首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muller''s Ratchet under Epistatic Selection   总被引:13,自引:8,他引:5       下载免费PDF全文
A. S. Kondrashov 《Genetics》1994,136(4):1469-1473
In a finite asexual population mean fitness may decrease by a process known as Muller's ratchet, which proceeds if all individuals with the minimum number of deleterious alleles are randomly lost. If these alleles have independent effects on fitness, previous analysis suggested that the rate of this decrease either remains constant or, if accumulation of mutations leads to the decline of the population size, grows. Here I show that this conclusion is quite sensitive to the assumption of independence. If deleterious alleles have synergistic fitness effects, then, as the ratchet advances, the frequency of the best available genotype will necessarily increase, making its loss less and less probable. As a result, sufficiently strong synergistic epistasis can effectively halt the action of Muller's ratchet. Instead of being driven extinct, a finite asexual population could then survive practically indefinitely, although with lower mean fitness than without random drift.  相似文献   

2.
Peters AD  Keightley PD 《Genetics》2000,156(4):1635-1647
Synergistic epistasis, in which deleterious mutations tend to magnify each other's effects, is a necessary component of the mutational deterministic hypothesis for the maintenance of sexual production. We tested for epistasis for life-history traits in the soil nematode Caenorhabditis elegans by inducing mutations in two genetic backgrounds: a wild-type strain and a set of genetically loaded lines that contain large numbers of independent mildly detrimental mutations. There was no significant difference between the effect of new mutations on the wild-type background and the genetically loaded background for four out of five fitness correlates. In these four cases, the maximum level of epistasis compatible with the data was very low. The fifth trait, late productivity, is not likely to be an important component of fitness. This suggests either that specific environmental conditions are required to cause epistasis or that synergistic epistasis is not a general phenomenon. We also suggest a new mechanism by which deleterious mutations may provide an advantage to sexual reproduction under low selection coefficients.  相似文献   

3.
The replicative nature and generally deleterious effects of transposable elements (TEs) raise an outstanding question about how TE copy number is stably contained in host populations. Classic theoretical analyses predict that, when the decline in fitness due to each additional TE insertion is greater than linear, or when there is synergistic epistasis, selection against TEs can result in a stable equilibrium of TE copy number. While several mechanisms are predicted to yield synergistic deleterious effects of TEs, we lack empirical investigations of the presence of such epistatic interactions. Purifying selection with synergistic epistasis generates repulsion linkage between deleterious alleles. We investigated this population genetic signal in the likely ancestral Drosophila melanogaster population and found evidence supporting the presence of synergistic epistasis among TE insertions, especially TEs expected to exert large fitness impacts. Even though synergistic epistasis of TEs has been predicted to arise through ectopic recombination and TE-mediated epigenetic silencing mechanisms, we only found mixed support for the associated predictions. We observed signals of synergistic epistasis for a large number of TE families, which is consistent with the expectation that such epistatic interaction mainly happens among copies of the same family. Curiously, significant repulsion linkage was also found among TE insertions from different families, suggesting the possibility that synergism of TEs’ deleterious fitness effects could arise above the family level and through mechanisms similar to those of simple mutations. Our findings set the stage for investigating the prevalence and importance of epistatic interactions in the evolutionary dynamics of TEs.  相似文献   

4.
Synergistic epistasis for fitness is often assumed in models of how selection acts on the frequency and distribution of deleterious mutations. Evidence for synergistic epistasis would exist if the logarithm of fitness declines more quickly with number of deleterious mutations, than predicted by a linear decline. This can be studied indirectly by quantifying the effect of different levels of inbreeding on fitness. Here, six sets (different genetic backgrounds) of three increasingly inbred Daphnia magna clones were used to assess their relative fitness according to changes in frequency in a competition experiment against a tester clone. A novelty of the mating procedure was that the inbreeding coefficients (F) of the three clones belonging to each set increased in steps of 0.25 independent of the (unknown) inbreeding coefficient of the common ancestor. The equal increase of the inbreeding coefficients is important, because deviations influence the quantification of inbreeding depression, its variance and the detection of epistasis. In a simple mathematical model we show that when working with a partially inbred population inbreeding depression is underestimated, the variance of fitness is increased, and the detection of epistasis more difficult. Further, to examine whether an interaction between inbreeding and parasitism exists, each inbred clone was tested with and without a microsporidium infection (Octosporea bayeri). We found a nonlinear decrease of the logarithm of fitness across the three levels of inbreeding, indicating synergistic epistasis. The interaction term between parasitism and inbreeding was not significant. Our results suggest that deleterious mutations may be purged effectively once the level of inbreeding is high, but that parasitism seems not to influence this effect.  相似文献   

5.
Ecological and mutational explanations for the evolution of sexual reproduction have usually been considered independently. Although many of these explanations have yielded promising theoretical results,experimental support for their ability to overcome a twofold cost of sex has been limited. For this reason, it has recently been argued that a pluralistic approach, combining effects from multiple models, may be necessary to explain the apparent advantage of sex. One such pluralistic model proposes that parasite load and synergistic epistasis between deleterious mutations might interact to create an advantage for recombination.Here, we test this proposal by comparing the fitness functions of parasitized and parasite-free genotypes of Escherichia coli bearing known numbers of transposon-insertion mutations. In both classes, we failed to detect any evidence for synergistic epistasis. However, the average effect of deleterious mutations was greater in parasitized than parasite-free genotypes. This effect might broaden the conditions under which another proposed model combining parasite-host coevolutionary dynamics and mutation accumulation can explain the maintenance of sex. These results suggest that, on average, deleterious mutations act multiplicatively with each other but in synergy with infection in determining fitness.  相似文献   

6.
Sexual selection is a powerful and ubiquitous force in sexual populations. It has recently been argued that sexual selection can eliminate the twofold cost of sex even with low genomic mutation rates. By means of differential male mating success, deleterious mutations in males become more deleterious than in females, and it has been shown that sexual selection can drastically reduce the mutational load in a sexual population, with or without any form of epistasis. However, any mechanism that claims to maintain sexual reproduction must be able to prevent the fixation of an asexual mutant clone with a twofold fitness advantage. Here, I show that despite very strong sexual selection, the fixation of an asexual mutant cannot be prevented under reasonable genomic mutation rates. Sexual selection can have a strong effect on the average mutational load in a sexual population, but as it cannot prevent the fixation of an asexual mutant, it is unlikely to play a key role on the maintenance of sexual reproduction.  相似文献   

7.
Evolution can favor antagonistic epistasis   总被引:2,自引:2,他引:0  
Desai MM  Weissman D  Feldman MW 《Genetics》2007,177(2):1001-1010
The accumulation of deleterious mutations plays a major role in evolution, and key to this are the interactions between their fitness effects, known as epistasis. Whether mutations tend to interact synergistically (with multiple mutations being more deleterious than would be expected from their individual fitness effects) or antagonistically is important for a variety of evolutionary questions, particularly the evolution of sex. Unfortunately, the experimental evidence on the prevalence and strength of epistasis is mixed and inconclusive. Here we study theoretically whether synergistic or antagonistic epistasis is likely to be favored by evolution and by how much. We find that in the presence of recombination, evolution favors less synergistic or more antagonistic epistasis whenever mutations that change the epistasis in this direction are possible. This is because evolution favors increased buffering against the effects of deleterious mutations. This suggests that we should not expect synergistic epistasis to be widespread in nature and hence that the mutational deterministic hypothesis for the advantage of sex may not apply widely.  相似文献   

8.
Sexual selection on males is predicted to increase population fitness, and delay population extinction, when mating success negatively covaries with genetic load across individuals. However, such benefits of sexual selection could be counteracted by simultaneous increases in genome-wide drift resulting from reduced effective population size caused by increased variance in fitness. Resulting fixation of deleterious mutations could be greatest in small populations, and when environmental variation in mating traits partially decouples sexual selection from underlying genetic variation. The net consequences of sexual selection for genetic load and population persistence are therefore likely to be context dependent, but such variation has not been examined. We use a genetically explicit individual-based model to show that weak sexual selection can increase population persistence time compared to random mating. However, for stronger sexual selection such positive effects can be overturned by the detrimental effects of increased genome-wide drift. Furthermore, the relative strengths of mutation-purging and drift critically depend on the environmental variance in the male mating trait. Specifically, increasing environmental variance caused stronger sexual selection to elevate deleterious mutation fixation rate and mean selection coefficient, driving rapid accumulation of drift load and decreasing population persistence times. These results highlight an intricate balance between conflicting positive and negative consequences of sexual selection on genetic load, even in the absence of sexually antagonistic selection. They imply that environmental variances in key mating traits, and intrinsic genetic drift, should be properly factored into future theoretical and empirical studies of the evolution of population fitness under sexual selection.  相似文献   

9.
The effects of sexual selection on population mean fitness are unclear and a subject of debate. Recent models propose that, because reproductive success may be condition dependent, much of the genome may be a target of sexual selection. Under this scenario, mutations that reduce health, and thus nonsexual fitness, may also be deleterious with respect to reproductive success, meaning that sexual selection may contribute to the purging of deleterious alleles. We tested this hypothesis directly by subjecting replicate Drosophila melanogaster populations to two treatments that altered the opportunity for sexual selection and then tracked changes in the frequency of six separate deleterious alleles with recessive and visible phenotypic effects. While natural selection acted to decrease the frequency of all six mutations, the addition of sexual selection did not aid in the purging of any of them, and for three of them appears to have hampered it. Courtship and mating have harmful effects in this species and mate choice assays showed that males directed more courtship and mating behavior toward wild-type over mutant females, providing a likely explanation for sexual selection's cost. Whether this cost extends to other mutations (e.g., those lacking visible phenotypic effects) is an important topic for future research.  相似文献   

10.
Healthy males are likely to have higher mating success than unhealthy males because of differential expression of condition‐dependent traits such as mate searching intensity, fighting ability, display vigor, and some types of exaggerated morphological characters. We therefore expect that most new mutations that are deleterious for overall fitness may also be deleterious for male mating success. From this perspective, sexual selection is not limited to influencing those genes directly involved in exaggerated morphological traits but rather affects most, if not all, genes in the genome. If true, sexual selection can be an important force acting to reduce the frequency of deleterious mutations and, as a result, mutation load. We review the literature and find various forms of indirect evidence that sexual selection helps to eliminate deleterious mutations. However, direct evidence is scant, and there are almost no data available to address a key issue: is selection in males stronger than selection in females? In addition, the total effect of sexual selection on mutation load is complicated by possible increases in mutation rate that may be attributable to sexual selection. Finally, sexual selection affects population fitness not only through mutation load but also through sexual conflict, making it difficult to empirically measure how sexual selection affects load. Several lines of enquiry are suggested to better fill large gaps in our understanding of sexual selection and its effect on genetic load.  相似文献   

11.
You L  Yin J 《Genetics》2002,160(4):1273-1281
Understanding how interactions among deleterious mutations affect fitness may shed light on a variety of fundamental biological phenomena, including the evolution of sex, the buffering of genetic variations, and the topography of fitness landscapes. It remains an open question under what conditions and to what extent such interactions may be synergistic or antagonistic. To address this question, we employed a computer model for the intracellular growth of bacteriophage T7. We created in silico 90,000 mutants of phage T7, each carrying from 1 to 30 mutations, and evaluated the fitness of each by simulating its growth cycle. The simulations sought to account for the severity of single deleterious mutations on T7 growth, as well as the effect of the resource environment on our fitness measures. We found that mildly deleterious mutations interacted synergistically in poor-resource environments but antagonistically in rich-resource environments. However, severely deleterious mutations always interacted antagonistically, irrespective of environment. These results suggest that synergistic epistasis may be difficult to experimentally distinguish from nonepistasis because its effects appear to be most pronounced when the effects of mutations on fitness are most challenging to measure. Our approach demonstrates how computer simulations of developmental processes can be used to quantitatively study genetic interactions at the population level.  相似文献   

12.
Mutation load is a key parameter in evolutionary theories, but relatively little empirical information exists on the mutation load of populations, or the elimination of this load through selection. We manipulated the opportunity for sexual selection within a mutation accumulation divergence experiment to determine how sexual selection on males affected the accumulation of mutations contributing to sexual and nonsexual fitness. Sexual selection prevented the accumulation of mutations affecting male mating success, the target trait, as well as reducing mutation load on productivity, a nonsexual fitness component. Mutational correlations between mating success and productivity (estimated in the absence of sexual selection) were positive. Sexual selection significantly reduced these fitness component correlations. Male mating success significantly diverged between sexual selection treatments, consistent with the fixation of genetic differences. However, the rank of the treatments was not consistent across assays, indicating that the mutational effects on mating success were conditional on biotic and abiotic context. Our experiment suggests that greater insight into the genetic targets of natural and sexual selection can be gained by focusing on mutational rather than standing genetic variation, and on the behavior of trait variances rather than means.  相似文献   

13.
Abstract.— Determining the way in which deleterious mutations interact to effect fitness is crucial to numerous areas in evolutionary biology. For example, if each additional mutation leads to a greater decrease in log fitness than the last, termed synergistic epistasis, then sex and recombination provide an advantage because they enable deleterious mutations to be eliminated more efficiently. However, there is a severe shortage of relevant empirical data, especially of the form that can help test mutational explanations for the widespread occurrence of sex. Here, we test for epistasis in the parasitic wasp Nasonia vitripennis , examining the fitness consequences of chemically induced deleterious mutations. We examine two components of fitness, both of which are thought to be important in natural populations of parasitic wasps: longevity and egg production. Our results show synergistic epistasis for longevity, but not for egg production.  相似文献   

14.
We have found that constant selection against mutations can cause cyclical dynamics in a population with facultative selfing. When this happens, the distribution of the number of deleterious mutations per genotype fluctuates with the period approximately 1/sHe generations, where sHe is the coefficient of selection against a heterozygous mutation. The amplitude of oscillations of the mean population fitness often exceeds an order of magnitude. Cyclical dynamics can occur under intermediate selfing rates if selection against heterozygous mutations is weak and selection against homozygous mutations is much stronger. Cycling is possible without epistasis or with diminishing-returns epistasis, but not with synergistic epistasis. Under multiplicative selection, cycling might happen if the haploid mutation rate exceeds 1.9 in the case of selfing of haploids, and if this diploid mutation rate exceeds 4.5 in the case of selfing of diploids. We propose a heuristic explanation for cycling under facultative selfing and discuss its possible relevance.  相似文献   

15.
Sexual selection is argued to be important for the removal of deleterious mutations, promoting population fitness, accelerating adaptation, and compensating for the two‐fold cost of sex. Here we induced mutations in the dung beetle Onthophagus taurus using ionizing radiation, and tested the efficacy of sexual selection in their removal. Mutations reduced male precopulatory (strength) and postcopulatory (testes mass) sexual traits. Two generations of sexual selection were sufficient to remove mutations that affected male strength, but not testes mass. Induced mutations did not affect female productivity, which was elevated by sexual selection. Our results provide empirical support for the hypothesis that condition‐dependent traits offer a large target for mutational variation, and that sexual selection can purge the genome of deleterious mutations and promote population fitness.  相似文献   

16.
Inbreeding depression resulting from partially recessive deleterious alleles is thought to be the main genetic factor preventing self-fertilizing mutants from spreading in outcrossing hermaphroditic populations. However, deleterious alleles may also generate an advantage to selfers in terms of more efficient purging, while the effects of epistasis among those alleles on inbreeding depression and mating system evolution remain little explored. In this article, we use a general model of selection to disentangle the effects of different forms of epistasis (additive-by-additive, additive-by-dominance, and dominance-by-dominance) on inbreeding depression and on the strength of selection for selfing. Models with fixed epistasis across loci, and models of stabilizing selection acting on quantitative traits (generating distributions of epistasis) are considered as special cases. Besides its effects on inbreeding depression, epistasis may increase the purging advantage associated with selfing (when it is negative on average), while the variance in epistasis favors selfing through the generation of linkage disequilibria that increase mean fitness. Approximations for the strengths of these effects are derived, and compared with individual-based simulation results.  相似文献   

17.
Several models have been proposed to account for the segmentation of RNA viruses. One of the best known models suggests that segmentation, and mixing of segments during coinfections, is a way to eliminate deleterious mutations from the genome. However, for validity, this model requires that deleterious mutations interact in a synergistic way. That is, two mutations together should have a more deleterious effect than the result of adding their individual effects. Here I present evidence that deleterious mutations in foot-and-mouth disease virus produce a decline in fitness but that the relationship between the number of mutations fixed and the magnitude of fitness decline is compatible mainly with a nonsynergistic model. However, the statistical uncertainties associated with the data still give some room for the existence of very weak synergistic epistasis. Received: 2 November 1998 / Accepted: 19 April 1999  相似文献   

18.
Muller''s Ratchet, Epistasis and Mutation Effects   总被引:9,自引:5,他引:4       下载免费PDF全文
D. Butcher 《Genetics》1995,141(1):431-437
In this study, computer simulation is used to show that despite synergistic epistasis for fitness, Muller's ratchet can lead to lethal fitness loss in a population of asexuals through the accumulation of deleterious mutations. This result contradicts previous work that indicated that epistasis will halt the ratchet. The present results show that epistasis will not halt the ratchet provided that rather than a single deleterious mutation effect, there is a distribution of deleterious mutation effects with sufficient density near zero. In addition to epistasis and mutation distribution, the ability of Muller's ratchet to lead to the extinction of an asexual population under epistasis for fitness depends strongly on the expected number of offspring that survive to reproductive age. This strong dependence is not present in the nonepistatic model and suggests that interpreting the population growth parameter as fecundity is inadequate. Because a continuous distribution of mutation effects is used in this model, an emphasis is placed on the dynamics of the mutation effect distribution rather than on the dynamics of the number of least mutation loaded individuals. This perspective suggests that current models of gene interaction are too simple to apply directly to long-term prediction for populations undergoing the ratchet.  相似文献   

19.
According to current theoretical predictions, any deleterious mutations that reduce nonsexual fitness may have a negative influence on mating success. This means that sexual selection may remove deleterious mutations from the populations. Males of good genetic quality should be more successful in mating, compared to the males of lower genetic quality. As mating success is a condition dependent trait, large fractions of the genome may be a target of sexual selection and many behavioral traits are likely to be condition dependent. We manipulated the genetic quality of Drosophila subobscura males by inducing mutations with ionizing radiation and observed the effects of the obtained heterozygous mutations on male mating behavior: courtship occurrence, courtship latency, mating occurrence, latency to mating and duration of mating. We found possible effects of mutations. Females mated more frequently with male progeny of nonirradiated males and that these males courted females faster compared to the male progeny of irradiated males. Our findings indicate a possible important role of sexual selection in purging deleterious mutations.  相似文献   

20.
Theory predicts that sexual reproduction can increase population viability relative to asexual reproduction by allowing sexual selection in males to remove deleterious mutations from the population without large demographic costs. This requires that selection acts more strongly in males than females and that mutations affecting male reproductive success have pleiotropic effects on population productivity, but empirical support for these assumptions is mixed. We used the seed beetle Callosobruchus maculatus to implement a three‐generation breeding design where we induced mutations via ionizing radiation (IR) in the F0 generation and measured mutational effects (relative to nonirradiated controls) on an estimate of population productivity in the F1 and effects on sex‐specific competitive lifetime reproductive success (LRS) in the F2. Regardless of whether mutations were induced via F0 males or females, they had strong negative effects on male LRS, but a nonsignificant influence on female LRS, suggesting that selection is more efficient in removing deleterious alleles in males. Moreover, mutations had seemingly shared effects on population productivity and competitive LRS in both sexes. Thus, our results lend support to the hypothesis that strong sexual selection on males can act to remove the mutation load on population viability, thereby offering a benefit to sexual reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号