首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
PBMC from healthy adult individuals seropositive for measles virus (MV) were tested for their capacity to proliferate to UV-inactivated MV (UV-MV) or to autologous MV-infected EBV-transformed B cell lines (EBV-BC). MV-specific T cell responses were observed in 11 of 15 donors tested (stimulation index greater than 2), when optimal doses of UV-MV were used in proliferative assays. T cell clones were generated from PBMC of three donors responding to MV, by using either UV-MV or MV-infected autologous EBV-BC as APC. Stimulation with UV-MV generated exclusively CD3+ CD4+ CD8- MV-specific T cells, whereas after stimulation of PBMC with MV-infected EBV-BC, both CD3+ CD4+ CD8- and CD3+ CD4- CD8+ MV-specific T cell clones were obtained. Of 19 CD4+ T cell clones tested so far, 7 clones reacted specifically with purified fusion protein and 1 with purified hemagglutinin protein. Seven clones proliferated in response to the internal proteins of MV. Three clones reacted to whole virus but not to one of the purified proteins, whereas one clone seemed to recognize more than one polypeptide. Some of the T cell clones, generated from in vitro stimulation of PBMC with UV-MV, failed to recognize MV Ag when MV-infected EBV-BC were used as APC instead of UV-MV and PBMC. CD3+ CD4+ CD8- T cell clones recognized MV in association with HLA class II Ag (HLA-DQ or -DR), and most of them displayed CTL activity to autologous MV-infected EBV-BC. All CD4+ HLA class II-restricted CTL clones thus far tested were capable of assisting B lymphocytes for the production of MV-specific antibody. The CD4- CD8+ T cell clone MARO 1 recognized MV in association with HLA class I molecules and displayed cytotoxic activity toward MV-infected EBV-BC.  相似文献   

2.
The T cell response to microbial T cell mitogens (MTM) such as enterotoxins from Staphylococcus aureus (SE) and the soluble mitogen from Mycoplasma arthritidis, resemble the minor lymphocyte stimulatory locus (Mls) response in several aspects. An important feature of the Mls response is it restriction to CD4+ cells. This study demonstrates that in contrast to Mls, the MTM response includes both CD4+ and CD8+ subsets. Both CD4+ and CD8+ cells expanded in IL-2 after stimulation with SEB showed preferential expression of T cell receptors bearing V beta 8 domains. Mouse and human target cells could be lysed in the presence of MTM both by MTM-stimulated CD8+ lymphocytes and by MHC class I-restricted CTL clones of defined Ag specificity. MTM-induced lysis required the expression of MHC class II, but not class I Ag, on the target cells. Inhibition studies of SEB and Ag-dependent cytolysis by CTL clones underlined the crucial role of CD3 and LFA-1 in both instances, but showed CD8 dependence only for AG-dependent cytolysis. Together these findings suggest important differences between the putative MTM-mediated interaction of TCR with MHC molecules and the classical TCR/MHC interaction involved in MHC-restricted Ag recognition.  相似文献   

3.
At birth, almost all human peripheral blood CD8+ T cells express the costimulatory molecule CD28. With increasing age, the proportion of CD8+ T cells that lack CD28 increases. Because the Ag specificity of CD28-CD8+ T cells has not previously been defined, we studied the contribution of CD28-CD8+ T cells to the memory CD8+ CTL response against two human persistent viruses, human CMV (HCMV) and HIV. From PBMC of healthy virus carriers we generated multiple independent CTL clones specific for defined viral peptides and sequenced their TCR beta-chains. We designed clonotypic oligonucleotides complementary to each beta-chain hypervariable sequence and quantified the size of individual immunodominant CTL clones in PBMC. Some individual CTL clones were very large, comprising up to 3.1% of all CD8+ T cells in PBMC, and were generally maintained at a stable level for months. Individual virus-specific CTL clones were consistently more abundant in purified CD28- cells than in the CD8+ population as a whole. Because CD28-CD8+ cells as a population have been reported to proliferate poorly in response to mitogen, we studied the function of these virus-specific CD28- CTL clones by quantifying the frequency of peptide-specific CTL precursors using limiting dilution analysis. CD28-CD8+ T cells contained high frequencies of functional memory CTL precursors specific for peptides of HCMV or HIV, generally higher than in the CD8+ T cell population as a whole. We conclude that in asymptomatic HCMV and HIV infection, human CD28-CD8+ T cells contain high frequencies of functional virus-specific memory CTL clones.  相似文献   

4.
To identify prostate cancer-associated Ags, tumor-reactive T lymphocytes were generated using iterative stimulations of PBMC from a prostate cancer patient with an autologous IFN-gamma-treated carcinoma cell line in the presence of IL-2. A CD8+ T cell line and TCR alphabeta+ T cell clone were isolated that secreted IFN-gamma and TNF-alpha in response to autologous prostate cancer cells but not to autologous fibroblasts or lymphoblastoid cells. However, these T cells recognized several normal and malignant prostate epithelial cell lines without evidence of shared classical HLA molecules. The T cell line and clone also recognized colon cancers, but not melanomas, sarcomas, or lymphomas, suggesting recognition of a shared epithelium-associated Ag presented by nonclassical MHC or MHC-like molecules. Although Ag recognition by T cells was inhibited by mAb against CD8 and the TCR complex (anti-TCR alphabeta, CD3, Vbeta12), it was not inhibited by mAb directed against MHC class Ia or MHC class II molecules. Neither target expression of CD1 molecules nor HLA-G correlated with T cell recognition, but beta2-microglobulin expression was essential. Ag expression was diminished by brefeldin A, lactacystin, and cycloheximide, but not by chloroquine, consistent with an endogenous/cytosolic Ag processed through the classical class I pathway. These results suggest that prostate cancer and colon cancer cells can process and present a shared peptidic Ag to TCR alphabeta+ T cells via a nonclassical MHC I-like molecule yet to be defined.  相似文献   

5.
The present study investigated the possibility that protein Ag fragments in the form of peptides could serve as the priming Ag in the generation of a MHC class I-restricted immune response. Trypsin-digested chicken ovalbumin (OVA-TD) fragments were used as the model Ag. The results demonstrate the peptides within OVA-TD, when injected into C57BL/6 mice, could prime T cells which lysed H-2b Ia-EL4 target cells in an OVA-TD-specific manner. In contrast to priming with OVA-TD, immunization of mice with intact OVA did not lead to generation of CTL against OVA-TD or OVA. Furthermore, target cells sensitized with intact OVA failed to be recognized by OVA-peptide-specific CTL indicating that the target cells serving as APC were unable to generate the relevant peptide determinants recognized by the T cells. These results support the idea that the processing pathway within APC for class I-restricted T cells may differ from that used for class II-restricted T cells. Using OVA-TD-specific CTL clones (phenotypically Thy 1+, CD8+, CD4-, Pgp-1+) isolated from primed animals to screen OVA-TD fractions separated by HPLC, two T cell peptide determinants were identified corresponding to OVA sequences 111-122 and 370-381. Both determinants were recognized by CTL clones in the context of the H-2Db molecule.  相似文献   

6.
Murine T lymphocytes recognize nominal Ag presented by class I or class II MHC molecules. Most CD8+ T cells recognize Ag presented in the context of class I molecules, whereas most CD4+ cells recognize Ag associated with class II molecules. However, it has been shown that a proportion of T cells recognizing class I alloantigens express CD4 surface molecules. Furthermore, CD4+ T cells are sufficient for the rejection of H-2Kbm10 and H-2Kbm11 class I disparate skin grafts. It has been suggested that the CD4 component of an anti-class I response can be ascribed to T cells recognizing class I determinants in the context of class II MHC products. To examine the specificity and effector functions of class I-specific HTL, CD4+ T cells were stimulated with APC that differed from them at a class I locus. Specifically, a MLC was prepared involving an allogeneic difference only at the Ld region. CD4+ clones were derived by limiting dilution of bulk MLC cells. Two clones have been studied in detail. The CD4+ clone 46.2 produced IL-2, IL-3, and IFN-gamma when stimulated with anti-CD3 mAb, whereas the CD4+ clone 93.1 secreted IL-4 in addition to IL-2, IL-3, and IFN-gamma. Cloned 46.2 cells recognized H-2Ld directly, whereas recognition of Ld by 93.1 apparently was restricted by class II MHC molecules. Furthermore, cytolysis by both clones 46.2 and 93.1 was inhibited by the anti-CD4 mAb GK1.5. These results demonstrate that CD4+ T cells can respond to a class I difference and that a proportion of CD4+ T cells can recognize class I MHC determinants directly as well as in the context of class II MHC molecules.  相似文献   

7.
The role and interdependence of CD8+ and CD4+ alpha beta-T cells in the acute response after respiratory infection with the murine parainfluenza type 1 virus, Sendai virus, has been analyzed for H-2b mice. Enrichment of CD8+ virus-specific CTL effectors in the lungs of immunologically intact C57BL/6 animals coincided with the clearance of the virus from this site by day 10 after infection. Removal of the CD4+ T cells by in vivo mAb treatment did not affect appreciably either the recruitment of CD8+ T cells to the infected lung, or their development into virus-specific cytotoxic effectors. In contrast, depletion of the CD8+ subset delayed virus clearance, although most mice survived the infection. Transgenic H-2b F3 mice homozygous (-/-) for a beta 2 microglobulin (beta 2-m) gene disruption, which lack both class I MHC glycoproteins and mature CD8+ alpha beta-T cells, showed a comparable, delayed clearance of Sendai virus from the lung. Virus-specific, class II MHC-restricted CTL were demonstrated in both freshly isolated bronchoalveolar lavage populations and cultured lymph node and spleen tissue from the beta 2-m (-/-) transgenics. Treatment of the beta 2-m (-/-) mice with the mAb to CD4 led to delayed virus clearance and death, which was also the case for normal mice that were depleted simultaneously of the CD4+ and CD8+ subsets. These results indicate that, although classical class I MHC-restricted CD8+ cytotoxic T cells normally play a dominant role in the recovery of mice acutely infected with Sendai virus, alternative mechanisms involving CD4+ T cells exist and can compensate, in time, for the loss of CD8+ T cell function.  相似文献   

8.
T cell-to-T cell Ag presentation is increasingly attracting attention. In this study, we demonstrated that active CD4+ T (aT) cells with uptake of OVA-pulsed dendritic cell-derived exosome (EXO(OVA)) express exosomal peptide/MHC class I and costimulatory molecules. These EXO(OVA)-uptaken (targeted) CD4+ aT cells can stimulate CD8+ T cell proliferation and differentiation into central memory CD8+ CTLs and induce more efficient in vivo antitumor immunity and long-term CD8+ T cell memory responses than OVA-pulsed dendritic cells. They can also counteract CD4+25+ regulatory T cell-mediated suppression of in vitro CD8+ T cell proliferation and in vivo CD8+ CTL responses and antitumor immunity. We further elucidate that the EXO(OVA)-uptaken (targeted)CD4+ aT cell's stimulatory effect is mediated via its IL-2 secretion and acquired exosomal CD80 costimulation and is specifically delivered to CD8+ T cells in vivo via acquired exosomal peptide/MHC class I complexes. Therefore, EXO-targeted active CD4+ T cell vaccine may represent a novel and highly effective vaccine strategy for inducing immune responses against not only tumors, but also other infectious diseases.  相似文献   

9.
CD8+ CTL are the predominant tumoricidal effector cells. We find, however, that MHC class I-deficient mice depleted of CD8+ T cells are able to mount an effective antitumor immunity after immunization with fused dendritic/tumor cells. Such immunity appears to be mediated by the generation of phenotypic and functional CD8+ CTL through CD4+ to CD8+ conversion, which we have demonstrated at the single cell level. CD4+ to CD8+ conversion depends on effective in vivo activation and is promoted by CD4+ T cell proliferation. The effectiveness of this process is shown by the generation of antitumor immunity through adoptive transfer of primed CD4 T cells to provide protection against tumor cell challenge and to eliminate established pulmonary metastases.  相似文献   

10.
The origins of "help" in rejection of syngeneic tumors by the CD8 T cell lineage was examined with a model tumor inappropriately expressing novel class I MHC and subject to cytolytic T cell (CTL)-mediated rejection. The requirement for CD4+ Th cells to induce CD8+ CTL effectors in vivo was investigated by using C3H mice selectively depleted of either CD4+ or CD8+ T cells. Rejection of the tumor was vigorous and indistinguishable from normal mice after depletion of CD4+ T cells in vivo. In contrast, in CD8+ T cell-depleted mice tumors grew progressively, confirming that T cells of the CD8+ lineage are required for a tumoricidal immune response, and cells of this lineage are sufficient for a primary response. Taken together, these results demonstrate that, in the absence of CD4+ T cells in vivo, unprimed cells of the CD8+ lineage are fully competent to mount an effective CTL immune response to syngeneic cells expressing novel class I Ag, consistent with the concept that only T cells with class I recognition specificity may be required to satisfy the need for both help and effector functions in the response.  相似文献   

11.
T cell clones were generated from the peripheral blood of rhesus monkeys that had been immunized with a soluble Mr 185,000 Ag (SAI/II) derived from Streptococcus mutans. The clones were CD3+ CD8+ CD4- alpha beta TCR+ and were specifically stimulated to proliferate by SAI/II. The proliferative responses of the cloned cells were class I restricted, as demonstrated by reconstitution of the cloned T cells with APC matched at various MHC class I and II loci, as well as by inhibition with anti-class I and not anti-class II mAb. The function of the CD8+ cloned cells was examined in vitro for their effect on antibody synthesis by Ag-stimulated CD4+ cells and B cells from immunized animals. Indeed, four of the five clones suppressed SAI/II-specific IgG antibody synthesis when activated with SAI/II and the appropriate MHC-matched APC. Although activation of the suppressor clones was Ag specific, the effector function of the suppression of antibody synthesis was Ag nonspecific. The latter was probably mediated by lymphokines and, indeed, the culture supernatant generated by stimulating the cloned CD8+ cells with anti-CD3 mAb suppressed both the specific and nonspecific antibody synthesis. Cytotoxicity studies showed that all five CD8+ clones showed a low level of lectin-dependent cytotoxicity. However, because four of the five clones expressed significant suppression of antibody synthesis, the suppressor activity was unlikely to be a function of the weak cytotoxicity. The results suggest that immunization of rhesus monkeys with a soluble streptococcal Ag induced CD8+ alpha beta TCR+ T cell clones that show SAI/II-specific, MHC class I-restricted proliferative responses and nonspecific down-regulatory function of in vitro antibody synthesis.  相似文献   

12.
The induction of class I and class II MHC-restricted CTL in response to different forms of A/JAP/57 influenza virus was compared. Splenocytes removed from influenza-immune BALB/c mice and stimulated in vitro with infected syngeneic splenocytes are mainly CD8+ (Lyt-2+) and specifically lyse infected Ia- and Ia+ target cells. To a lesser extent they also lyse non-infectious virus-pulsed Ia+ but not Ia- target cells. In contrast, syngeneic stimulators pulsed with non-infectious virus (exogenous Ag) induce effector T cells that specifically lyse both infected and non-infectious virus-pulsed Ia+ target cells. The cells present in this heterogeneous culture predominantly express the CD4 (L3T4) cell surface marker. Frequency analysis by limiting dilution of splenocytes derived directly from influenza-immune mice revealed a similar pattern of precursor induction: In vitro stimulation with infected splenocytes yielded primarily class I MHC-restricted CTL, whereas stimulation with non-infectious virus reciprocally induced primarily class II MHC-restricted CTL. Thus, the Ag form and consequently the intracellular route of viral Ag presentation profoundly influence the MHC restriction of CTL precursors induced.  相似文献   

13.
Activation of MHC-restricted rat T cells by cloned syngeneic thyrocytes   总被引:1,自引:0,他引:1  
We have previously demonstrated that rat thyrocytes express MHC class II Ag (RT1.B&D) in response to IFN-gamma. To determine whether MHC class II-positive thyrocytes can be recognized by MHC-restricted T cells, we used our clone of rat thyroid cells (1B-6) derived from the Fisher rat thyroid cell line (FRTL-5) and known to express MHC class II Ag in response to recombinant rat IFN-gamma. CD4+ and CD8+ normal syngeneic Fisher rat spleen T cells were selected by flow cytometry and averaged greater than 96% purity. We demonstrated that irradiated MHC class II-positive but not class II-negative 1B-6 thyrocytes stimulated CD4+ T cells in a primary sensitization reaction over 4 days. In contrast, CD8+ T cells had no response in similar experiments. This stimulation of CD4+ T cells was dose dependent for 1B-6 thyrocytes and was abrogated by anti-rat MHC class II mAb (MRC OX-6). Autoreactive (Fisher) and alloreactive (Buffalo) T cell lines and isolated CD4+ T cells derived from these lines, which were developed against Fisher rat spleen cells, similarly recognized MHC class II Ag expressed on 1B-6 cells but had no detectable response to 1B-6 MHC class II-negative thyrocytes or MHC class II-positive human thyroid cells. The CD4+ T cell recognition of 1B-6 cells via MHC class II Ag supports our previous data with autologous human thyroid T cell co-cultures and is indicative of an autospecific role for thyrocytes in the development of autoimmune thyroiditis.  相似文献   

14.
The ability of mAb to class I MHC molecules, CD3, or CD4/CD8 to stimulate human T cell clones alone or in combination was examined. Cross-linking each of these surface Ag with appropriate mAb and goat anti-mouse Ig (GaMIg) resulted in a unique pattern of increase in intracellular free calcium ([Ca2+]i) and different degrees of functional activation. Cross-linking class I MHC molecules provided the most effective stimulus of IL-2 production and proliferation. Cross-linking more than one surface Ag induced a compound calcium signal with characteristics of each individual response. Cross-linking CD3 + HLA-A,B,C caused a rapid and prolonged increase in [Ca2+]i and synergistically increased IL-2 production and proliferation of all clones. Cross-linking CD3 + CD4/CD8 also generated a compound calcium signal and increased IL-2 production and DNA synthesis. Purposeful inclusion of CD3 was not required for costimulation as cross-linking HLA-A,B,C + CD4/CD8 also increased [Ca2+]i, IL-2 production, and proliferation. Cross-linking three surface Ag, CD3 + HLA-A,B,C + CD4/CD8, resulted in the greatest initial and sustained [Ca2+]i, IL-2 production, and DNA synthesis. Although there was a tendency for the various stimuli to increase both [Ca2+]i and functional responsiveness, neither the magnitude nor duration of the increased [Ca2+]i correlated with the amount of IL-2 produced or the ultimate proliferative response. To determine whether costimulation required that the various surface molecules were cross-linked together, experiments were carried out using isotype specific secondary antibodies. Augmentation of [Ca2+]i and costimulation of functional responses were noted when class I MHC molecules were cross-linked and CD3 was bound, but not cross-linked. Similarly, costimulation through CD3 and CD4/CD8 was observed when CD4/CD8 was cross-linked and the CD3 complex was engaged by an anti-CD3 mAb which was not further cross-linked. In contrast, costimulation by class I MHC molecules and CD4/CD8 was only observed when these molecules were cross-linked together. These data demonstrate that cross-linking class I MHC determinants or CD4/CD8 provides a direct signal to T cell clones that can be enhanced when CD3 is independently engaged. The results also indicate that T cell clones can be stimulated without engaging CD3 by the combination of signals delivered via class I MHC molecules and CD4/CD8, but only when these determinants were cross-linked together. These studies have demonstrated that these cell surface molecules differ in their capacity to deliver activation signals to T cell clones and also exhibit unique patterns of positive cooperativity in signaling potential.  相似文献   

15.
Spontaneous CD8+ T cell activation in MRL-Faslpr mice is B cell dependent. It is unclear whether this B-dependent activation is mediated by direct Ag presentation via MHC class I proteins (i.e., cross-presentation) or whether activation occurs by an indirect mechanism, e.g., via effects on CD4+ cells. To determine how CD8+ T cell activation is promoted by B cells, we created mixed bone marrow chimeras where direct MHC class I Ag presentation by B cells was abrogated while other leukocyte compartments could express MHC class I. Surprisingly, despite the absence of B cell class I-restricted Ag presentation, CD8+ T cell activation was intact in the chimeric mice. Therefore, the spontaneous B cell-dependent CD8+ T cell activation that occurs in systemic autoimmunity is not due to direct presentation by B cells to CD8+ T cells.  相似文献   

16.
The activation of naive CD8+ T cells has been attributed to two mechanisms: cross-priming and direct priming. Cross-priming and direct priming differ in the source of Ag and in the cell that presents the Ag to the responding CD8+ T cells. In cross-priming, exogenous Ag is acquired by professional APCs, such as dendritic cells (DC), which process the Ag into peptides that are subsequently presented. In direct priming, the APCs, which may or may not be DC, synthesize and process the Ag and present it themselves to CD8+ T cells. In this study, we demonstrate that naive CD8+ T cells are activated by a third mechanism, called cross-dressing. In cross-dressing, DC directly acquire MHC class I-peptide complexes from dead, but not live, donor cells by a cell contact-mediated mechanism, and present the intact complexes to naive CD8+ T cells. Such DC are cross-dressed because they are wearing peptide-MHC complexes generated by other cells. CD8+ T cells activated by cross-dressing are restricted to the MHC class I genotype of the donor cells and are specific for peptides generated by the donor cells. In vivo studies demonstrate that optimal priming of CD8+ T cells requires both cross-priming and cross-dressing. Thus, cross-dressing may be an important mechanism by which DC prime naive CD8+ T cells and may explain how CD8+ T cells are primed to Ags that are inefficiently cross-presented.  相似文献   

17.
The function of the T cell differentiation antigens CD4 (Leu-3/T4) and CD8 (Leu-2/T8) on human cytotoxic T lymphocytes (CTL) is presently seen only in conjugate formation between CTL and target cell via class II or class I MHC antigens rather than in the later killing steps. In this study, human CD4+ and CD8+ CTL clones were used to investigate the effects of monoclonal antibodies against these differentiation antigens on nonspecific triggering of cytotoxicity. Cytotoxicity was induced either by antibodies against the CD3 (T3) antigen or by the lectins Con A and PHA. Anti-CD4 or anti-CD8 antibodies specifically inhibited all types of cytotoxicity of CD4+ or CD8+ CTL, respectively, regardless of the specificity of the CTL for class I or class II HLA antigens and regardless of whether target cells expressed class I or class II antigens. These results are incompatible with an exclusive role of the CD4 and CD8 molecules in MHC class recognition and are discussed with respect to a function as negative signal receptors for these molecules on CTL.  相似文献   

18.
We established and analyzed human T lymphocyte clones induced by crude Plasmodium falciparum antigens of schizont-enriched asexual blood stages. Peripheral blood mononuclear cells (PBMC) were stimulated for 6 days with antigen, and the T cell blasts were separated and were transferred to limiting dilution cultures with antigen, irradiated PBMC, and recombinant interleukin 2. The following observations were made. Malaria antigen (M.Ag) induced similar proportions of T blasts in PBMC from infected individuals and noninfected controls, and the M.Ag-dependent clone frequencies (1/79 to 1/216) obtained with the blasts were similar. The majority of established clones derived from infected and noninfected subjects specifically recognized M.Ag and would not proliferate in response to red blood cells or autologous PBMC alone. They also required HLA class II determinant-compatible antigen-presenting (E-) cells. With three clones from one malaria patient, DR 1 or DR 5 specificities correlated with antigen presentation. Although T4+ and T8+ blasts were induced by M.Ag in PBMC, only T4 (Leu-3+) clones were obtained in our culture system. These clones secreted IL 2 in response to M.Ag. 4) Differential patterns of reactivity to native M.Ag, heat-stable antigens, and heat-precipitated antigens were exhibited by T cell clones, and the tested clones did not recognize Plasmodium berghei antigen. In conclusion, it is important with regard to previous observations on apparently nonspecific, mitogen-like effects of M.Ag in bulk T cell cultures that our results demonstrate specific recognition of P. falciparum by human T cells. The T cell clones obtained will be an important tool in the quest for a better understanding of the mechanisms involved in resistance to malaria infection.  相似文献   

19.
The response of H-Y-specific TCR-transgenic CD8(+) T cells to Ag is characterized by poor proliferation, cytolytic activity, and IFN-gamma secretion. IFN-gamma secretion, but not cytotoxic function, can be rescued by the B7.1 molecule, suggesting that costimulation can selectively enhance some, but not all, effector CD8(+) T cell responses. Although the H-Y epitope binds H-2D(b) relatively less well than some other epitopes, it can induce potent CTL responses in nontransgenic mice, suggesting that the observed poor responsiveness of transgenic CD8(+) T cells cannot be ascribed to the epitope itself. Previously reported reactivity of this TCR to H-2A(b) is also not the cause of the poor responsiveness of the H-Y-specific CD8(+) T cells, as H-Y-specific CD8(+) T cells obtained from genetic backgrounds lacking H-2A(b) also responded poorly. Rather, reducing the levels of H-2(b) class I molecules by breeding the mice to (C57BL/6 x B10.D2)F(1) or TAP1(+/-) backgrounds partially restored cytotoxic activity and enhanced proliferative responses. These findings demonstrate that the self MHC class I gene dosage may regulate the extent of CD8(+) T cell responsiveness to Ag.  相似文献   

20.
The unique ether glycerolipids of ARCHAEA: can be formulated into vesicles (archaeosomes) with strong adjuvant activity for MHC class II presentation. Herein, we assess the ability of archaeosomes to facilitate MHC class I presentation of entrapped protein Ag. Immunization of mice with OVA entrapped in archaeosomes resulted in a potent Ag-specific CD8(+) T cell response, as measured by IFN-gamma production and cytolytic activity toward the immunodominant CTL epitope OVA(257-264). In contrast, administration of OVA with aluminum hydroxide or entrapped in conventional ester-phospholipid liposomes failed to evoke significant CTL response. The archaeosome-mediated CD8(+) T cell response was primarily perforin dependent because CTL activity was undetectable in perforin-deficient mice. Interestingly, a long-term CTL response was generated with a low Ag dose even in CD4(+) T cell deficient mice, indicating that the archaeosomes could mediate a potent T helper cell-independent CD8(+) T cell response. Macrophages incubated in vitro with OVA archaeosomes strongly stimulated cytokine production by OVA-specific CD8(+) T cells, indicating that archaeosomes efficiently delivered entrapped protein for MHC class I presentation. This processing of Ag was Brefeldin A sensitive, suggesting that the peptides were transported through the endoplasmic reticulum and presented by the cytosolic MHC class I pathway. Finally, archaeosomes induced a potent memory CTL response to OVA even 154 days after immunization. This correlated to strong Ag-specific up-regulation of CD44 on splenic CD8(+) T cells. Thus, delivery of proteins in self-adjuvanting archaeosomes represents a novel strategy for targeting exogenous Ags to the MHC class I pathway for induction of CTL response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号