccination with individual RSV proteins influences the type of secondary RSV-specific immune response that develops upon challenge RSV infection, as well as the extent of immunopathology. RSV-specific memory CD4 T cells can directly contribute to immunopathology through their cytokine production. Immunization of BALB/c mice with a recombinant vaccinia virus (vv) expressing the attachment (G) protein of RSV results in pulmonary eosinophilia upon RSV challenge, whereas immunization of mice with a vv expressing the fusion (F) protein does not. We analyzed the CD4 T-cell response to an I-Ed-restricted CD4 T-cell epitope within the F protein of RSV corresponding to amino acids 51 to 66 in an effort to better understand the similarities and differences in the immune response elicited by the G versus the F protein. Vaccination with the G protein induces a mixture of RSV G-specific Th1 and Th2 cells with a restricted T-cell receptor repertoire. In contrast, we demonstrate here that immunization with the F protein elicits a broad repertoire of RSV F-specific CD4 T cells that predominantly exhibit a Th1 phenotype. However, in the absence of gamma interferon (IFN-γ), RSV F51-66-specific CD4 T cells secreted interleukin-5, and mice developed pulmonary eosinophilia after RSV challenge. IFN-γ-deficient mice exhibited decreased weight loss compared to wild-type controls, suggesting that IFN-γ exacerbates systemic disease. These data demonstrate that IFN-γ can have both beneficial and detrimental effects during a secondary RSV infection.  相似文献   

5.
The purpose of this study was to determine which regions of the VP6 protein of the murine rotavirus strain EDIM are able to elicit protection against rotavirus shedding in the adult mouse model following intranasal (i.n.) immunization with fragments of VP6 and a subsequent oral EDIM challenge. In the initial experiment, the first (fragment AB), middle (BC), or last (CD) part of VP6 that was genetically fused to maltose-binding protein (MBP) and expressed in Escherichia coli was examined. Mice (BALB/c) immunized with two 9-microg doses of each of the chimeras and 10 microg of the mucosal adjuvant LT(R192G) were found to be protected against EDIM shedding (80, 92, and nearly 100% reduction, respectively; P 相似文献   

6.
A recombinant fusion protein (BBG2Na) comprising the central conserved domain of the respiratory syncytial virus subgroup A (RSV-A) (Long) G protein (residues 130 to 230) and an albumin binding domain of streptococcal protein G was shown previously to protect mouse upper (URT) and lower (LRT) respiratory tracts against intranasal RSV challenge (U. F. Power, H. Plotnicky-Gilquin, T. Huss, A. Robert, M. Trudel, S. Stahl, M. Uhlén, T. N. Nguyen, and H. Binz, Virology 230:155-166, 1997). Panels of monoclonal antibodies (MAbs) and synthetic peptides were generated to facilitate dissection of the structural elements of this domain implicated in protective efficacy. All MAbs recognized native RSV-A antigens, and five linear B-cell epitopes were identified; these mapped to residues 152 to 163, 165 to 172, 171 to 187 (two overlapping epitopes), and 196 to 204, thereby covering the highly conserved cysteine noose domain. Antibody passive-transfer and peptide immunization studies revealed that all epitopes were implicated in protection of the LRT, but not likely the URT, against RSV-A challenge. Pepscan analyses of anti-RSV-A and anti-BBG2Na murine polyclonal sera revealed lower-level epitope usage within the central conserved region in the former, suggesting diminished immunogenicity of the implicated epitopes in the context of the whole virus. However, Pepscan analyses of RSV-seropositive human sera revealed that all of the murine B-cell protective epitopes (protectopes) that mapped to the central conserved domain were recognized in man. Should these murine protectopes also be implicated in human LRT protection, their clustering around the highly conserved cysteine noose region will have important implications for the development of RSV vaccines.  相似文献   

7.
In BALB/c mice, sensitization to respiratory syncytial virus (RSV) attachment (G) glycoprotein leads to the development of lung eosinophilia upon challenge infection with RSV, a pathology indicative of a strong in vivo induction of a Th-2-type response. In this study, we found that a strong, RSV G-specific, Th-1-type cytokine response occurred simultaneously with a Th-2-type response in G-primed mice after RSV challenge. Both Th-1 and Th-2 effector CD4(+) T cells recognized a single immunodominant site on this protein, implying that the differentiation of memory CD4(+) T cells along the Th-1 or Th-2 effector pathway was independent of the epitope specificity of the T cells. A similar observation was made in G-primed H-2(b) haplotype mice after RSV challenge, further suggesting that this process is not dependent on the peptide epitope presented. On the other hand, genes mapping to loci outside of the major histocompatibility complex region are crucial regulators of the development of a Th-2-type response and lung eosinophilia. The implication of these findings for the immune mechanisms underlying the pathogenesis of RSV is discussed.  相似文献   

8.
CD1d-deficient mice have normal numbers of T lymphocytes and natural killer cells but lack Valpha14(+) natural killer T cells. Respiratory syncytial virus (RSV) immunopathogenesis was evaluated in 129xC57BL/6, C57BL/6, and BALB/c CD1d(-/-) mice. CD8(+) T lymphocytes were reduced in CD1d(-/-) mice of all strains, as shown by cell surface staining and major histocompatibility complex class I tetramer analysis, and resulted in strain-specific alterations in illness, viral clearance, and gamma interferon (IFN-gamma) production. Transient activation of NK T cells in CD1d(+/+) mice by alpha-GalCer resulted in reduced illness and delayed viral clearance. These data suggest that early IFN-gamma production and efficient induction of CD8(+)-T-cell responses during primary RSV infection require CD1d-dependent events. We also tested the ability of alpha-GalCer as an adjuvant to modulate the type 2 immune responses induced by RSV glycoprotein G or formalin-inactivated RSV immunization. However, immunized CD1-deficient or alpha-GalCer-treated wild-type mice did not exhibit diminished disease following RSV challenge. Rather, some disease parameters, including cytokine production, eosinophilia, and viral clearance, were increased. These findings indicate that CD1d-dependent NK T cells play a role in expansion of CD8(+) T cells and amplification of antiviral responses to RSV.  相似文献   

9.
Vaccination of children with a formalin-inactivated (FI) respiratory syncytial virus (RSV) vaccine led to exacerbated disease including pulmonary eosinophilia following a natural RSV infection. Immunization of BALB/c mice with FI-RSV or a recombinant vaccinia virus (vv) expressing the RSV attachment (G) protein (vvG) results in a pulmonary Th2 response and eosinophilia after RSV challenge that closely mimics the RSV vaccine-enhanced disease observed in humans. The underlying causes of RSV vaccine-enhanced disease remain poorly understood. We demonstrate here that RSV M2-specific CD8 T cells reduce the Th2-mediated pathology induced by vvG-immunization and RSV challenge in an IFN-gamma-independent manner. We also demonstrate that FI-RSV immunization does not induce a measurable RSV-specific CD8 T cell response and that priming FI-RSV-immunized mice for a potent memory RSV-specific CD8 T cell response abrogates pulmonary eosinophilia after subsequent RSV challenge. Our results suggest that the failure of the FI-RSV vaccine to induce a CD8 T cell response may have contributed to the development of pulmonary eosinophilia and augmented disease that occurred in vaccinated individuals.  相似文献   

10.
Human respiratory syncytial virus (RSV) is a serious pediatric pathogen of the lower respiratory tract worldwide. There is currently no clinically approved vaccine against RSV infection. Recently, it has been shown that a replication-deficient first generation adenoviral vector (FGAd), which encodes modified RSV attachment glycoprotein (G), elicits long-term protective immunity against RSV infection in mice. The major problem in developing such a vaccine is that G protein lacks MHC-I-restricted epitopes. However, RSV fusion glycoprotein (F) is a major cytotoxic T-lymphocyte epitope in humans and mice, therefore, an FGAd-encoding F (FGAd-F) was constructed and evaluated for its potential as an RSV vaccine in a murine model. Intranasal (i.n.) immunization with FGAd-F generated serum IgG, bronchoalveolar lavage secretory IgA, and RSV-specific CD8+ T-cell responses in BALB/c mice, with characteristic balanced or mixed Th1/Th2 CD4+ T-cell responses. Serum IgG was significantly elevated after boosting with i.n. FGAd-F. Upon challenge, i.n. immunization with FGAd-F displayed an effective protective role against RSV infection. These results demonstrate FGAd-F is able to induce effective protective immunity and is a promising vaccine regimen against RSV infection.  相似文献   

11.
Following respiratory syncytial virus (RSV) challenge, mice immunized with RSV G or with formalin-inactivated RSV (FI-RSV) exhibit severe disease associated with type 2 cytokine production and pulmonary eosinophilia. This has led to the proposal that the presence of RSV G is the factor in FI-RSV that induces disease-enhancing T-cell responses. Therefore, we evaluated the role of RSV G and its immunodominant region in the induction of aberrant immune responses during FI-RSV immunization. BALB/c mice were immunized with FI preparations of wild-type (wt) RSV or recombinant RSV (rRSV) containing deletions of (i) the entire G gene, (ii) the region of the G gene encoding amino acids 187 to 197 of the immunodominant region, or (iii) the entire SH gene. After challenge, illness, RSV titers, cytokine levels, and pulmonary eosinophilia were measured. Peak RSV titers postchallenge were significantly greater in mice immunized with FI preparations of the deletion viruses than in those immunized with FI-rRSV wt, suggesting that the absence of G or SH in FI-RSV reduced its protective efficacy. Deletion of G or its epitope did not reduce illness, cytokine production, or eosinophilia relative to that in mice immunized with FI-rRSV wt. While cytokine levels and eosinophilia were similar, illness was reduced in mice immunized with SH-deleted FI-RSV. These data suggest that G-specific immune responses may be important for vaccine-induced protection and are not solely the basis for FI-RSV vaccine-enhanced illness. These data suggest that the method of RSV antigen delivery, rather than the protein composition, influences the phenotype of the induced immune responses and that RSV G should not necessarily be excluded from potential vaccine strategies.  相似文献   

12.
The design of new antigens with both high immunogenic and safety properties is of particular interest to vaccine against infectious diseases. In the present study, we describe the synthesis and the refolding of peptide G20 derived from the Human Respiratory Syncytial Virus (hRSV) G-protein. G20 (MEF G140-190 G144-158) is a peptide of 69 amino acids with two disulfide bridges, which comprises multiple protective B-cell epitopes. It was deleted of the T helper cell epitope 184-198 of the RSV G-protein, which was found to induce pulmonary pathology after RSV challenge in mice. Interestingly, we showed in the present study that G20 generated a highly protective antibody response against RSV challenge in Balb/c mice. Therefore, G20 represents a new potential antigen for an RSV vaccine.  相似文献   

13.
Mice immunized with respiratory syncytial virus (RSV) G glycoprotein or with formalin-inactivated RSV (FI-RSV) exhibit severe disease following RSV challenge. This results in type 2 cytokine production and pulmonary eosinophilia, both hallmarks of vaccine-enhanced disease. RSV G-induced T-cell responses were shown to be restricted to CD4(+) T cells expressing Vbeta14 in the T-cell receptor (TCR), and the deletion of these T cells resulted in less severe disease. We therefore examined the role of Vbeta14(+) T cells in FI-RSV-induced disease. BALB/c mice were immunized with vaccinia virus expressing secreted RSV G (vvGs) or with FI-RSV. At the time of challenge with live RSV, mice were injected with antibody to the Vbeta14 component of the TCR. vvGs-immunized mice treated with anti-Vbeta14 had reduced cytokine levels in the lung. Eosinophil recruitment to the lung was also significantly reduced. In contrast, depletion of Vbeta14(+) T cells in FI-RSV-immunized mice had little impact on cytokine production or pulmonary eosinophilia. An analysis of TCR Vbeta chain usage confirmed a bias toward Vbeta14 expression on CD4(+) T cells from vvGs-immunized mice, whereas the CD4(+) T cells in FI-RSV-immunized mice expressed a diverse array of Vbeta chains. These data show that although FI-RSV and vvGs induce responses resulting in similar immunopathology, the T-cell repertoire mediating the response is different for each immunogen and suggest that the immune responses elicited by RSV G are not the basis for FI-RSV vaccine-enhanced disease.  相似文献   

14.
The respiratory syncytial virus (RSV)-specific frequencies and cytokine expression patterns of acute and memory CD4(+) T cells from RSV strain-A- and strain-B-infected BALB/c mice were determined following restimulation with a panel of 14 predicted RSV I-E(d) peptides from NSP-2, M, SH, F, and L proteins. Ten of fourteen peptides stimulated intracellular Th1 and/or Th2 cytokines in CD4(+) T cells from the mediastinal lymph nodes (MLN) and spleens of RSV strain-A- or strain-B-immune BALB/c mice. Spleen cells exhibited a predominant Th2 cytokine expression pattern after peptide stimulation, whereas MLN cells exhibited a mixed Th1/Th2 cytokine pattern. For a few peptides, there were differences in the Th1/Th2 cytokine response to peptides from the homologous versus heterologous RSV group. None of the 10 peptides induced both Th1 and Th2 cytokines in cells from similarly immunized mice. The frequency and breadth of cytokine expression by I-E(d)-restricted CD4(+) T cells to peptide stimulation was diminished in the memory response.  相似文献   

15.
It is essential that preventative vaccines for respiratory syncytial virus (RSV) elicit balanced T-cell responses. Immune responses dominated by type 2 T cells against RSV antigens are believed to cause exaggerated respiratory tract disease and may also contribute to unwanted inflammation in the airways that predisposes infants to wheeze through adolescence. Here we report on the construction and characterization of recombinant RSV (rRSV) strains with amino acids 151 to 221 or 178 to 219 of the attachment (G) glycoprotein deleted (rA2cpDeltaG150-222 or rA2cpDeltaG177-220, respectively). The central ectodomain was chosen for modification because a peptide spanning amino acids 149 to 200 of G protein has recently been shown to prime several strains of na?ve inbred mice for polarized type 2 T-cell responses, and peripheral blood T cells from most human donors recognize epitopes within this region. Quantitative PCR demonstrated that synthesis of nascent rRSV genomes in human lung epithelial cell lines was similar to that for the parent virus (cp-RSV). Plaque assays further indicated that rRSV replication was not sensitive to 37 degrees C, but pinpoint morphology was observed at 39 degrees C. Both rRSV strains replicated in the respiratory tracts of BALB/c mice and elicited serum neutralization and anti-F-protein immunoglobulin G titers that were equivalent to those elicited by cp-RSV and contributed to a 3.9-log(10)-unit reduction in RSV A2 levels 4 days after challenge. Importantly, pulmonary eosinophilia was significantly diminished in BALB/c mice primed with native G protein and challenged with either rA2cpDeltaG150-222 or rA2cpDeltaG177-220. These findings are important for the development of attenuated RSV vaccines.  相似文献   

16.
Jessen B  Faller S  Krempl CD  Ehl S 《Journal of virology》2011,85(19):10135-10143
Susceptibility to respiratory syncytial virus (RSV) infection in mice is genetically determined. While RSV causes little pathology in C57BL/6 mice, pulmonary inflammation and weight loss occur in BALB/c mice. Using major histocompatibility complex (MHC)-congenic mice, we observed that the H-2(d) allele can partially transfer disease susceptibility to C57BL/6 mice. This was not explained by altered viral elimination or differences in the magnitude of the overall virus-specific cytotoxic T lymphocyte (CTL) response. However, H-2(d) mice showed a more focused response, with 70% of virus-specific CTL representing Vβ8.2(+) CTL directed against the immunodominant epitope M2-1 82, while in H-2(b) mice only 20% of antiviral CTL were Vβ9(+) CTL specific for the immunodominant epitope M187. The immunodominant H-2(d)-restricted CTL lysed target cells less efficiently than the immunodominant H-2(b) CTL, probably contributing to prolonged CTL stimulation and cytokine-mediated immunopathology. Accordingly, reduction of dominance of the M2-1 82-specific CTL population by introduction of an M187 response in the F1 generation of a C57BL/6N × C57BL/6-H-2(d) mating (C57BL/6-H-2(dxb) mice) attenuated disease. Moreover, disease in H-2(d) mice was less pronounced after infection with an RSV mutant failing to activate M2-1 82-specific CTL or after depletion of Vβ8.2(+) cells. These data illustrate how the MHC-determined diversity and functional avidity of CTL responses contribute to disease susceptibility after viral infection.  相似文献   

17.
It was previously demonstrated that the vaccinia virus recombinants expressing the respiratory syncytial virus (RSV) F, G, or M2 (also designated as 22K) protein (Vac-F, Vac-G, or Vac-M2, respectively) induced almost complete resistance to RSV challenge in BALB/c mice. In the present study, we sought to identify the humoral and/or cellular mediators of this resistance. Mice were immunized by infection with a single recombinant vaccinia virus and were subsequently given a monoclonal antibody directed against CD4+ or CD8+ T cells or gamma interferon (IFN-gamma) to cause depletion of effector T cells or IFN-gamma, respectively, at the time of RSV challenge (10 days after immunization). Mice immunized with Vac-F or Vac-G were completely or almost completely resistant to RSV challenge after depletion of both CD4+ and CD8+ T cells prior to challenge, indicating that these cells were not required at the time of virus challenge for expression of resistance to RSV infection induced by the recombinants. In contrast, the high level of protection of mice immunized with Vac-M2 was completely abrogated by depletion of CD8+ T cells, whereas depletion of CD4+ T cells or IFN-gamma resulted in intermediate levels of resistance. These results demonstrate that antibodies are sufficient to mediate the resistance to RSV induced by the F and G proteins, whereas the resistance induced by the M2 protein is mediated primarily by CD8+ T cells, with CD4+ T cells and IFN-gamma also contributing to resistance.  相似文献   

18.
Previous studies demonstrated that the pulmonary resistance to respiratory syncytial virus (RSV) challenge induced by immunization with a recombinant vaccinia virus expressing the M2 protein of RSV (vac-M2) was significantly greater 9 days after immunization than at 28 days and was mediated predominantly by CD8+ T cells. In this study, we have extended these findings and sought to determine whether the level of CD8+ cytotoxic T-lymphocyte (CTL) activity measured in vitro correlates with the resistance to RSV challenge in vivo. Three lines of evidence documented an association between the presence of pulmonary CTL activity and resistance to RSV challenge. First, vac-M2 immunization induced pulmonary CD8+ CTL activity and pulmonary resistance to RSV infection in BALB/c (H-2d) mice, whereas significant levels of pulmonary CTL activity and resistance to RSV infection were not seen in BALB.K (H-2k) or BALB.B (H-2b) mice. Second, pulmonary CD8+ CTL activity was not induced by infection with other vaccinia virus-RSV recombinants that did not induce resistance to RSV challenge. Third, the peak of pulmonary CTL activity correlated with the peak of resistance to RSV replication (day 6), with little resistance being observed 45 days after immunization. An accelerated clearance of virus was not observed when mice were challenged with RSV 45 days after immunization with vac-M2. The results indicate that resistance to RSV induced by immunization with vac-M2 is mainly mediated by primary pulmonary CTLs and that this resistance decreases to very low levels within 2 months following immunization. The implications for inclusion of CTL epitopes into RSV vaccines are discussed in the context of these observations.  相似文献   

19.
Yu JR  Kim S  Lee JB  Chang J 《Journal of virology》2008,82(5):2350-2357
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract disease in infancy and early childhood. Despite its importance as a pathogen, there is no licensed vaccine against RSV. The G glycoprotein of RSV, a major attachment protein, is a potentially important target for protective antiviral immune responses. Here, a recombinant replication-deficient adenovirus-based vaccine, rAd/3xG, expressing the soluble core domain of G glycoprotein (amino acids 130 to 230) engineered by codon optimization and tandem repetition for higher-level expression, was constructed and evaluated for its potential as an RSV vaccine in a murine model. A single intranasal immunization with rAd/3xG provided potent protection against RSV challenge which lasted for more than 10 weeks. Strong mucosal immunoglobulin A responses were also induced by a single intranasal immunization but not by intramuscular or oral administration of rAd/3xG. Interestingly, neither gamma interferon- nor interleukin-4-producing CD4 T cells directed to I-Ed-restricted epitope were detected in the lungs of rAd/3xG-immune mice upon challenge, whereas priming with vaccinia virus expressing RSV G (vvG) elicited strong Th1/Th2 mixed CD4 T-cell responses. Lung eosinophilia and vaccine-induced weight loss were significantly lower in the rAd/3xG-immune group than in the vvG-primed group. Together, our data demonstrate that a single intranasal administration of rAd/3xG elicits beneficial protective immunity and represents a promising vaccine regimen against RSV infection.  相似文献   

20.
Infection by the respiratory syncytial virus (RSV) can cause extensive inflammation and lung damage in susceptible hosts due to a Th2-biased immune response. Such a deleterious inflammatory response can be enhanced by immunization with formalin- or UV-inactivated RSV, as well as with vaccinia virus expressing the RSV-G protein. Recently, we have shown that vaccination with rBCG-expressing RSV Ags can prevent the disease in the mouse. To further understand the immunological mechanisms responsible for protection against RSV, we have characterized the T cell populations contributing to virus clearance in mice immunized with this BCG-based vaccine. We found that both CD4(+) and CD8(+) T cells were recruited significantly earlier to the lungs of infected mice that were previously vaccinated. Furthermore, we observed that simultaneous adoptive transfer of CD8(+) and CD4(+) RSV-specific T cells from vaccinated mice was required to confer protection against virus infection in naive recipients. In addition, CD4(+) T cells induced by vaccination released IFN-γ after RSV challenge, indicating that protection is mediated by a Th1 immune response. These data suggest that vaccination with rBCG-expressing RSV Ags can induce a specific effector/memory Th1 immune response consisting on CD4(+) and CD8(+) T cells, both necessary for a fully protective response against RSV. These results support the notion that an effective induction of Th1 T cell immunity against RSV during childhood could counteract the unbalanced Th2-like immune response triggered by the natural RSV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号