首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Gene 12 of equine herpesvirus 1 (EHV-1), the homolog of herpes simplex virus (HSV) VP16 (alpha TIF, Vmw65), was cloned into a eukaryotic expression vector by PCR and used in transactivation studies of both the EHV-1 and HSV-1 IE1 promoters. Results demonstrated that the product of gene 12 is a potent transactivator of immediate-early gene expression of both viruses, which requires sequences in the upstream HSV-1 promoter for activity. Mutational analysis of the gene 12 open reading frame indicated that removal of the C-terminal 7 amino acids, which contain a short region of homology with the extreme C terminus of VP16, inactivated the protein. Within this region, only a single methionine residue appeared to be essential for activity, implying that gene 12 may have a modular array of organization similar to that of VP16. However, fusion of the gene 12 C terminus to a truncated form of VP16, which contained the complex formation domain, did not restore activity to the HSV-1 protein. These data demonstrate that the EHV-1 immediate-early transactivator may not be functionally colinear with VP16, with transactivation requiring both the C terminus and another region(s) present within the N-terminal portion.  相似文献   

4.
5.
6.
The genetic relatedness of two types of equine herpesviruses (EHVs), 1 (EHV-1) and 3 (EHV-3), was determined by DNA-DNA reassociation kinetics. Denatured, labeled viral DNA probe was allowed to reassociate in the presence or absence of the second unlabeled viral DNA. The initial rate of reassociation of either labeled viral DNA was increased by the presence of the heterologous viral DNA to an extent indicating only 2 to 5% homology between the two EHV genomes. Moreover, labeled RNA extracted from EHV-3-infected cells hybridized to filter-immobilized EHV-1 DNA only 2 to 3 percent as efficiently as to the homologous EHV-3 DNA. These results demonstrate that the genital (EHV-3) and nongenital (EHV-1) types of EHVs exhibit very little genetic homology.  相似文献   

7.
Regulatory function of the equine herpesvirus 1 ICP27 gene product.   总被引:1,自引:3,他引:1       下载免费PDF全文
The UL3 protein of equine herpesvirus 1 (EHV-1) KyA strain is a homolog of the ICP27 alpha regulatory protein of herpes simplex virus type 1 (HSV-1) and the ORF 4 protein of varicella-zoster virus. To characterize the regulatory function of the UL3 gene product, a UL3 gene expression vector (pSVUL3) and a vector expressing a truncated version of the UL3 gene (pSVUL3P) were generated. These effector plasmids, in combination with an EHV-1 immediate-early (IE) gene expression vector (pSVIE) and chimeric EHV-1 promoter-chloramphenicol acetyltransferase (CAT) reporter constructs, were used in transient transfection assays. These assays demonstrated that the EHV-1 UL3 gene product is a regulatory protein that can independently trans activate the EHV-1 IE promoter; however, this effect can be inhibited by the repressive function of the IE gene product on the IE promoter (R. H. Smith, G. B. Caughman, and D. J. O'Callaghan, J. Virol. 66:936-945, 1992). In the presence of the IE gene product, the UL3 gene product significantly augments gene expression directed by the promoters of three EHV-1 early genes (thymidine kinase; IR4, which is the homolog of HSV-1 ICP22; and UL3 [ICP27]) and the promoter of the EHV-1 late gene IR5, which is the homolog of HSV-1 US10. Sequences located at nucleotides -123 to +20 of the UL3 promoter harbor a TATA box, SP1 binding site, CAAT box, and octamer binding site and, when linked to the CAT reporter gene, are trans activated to maximal levels by the pSVIE construct in transient expression assays. Results from CAT assays also suggest that the first 11 amino acids of the UL3 protein are not essential for the regulatory function of the UL3 gene product.  相似文献   

8.
There have been conflicting reports regarding the gene assignment of the high-molecular-mass envelope glycoprotein gp2 (gp300) of equine herpesvirus 1. Here, we provide an unequivocal demonstration that gp2 is encoded by gene 71. gp2 that was purified with a defining monoclonal antibody was cleaved internally to yield a 42-kDa protein encoded by gene 71. Amino acid composition data and N-terminal sequence analysis of a tryptic peptide identified gp2 as the product of equine herpesvirus 1 gene 71 with the SWISS-PROT database. Analysis of gp2's monosaccharide composition and the 42-kDa subunit showed that the high level of O glycosylation occurs on the serine/threonine-rich region upstream of the cleavage site.  相似文献   

9.
Genomic termini of equine herpesvirus 1.   总被引:2,自引:3,他引:2       下载免费PDF全文
After cell infection with the equine herpesvirus 1 (EHV-1), the termini of the linear double-stranded DNA genome fuse to form circular forms. To investigate the mechanisms in the generation and cleavage of such replicative-form DNAs, the genomic termini, the fusion of termini from replicative-form molecules, and the junction between the short and long genome segments have been analyzed by restriction mapping, blot hybridizations, cloning, and sequencing. The data suggest that the genome ends are not redundant and that the genomic termini are fused in replicative intermediates via 3' single-base extensions at the termini of the unique long segment (UL) and terminal repeat (TR). Adjacent to the EHV-1 termini are AT and gamma sequence elements highly conserved among different herpesviruses. We propose that both of these sequence elements are important for the cleavage of EHV-1 replicative forms.  相似文献   

10.
The EICP22 protein (EICP22P) of Equine herpesvirus 1 (EHV-1) is an early protein that functions synergistically with other EHV-1 regulatory proteins to transactivate the expression of early and late viral genes. We have previously identified EICP22P as an accessory regulatory protein that has the ability to enhance the transactivating properties and the sequence-specific DNA-binding activity of the EHV-1 immediate-early protein (IEP). In the present study, we identify EICP22P as a self-associating protein able to form dimers and higher-order complexes during infection. Studies with the yeast two-hybrid system also indicate that physical interactions occur between EICP22P and IEP and that EICP22P self-aggregates. Results from in vitro and in vivo coimmunoprecipitation experiments and glutathione S-transferase (GST) pull-down studies confirmed a direct protein-protein interaction between EICP22P and IEP as well as self-interactions of EICP22P. Analyses of infected cells by laser-scanning confocal microscopy with antibodies specific for IEP and EICP22P revealed that these viral regulatory proteins colocalize in the nucleus at early times postinfection and form aggregates of dense nuclear structures within the nucleoplasm. Mutational analyses with a battery of EICP22P deletion mutants in both yeast two-hybrid and GST pull-down experiments implicated amino acids between positions 124 and 143 as the critical domain mediating the EICP22P self-interactions. Additional in vitro protein-binding assays with a library of GST-EICP22P deletion mutants identified amino acids mapping within region 2 (amino acids [aa] 65 to 196) and region 3 (aa 197 to 268) of EICP22P as residues that mediate its interaction with IEP.  相似文献   

11.
12.
13.
Fertility of stallions is of high economic importance, especially for large breeding organisations and studs. Breeding schemes with respect to fertility traits and selection of stallions at an early stage may be improved by including molecular genetic markers associated with traits. The genes coding for equine cysteine-rich secretory proteins (CRISPs) are promising candidate genes because previous studies have shown that CRISPs play a role in the fertilising ability of male animals. We have previously characterised the three equine CRISP genes and identified a non-synonymous polymorphism in the CRISP1 gene. In this study, we report one non-synonymous polymorphism in the CRISP2 gene and four non-synonymous polymorphisms in the CRISP3 gene. All six CRISP polymorphisms were genotyped in 107 Hanoverian breeding stallions. Insemination records of stallions were used to analyse the association between CRISP polymorphisms and fertility traits. Three statistical models were used to evaluate the influence of single mutations, genotypes and haplotypes of the polymorphisms. The CRISP3 AJ459965:c.+622G>A SNP leading to the amino acid substitution E208K was significantly associated with the fertility of stallions. Stallions heterozygous for the CRISP3 c.+622G>A SNP had lower fertility than homozygous stallions (P = 0.0234). The pregnancy rate per cycle in these stallions was estimated to be approximately 7% lower than in stallions homozygous at this position.  相似文献   

14.
Human herpesviruses (HHV) are stealth pathogens possessing several decoy or immune system evasion mechanisms favoring their persistence within the infected host. Of these viruses, HHV-6 is among the most successful human parasites, establishing lifelong infections in nearly 100% of individuals around the world. To better understand this host-pathogen relationship, we determined whether HHV-6 could interfere with the development of the innate antiviral response by affecting interferon (IFN) biosynthesis. Using inducible cell lines and transient transfection assays, we have identified the immediate-early 1 (IE1) protein as a potent inhibitor of IFN-beta gene expression. IE1 proteins from both HHV-6 variants were capable of suppressing IFN-beta gene induction. IE1 prevents IFN-beta gene expression triggered by Sendai virus infection, double-stranded RNA (dsRNA) and dsDNA transfection, or the ectopic expression of IFN-beta gene activators such as retinoic inducible gene I protein, mitochondrial antiviral signaling protein, TBK-1, IkappaB kinase epsilon (IKKepsilon), and IFN regulatory factor 3 (IRF3). While the stability of IFN-beta mRNA is not affected, IE1-expressing cells have reduced levels of dimerized IRF3 and nucleus-translocated IRF3 in response to activation by TBK-1 or IKKepsilon. Using nuclear extracts and gel shift experiments, we could demonstrate that in the presence of IE1, IRF3 does not bind efficiently to the IFN-beta promoter sequence. Overall, these results indicate that the IE1 protein of HHV-6, one of the first viral proteins synthesized upon viral entry, is a potent suppressor of IFN-beta gene induction and likely contributes to favor the establishment of and successful infection of cells with this virus.  相似文献   

15.
Although both equine herpesvirus type 1 (EHV-1) and equine herpesvirus type 4 (EHV-4) can be associated with respiratory disease, epizootics caused by EHV-1 are much more serious because the virus can cause abortions and paralysis. It is, therefore, important to identify the type of EHV involved in an outbreak by a test that is quick, sensitive, and reliable. We have adapted the polymerase chain reaction (PCR) to detect and distinguish between EHV-1 and EHV-4 in the same reaction. Primers for PCR were designed from the sequences of the glycoprotein B genes of EHV-1 and EHV-4. The PCR products derived from EHV-1 and EHV-4 were 135 and 326 base pairs, respectively, and could be readily separated by electrophoresis. The identity of the PCR products was confirmed by determining their nucleotide sequence, which agreed with the published sequence of the gB genes. The test could be performed directly on virus pelleted from small volumes (300 microL) of medium in which nasal swabs were transported and did not rely on the presence of infectious virus. The PCR was unaffected by conditions that reduced the infectivity of a virus preparation by 99%. The PCR detected EHV-4 in 5 of 10 nasal mucous samples taken from an outbreak of respiratory disease in race horses. Virus isolation in indicator cells was successful in detecting virus in four of the five samples positive by PCR.  相似文献   

16.
We describe the nucleotide sequence of a herpes simplex virus type 1 DNA fragment containing the intron of the immediate-early mRNA-5 (IE mRNA-5) gene. The location of the intron within this fragment was determined by a Berk & Sharp nuclease S1 protection analysis, and by cloning and sequencing cDNA containing sequences overlapping t he IE mRNA-5 splice point. We found that the 149 base pair (bp) intron contained four copies of an identical 23 bp GC rich tandem repeat followed by a further reiteration consisting of the first 15 bp only.  相似文献   

17.
Genomic DNAs of equine herpesvirus type 1 (EHV-1), EHV-2 (equine cytomegalovirus), and EHV-3 were examined by reassociation kinetic and thermal denaturation analyses to determine the extent and degree of homology among the three viral DNAs. Results of reassociation analyses indicated a limited homology among the three EHV genomes. Homologous DNA sequences equivalent to 1.8 to 3.7 megadaltons between EHV-1 and equine cytomegalovirus, 7.6 to 8.2 megadaltons between EHV-1 and EHV-3, and 1.3 to 1.9 megadaltons between equine cytomegalovirus and EHV-3 were detected. Examination by thermal denaturation of the DNA homoduplexes and heteroduplexes formed during reassociation revealed a high degree of base pairing within the duplexes, suggesting that closely related sequences may be conserved among the genomes of EHV.  相似文献   

18.
19.
Molecular genetic analysis of a number of vertebrate erythroid cell-specific genes has identified at least two types of cis-acting regulatory sequences which control the complex developmental pattern of gene expression during erythroid cell maturation. Tissue-specific cellular enhancers have been identified 3' to three erythroid cell-specific genes, and additional regulatory elements have been identified in the promoters of many erythroid genes. We show that the histone H5 enhancer, like the adult beta-globin enhancer, is involved in mediating the developmental induction of histone H5 mRNA as erythroid cells mature. We also describe the preliminary characterization of a tissue-specific regulatory element within the 5' region of the H5 locus and describe investigations of the interaction between this element and the histone H5 enhancer in mediating histone H5 regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号