首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We cloned and sequenced a plant cDNA that encodes U1 small nuclear ribonucleoprotein (snRNP) 70K protein. The plant U1 snRNP 70K protein cDNA is not full length and lacks the coding region for 68 amino acids in the amino-terminal region as compared to human U1 snRNP 70K protein. Comparison of the deduced amino acid sequence of the plant U1 snRNP 70K protein with the amino acid sequence of animal and yeast U1 snRNP 70K protein showed a high degree of homology. The plant U1 snRNP 70K protein is more closely related to the human counter part than to the yeast 70K protein. The carboxy-terminal half is less well conserved but, like the vertebrate 70K proteins, is rich in charged amino acids. Northern analysis with the RNA isolated from different parts of the plant indicates that the snRNP 70K gene is expressed in all of the parts tested. Southern blotting of genomic DNA using the cDNA indicates that the U1 snRNP 70K protein is coded by a single gene.  相似文献   

2.
3.
Expression of the recombinant human U1-70K protein in COS cells resulted in its rapid transport to the nucleus, even when binding to U1 RNA was debilitated. Deletion analysis of the U1-70K protein revealed the existence of two segments of the protein which were independently capable of nuclear localization. One nuclear localization signal (NLS) was mapped within the U1 RNA-binding domain and consists of two typically separated but interdependent elements. The major element of this NLS resides in structural loop 5 between the beta 4 strand and the alpha 2 helix of the folded RNA recognition motif. The C-terminal half of the U1-70K protein which was capable of nuclear entry contains two arginine-rich regions, which suggests the existence of a second NLS. Site-directed mutagenesis of the RNA recognition motif NLS demonstrated that the U1-70K protein can be transported independently of U1 RNA and that its association with the U1 small nuclear ribonucleoprotein particle can occur in the nucleus.  相似文献   

4.
M Golovkin  A S Reddy 《The Plant cell》1998,10(10):1637-1648
The U1 small nuclear ribonucleoprotein particle (U1 snRNP) 70K protein (U1-70K), one of the three U1 snRNP-specific proteins, is implicated in basic and alternative splicing of nuclear pre-mRNAs. We have used the Arabidopsis U1-70K in the yeast two-hybrid system to isolate cDNAs encoding proteins that interact with it. This screening has resulted in the isolation of two novel plant serine/arginine-rich (SR) proteins, SRZ-22 and SRZ-21 (SRZ proteins). Neither the N-terminal region nor the arginine-rich C-terminal region of U1-70K alone interact with the SRZ proteins. The interaction of U1-70K with the SRZ proteins is confirmed further in vitro using a blot overlay assay. The plant SRZ proteins are highly similar to each other and contain conserved modular domains unique to different groups of splicing factors in the SR family of proteins. SRZ proteins are similar to human 9G8 splicing factor because they contain a zinc knuckle, precipitate with 65% ammonium sulfate, and cross-react with the 9G8 monoclonal antibody. However, unlike the 9G8 splicing factor, SRZ proteins contain a glycine hinge, a unique feature in other splicing factors (SC35 and ASF/SF2), located between the RNA binding domain and the zinc knuckle. SRZ-22 and SRZ-21 are encoded by two distinct genes and are expressed in all tissues tested with varied levels of expression. Our results suggest that the plant SRZ proteins represent a new group of SR proteins. The interaction of plant U1-70K with the SRZ proteins may account for some differences in pre-mRNA splicing between plants and animals.  相似文献   

5.
The U1 small nuclear ribonucleoprotein 70-kDa protein, a U1 small nuclear ribonucleoprotein-specific protein, has been shown to have multiple roles in nuclear precursor mRNA processing in animals. By using the C-terminal arginine-rich region of Arabidopsis U1-70K protein in the yeast two-hybrid system, we have identified an SC35-like (SR33) and a novel plant serine/arginine-rich (SR) protein (SR45) that interact with the plant U1-70K. The SR33 and SR45 proteins share several features with SR proteins including modular domains typical of splicing factors in the SR family of proteins. However, both plant SR proteins are rich in proline, and SR45, unlike most animal SR proteins, has two distinct arginine/serine-rich domains separated by an RNA recognition motif. By using coprecipitation assays we confirmed the interaction of plant U1-70K with SR33 and SR45 proteins. Furthermore, in vivo and in vitro protein-protein interaction experiments have shown that SR33 protein interacts with itself and with SR45 protein but not with two other members (SRZ21 and SRZ22) of the SR family that are known to interact with the Arabidopsis full-length U-70K only. A Clk/Sty protein kinase (AFC-2) from Arabidopsis phosphorylated four SR proteins (SR33, SR45, SRZ21, and SRZ22). Coprecipitation studies have confirmed the interaction of SR proteins with AFC2 kinase, and the interaction between AFC2 and SR33 is modulated by the phosphorylation status of these proteins. These and our previous results suggest that the plant U1-70K interacts with at least four distinct members of the SR family including SR45 with its two arginine/serine-rich domains, and the interaction between the SR proteins and AFC2 is modulated by phosphorylation. The interaction of plant U1-70K with a novel set of proteins suggests the early stages of spliceosome assembly, and intron recognition in plants is likely to be different from animals.  相似文献   

6.
C C Query  R C Bentley  J D Keene 《Cell》1989,57(1):89-101
We have defined the RNA binding domain of the 70K protein component of the U1 small nuclear ribonucleoprotein to a region of 111 amino acids. This domain encompasses an octamer sequence that has been observed in other proteins associated with RNA, but has not previously been shown to bind directly to a specific RNA sequence. Within the U1 RNA binding domain, an 80 amino acid consensus sequence that is conserved in many presumed RNA binding proteins was discerned. This sequence pattern appears to represent an RNA recognition motif (RRM) characteristic of a distinct family of proteins. By site-directed mutagenesis, we determined that the 70K protein consists of 437 amino acids (52 kd), and found that its aberrant electrophoretic migration is due to a carboxy-terminal charged domain structurally similar to two Drosophila proteins (su(wa) and tra) that may regulate alternative pre-messenger RNA splicing.  相似文献   

7.
8.
9.
We have isolated and sequenced the gene encoding the human U1-70K snRNP protein. U1-70K is an RNA-binding protein that is a specific component of the U1 small nuclear ribonucleoprotein complex (snRNP) and constitutes the major anti-(U1) RNP autoimmune antigen. We have mapped the U1-70K gene to the distal portion of chromosome 19, at band q13.3. The gene is greater than 44 kb in size and consists of 11 exons. The general structure of the gene has been completely conserved during vertebrate evolution and accounts for the production of several different U1-70K mRNA species by alternative pre-mRNA splicing. Comparison of the predicted amino acid sequences of animal U1-70K proteins reveals a high degree of conservation, particularly in the region of the RNP consensus domain. Even more striking is the complete conservation of the nucleotide sequence of an alternative included/excluded exon containing an in-frame translational termination codon. This conservation also includes significant portions of the downstream intervening sequence. This extraordinary conservation at the nucleotide sequence level suggests that alternative splicing of this exon serves an important function, perhaps in regulating the production of functional U1-70K protein.  相似文献   

10.
U1 snRNP is required at an early stage during assembly of the spliceosome, the dynamic ribonucleoprotein (RNP) complex that performs nuclear pre-mRNA splicing. Here, we report the purification of U1 snRNP particles from Drosophila nuclear extracts and the characterization of their biochemical properties, polypeptide contents, and splicing activities. On the basis of their antigenicity, apparent molecular weight, and by peptide sequencing, the Drosophila 70K, SNF, B, U1-C, D1, D2, D3, E, F, and G proteins are shown to be integral components of these particles. Sequence database searches revealed that both the U1-specific and the Sm proteins are extensively conserved between human and Drosophila snRNPs. Furthermore, both species possess a conserved intrinsic U1-associated kinase activity with identical substrate specificity in vitro. Finally, our results demonstrate that a second type of functional U1 particle, completely lacking the U1/U2-specific protein SNF and the associated protein kinase activity, can be isolated from cultured Kc cell or Canton S embryonic nuclear extracts. This work describes the first characterization of a purified Drosophila snRNP particle and reinforces the view that their activity and composition, with the exception of the atypical bifunctional U1-A/U2-B" SNF protein, are highly conserved in metazoans.  相似文献   

11.
12.
The Saccharomyces cerevisiae SNP1 gene encodes a protein that shares 30% amino acid identity with the mammalian U1 small nuclear ribonucleoprotein particle protein 70K (U1-70K). We have demonstrated that yeast strains in which the SNP1 gene was disrupted are viable but exhibit greatly increased doubling times and severe temperature sensitivity. Furthermore, snp1-null strains are defective in pre-mRNA splicing. We have tested deletion alleles of SNP1 for their ability to complement these phenotypes. We found that the highly conserved RNA recognition motif consensus domain of Snp1 is not required for complementation of the snp1-null growth or splicing defects nor for the in vivo association with the U1 small nuclear ribonucleoprotein particle. However, the amino-terminal domain of Snp1, less strongly conserved, is necessary and sufficient for complementation.  相似文献   

13.
14.
Cloning of the human cDNA for the U1 RNA-associated 70K protein.   总被引:63,自引:8,他引:55       下载免费PDF全文
Anti-RNP sera were used to isolate a cDNA clone for the largest polypeptide of the U1 snRNP, a protein of mol. wt 70 kd designated 70K, from a human liver cDNA library constructed in the expression vector pEX1. The cro-beta-galactosidase-70K fusion protein reacted with various anti-RNP patient sera, a rabbit anti-70K antiserum, as well as with a monoclonal antibody specific for this protein. The sequences of four 70K peptides were determined and they match parts of the deduced amino acid sequence of the 1.3 kb insert of p70.1 indicating that it is a genuine 70K cDNA. Screening of a new cDNA library constructed from polysomal mRNA of HeLa cells with the p70.1 clone yielded an overlapping clone, FL70K, which was 2.7 kb long and covered the complete coding and 3'-untranslated sequence of the 70K protein in addition to 680 nucleotides upstream of the putative initiation codon, The predicted mol. wt of the encoded protein is approximately 70 kd. Amino acid analysis of the purified HeLa 70K protein yielded values close or identical to those deduced from the nucleotide sequence of the full-length cDNA. The 70K protein is rich in arginine (20%) and acidic amino acids (18%). Extremely hydrophilic regions containing mixed-charge amino acid clusters have been identified at the carboxyl-terminal half of the protein, which may function in RNA binding. A sequence comparison with two recently cloned RNA binding proteins revealed homology with one region in the U1 RNP 70K protein. This domain may also be responsible for RNA binding.  相似文献   

15.
16.
Salz HK  Mancebo RS  Nagengast AA  Speck O  Psotka M  Mount SM 《Genetics》2004,168(4):2059-2065
The conserved spliceosomal U1-70K protein is thought to play a key role in RNA splicing by linking the U1 snRNP particle to regulatory RNA-binding proteins. Although these protein interactions are mediated by repeating units rich in arginines and serines (RS domains) in vitro, tests of this domain's importance in intact multicellular organisms have not been carried out. Here we report a comprehensive genetic analysis of U1-70K function in Drosophila. Consistent with the idea that U1-70K is an essential splicing factor, we find that loss of U1-70K function results in lethality during embryogenesis. Surprisingly, and contrary to the current view of U1-70K function, animals carrying a mutant U1-70K protein lacking the arginine-rich domain, which includes two embedded sets of RS dipeptide repeats, have no discernible mutant phenotype. Through double-mutant studies, however, we show that the U1-70K RS domain deletion no longer supports viability when combined with a viable mutation in another U1 snRNP component. Together our studies demonstrate that while the protein interactions mediated by the U1-70K RS domain are not essential for viability, they nevertheless contribute to an essential U1 snRNP function.  相似文献   

17.
Three specific proteins, called A, 70K and C, are present in the U1 small nuclear ribonucleoprotein (snRNP) particle, in addition to the common proteins. The human U1 snRNP-specific A protein is, apart from a proline-rich region, highly similar to the U2 snRNP-specific protein B". To examine the homologous regions at the genomic level, we isolated and characterized the human U1-A gene. The human U1-A protein appears to be encoded by a single-copy gene and its locus has been mapped to the q arm of chromosome 19. The gene, about 14-16 kb in length, consists of six exons. The regions homologous to the U2-B" gene are not limited to single exons and are mostly not confined by exon-exon junctions in the corresponding U1-A mRNA. However, the proline-rich region of U1-A, absent in U2-B", is encoded by a single exon, suggesting a specific function for this domain of U1-A. The region of the cap site and upstream sequences contain interesting similarities to the promoter region of other snRNP protein-encoding genes and several housekeeping genes, in particular the vertebrate ribosomal protein-encoding genes. Hybridization experiments with various vertebrate genomic DNAs revealed that U1-A sequences are evolutionarily conserved in all tested vertebrate genomes, except for chicken, duck and pigeon. The divergence of these avian genomes is probably typical for the class of birds.  相似文献   

18.
19.
Heterogeneous nuclear ribonucleoproteins are predominantly nuclear RNA-binding proteins that function in a variety of cellular activities. The objective of these experiments was to clone a cDNA for a chicken protein similar to other previously reported heterogeneous ribonucleoproteins for other species. The 5' and 3' ends of the chicken mRNA were cloned using Rapid Amplification of cDNA Ends (RACE). Subsequently, the expression of the mRNA sequence was confirmed via Northern analysis. The deduced amino acid sequence was approximately 86% identical to corresponding regions of human, mouse, or zebrafish proteins similar to heterogeneous nuclear ribonucleoprotein H1. The expression data confirmed the size of the predicted mRNA sequence. The newly identified sequence may be employed in future studies aimed at understanding the role of heterogeneous nuclear ribonucleoproteins in avian species.  相似文献   

20.
The U1 small nuclear ribonucleoprotein particle (U1 snRNP), a cofactor in pre-mRNA splicing, contains three proteins, termed 70K, A, and C, that are not present in the other spliceosome-associated snRNPs. We studied the binding of the A and C proteins to U1 RNA, using a U1 snRNP reconstitution system and an antibody-induced nuclease protection technique. Antibodies that reacted with the A and C proteins induced nuclease protection of the first two stem-loops of U1 RNA in reconstituted U1 snRNP. Detailed analysis of the antibody-induced nuclease protection patterns indicated the existence of relatively long-range protein-protein interactions in the U1 snRNP, with the 5' end of U1 RNA and its associated specific proteins interacting with proteins bound to the Sm domain near the 3' end. UV cross-linking experiments in conjunction with an A-protein-specific antibody demonstrated that the A protein bound directly to the U1 RNA rather than assembling in the U1 snRNP exclusively via protein-protein interactions. This conclusion was supported by additional experiments revealing that the A protein could bind to U1 RNA in the absence of bound 70K and Sm core proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号