首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolic engineering studies have generally focused on manipulating enzyme levels through either the amplification, addition, or deletion of a particular pathway. However, with cofactor-dependent production systems, once the enzyme levels are no longer limiting, cofactor availability and the ratio of the reduced to oxidized form of the cofactor can become limiting. Under these situations, cofactor manipulation may become crucial in order to further increase system productivity. Although it is generally known that cofactors play a major role in the production of different fermentation products, their role has not been thoroughly and systematically studied. However, cofactor manipulations can potentially become a powerful tool for metabolic engineering. Nicotinamide adenine dinucleotide (NAD) functions as a cofactor in over 300 oxidation-reduction reactions and regulates various enzymes and genetic processes. The NADH/NAD+ cofactor pair plays a major role in microbial catabolism, in which a carbon source, such as glucose, is oxidized using NAD+ producing reducing equivalents in the form of NADH. It is crucially important for continued cell growth that NADH be oxidized to NAD+ and a redox balance be achieved. Under aerobic growth, oxygen is used as the final electron acceptor. While under anaerobic growth, and in the absence of an alternate oxidizing agent, the regeneration of NAD+ is achieved through fermentation by using NADH to reduce metabolic intermediates. Therefore, an increase in the availability of NADH is expected to have an effect on the metabolic distribution. This paper investigates a genetic means of manipulating the availability of intracellular NADH in vivo by regenerating NADH through the heterologous expression of an NAD(+)-dependent formate dehydrogenase. More specifically, it explores the effect on the metabolic patterns in Escherichia coli under anaerobic and aerobic conditions of substituting the native cofactor-independent formate dehydrogenase (FDH) by and NAD(+)-dependent FDH from Candida boidinii. The over-expression of the NAD(+)-dependent FDH doubled the maximum yield of NADH from 2 to 4 mol NADH/mol glucose consumed, increased the final cell density, and provoked a significant change in the final metabolite concentration pattern both anaerobically and aerobically. Under anaerobic conditions, the production of more reduced metabolites was favored, as evidenced by a dramatic increase in the ethanol-to-acetate ratio. Even more interesting is the observation that during aerobic growth, the increased availability of NADH induced a shift to fermentation even in the presence of oxygen by stimulating pathways that are normally inactive under these conditions.  相似文献   

2.
It is generally known that cofactors play a major role in the production of different fermentation products. This paper is part of a systematic study that investigates the potential of cofactor manipulations as a new tool for metabolic engineering. The NADH/NAD+ cofactor pair plays a major role in microbial catabolism, in which a carbon source, such as glucose, is oxidized using NAD+ and producing reducing equivalents in the form of NADH. It is crucially important for continued cell growth that NADH be oxidized to NAD+ and a redox balance be achieved. Under aerobic growth, oxygen is used as the final electron acceptor. While under anaerobic growth, and in the absence of an alternate oxidizing agent, the regeneration of NAD+ is achieved through fermentation by using NADH to reduce metabolic intermediates. Therefore, an increase in the availability of NADH is expected to have an effect on the metabolic distribution. We have previously investigated a genetic means of increasing the availability of intracellular NADH in vivo by regenerating NADH through the heterologous expression of an NAD(+)-dependent formate dehydrogenase and have demonstrated that this manipulation provoked a significant change in the final metabolite concentration pattern both anaerobically and aerobically (Berríos-Rivera et al., 2002, Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase, Metabolic Eng. 4, 217-229). The current work explores further the effect of substituting the native cofactor-independent formate dehydrogenase (FDH) by an NAD(+)-dependent FDH from Candida boidinii on the NAD(H/+) levels, NADH/NAD+ ratio, metabolic fluxes and carbon-mole yields in Escherichia coli under anaerobic chemostat conditions. Overexpression of the NAD(+)-dependent FDH provoked a significant redistribution of both metabolic fluxes and carbon-mole yields. Under anaerobic chemostat conditions, NADH availability increased from 2 to 3 mol NADH/mol glucose consumed and the production of more reduced metabolites was favored, as evidenced by a dramatic increase in the ethanol to acetate ratio and a decrease in the flux to lactate. It was also found that the NADH/NAD+ ratio should not be used as a sole indicator of the oxidation state of the cell. Instead, the metabolic distribution, like the Et/Ac ratio, should also be considered because the turnover of NADH can be fast in an effort to achieve a redox balance.  相似文献   

3.
Escherichia coli overexpressing a NAD(+)-dependent formate dehydrogenase (FDH) from Candida boidinii was grown in chemostat culture on various carbon sources at 0.05 h(-1) dilution rate, under anaerobic conditions using defined medium and compared to a control without the heterologous FDH pathway. Metabolic fluxes, NADH/NAD(+) ratios and NAD(H/(+)) levels were determined under a range of intracellular NADH availability. The effect of NADH manipulation on the distribution of metabolic fluxes in E. coli was assessed under steady-state conditions. The heterologous FDH pathway converts 1 mol of formate into 1 mol of NADH and carbon dioxide, in contrast with the native FDH where no cofactor involvement is present. Previously, we found that this NADH regeneration system doubled the maximum yield of NADH from 2 to 4 mol NADH/mol glucose consumed and reached 4.6 mol NADH/mol of substrate when sorbitol was used as a carbon source in a complex medium. In the current study, it was found that higher NADH yields and NADH/NAD(+) ratios were achieved with our in vivo NADH regeneration system compared to a control lacking the new FDH pathway in the three carbon sources (glucose, gluconate and sorbitol) examined suggesting a more reduced intracellular environment. The total NAD(H/(+)) amounts were very similar for all the combinations studied. It was also found that the ethanol to acetate ratio increased with increased NADH availability. This ratio increased from 1.05 for the control strain in glucose to 9.45 for the strain expressing the heterologous NAD(+)-dependent FDH in sorbitol.  相似文献   

4.
Perez-Miller SJ  Hurley TD 《Biochemistry》2003,42(23):7100-7109
Crystal structures of many enzymes in the aldehyde dehydrogenase superfamily determined in the presence of bound NAD(P)(+) have exhibited conformational flexibility for the nicotinamide half of the cofactor. This has been hypothesized to be important in catalysis because one conformation would block the second half of the reaction, but no firm evidence has been put forth which shows whether the oxidized and reduced cofactors preferentially occupy the two observed conformations. We present here two structures of the wild type and two structures of a Cys302Ser mutant of human mitochondrial aldehyde dehydrogenase in binary complexes with NAD(+) and NADH. These structures, including the Cys302Ser mutant in complex with NAD(+) at 1.4 A resolution and the wild-type enzyme in complex with NADH at 1.9 A resolution, provide strong evidence that bound NAD(+) prefers an extended conformation ideal for hydride transfer and bound NADH prefers a contracted conformation ideal for acyl-enzyme hydrolysis. Unique interactions between the cofactor and the Rossmann fold make isomerization possible while allowing the remainder of the active site complex to remain intact. In addition, these structures clarify the role of magnesium in activating the human class 2 enzyme. Our data suggest that the presence of magnesium may lead to selection of particular conformations and speed isomerization of the reduced cofactor following hydride transfer.  相似文献   

5.
Redox cofactors play a pivotal role in coupling catabolism with anabolism and energy generation during metabolism. There exists a delicate balance in the intracellular level of these cofactors to ascertain an optimal metabolic output. Therefore, cofactors are emerging to be attractive targets to induce widespread changes in metabolism. We present a detailed analysis of the impact of perturbations in redox cofactors in the cytosol or mitochondria on glucose and energy metabolism in Saccharomyces cerevisiae to aid metabolic engineering decisions that involve cofactor engineering. We enhanced NADH oxidation by introducing NADH oxidase or alternative oxidase, its ATP-mediated conversion to NADPH using NADH kinase as well as the interconversion of NADH and NADPH independent of ATP by the soluble, non-proton-translocating bacterial transhydrogenase. Decreasing cytosolic NADH level lowered glycerol production, while decreasing mitochondrial NADH lowered ethanol production. However, when these reactions were coupled with NADPH production, the metabolic changes were more moderated. The direct consequence of these perturbations could be seen in the shift of the intracellular concentrations of the cofactors. The changes in product profile and intracellular metabolite levels were closely linked to the ATP requirement for biomass synthesis and the efficiency of oxidative phosphorylation, as estimated from a simple stoichiometric model. The results presented here will provide valuable insights for a quantitative understanding and prediction of cellular response to redox-based perturbations for metabolic engineering applications.  相似文献   

6.
Escherichia coli (E. coli) maintains its total NADH/NAD+ intracellular pool by synthesizing NAD through the de novo pathway and the pyridine nucleotide salvage pathway. The salvage pathway recycles intracellular NAD breakdown products and preformed pyridine compounds from the environment, such as nicotinic acid (NA). The enzyme nicotinic acid phosphoribosyltransferase (NAPRTase; EC 2.4.2.11), encoded by the pncB gene, catalyzes the formation of nicotinate mononucleotide (NAMN), a direct precursor of NAD, from NA. This reaction is believed to be the rate-limiting step in the NAD salvage pathway. The current study investigates the effect of overexpressing the pncB gene from Salmonella typhimurium on the total levels of NAD, the NADH/NAD+ ratio, and the production of different metabolites in E. coli under anaerobic chemostat conditions and anaerobic tube experiments. In addition, this paper studies the effect of combining the overexpression of the pncB gene with an NADH regeneration strategy that increases intracellular NADH availability, as we have previously shown. (The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures, Metabolic Eng. 4, 230-237; Metabolic engineering of Escherichia coli: Increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase, Metabolic Eng. 4, 217-229.) Overexpression of the pncB gene in chemostat experiments increased the total NAD levels, decreased the NADH/NAD+ ratio, and did not significantly redistribute the metabolic fluxes. However, under anaerobic tube conditions, overexpression of the pncB gene led to a significant shift in the metabolic patterns as evidenced by a decrease in lactate production and an increase as high as two-fold in the ethanol-to-acetate (Et/Ac) ratio. These results suggest that under chemostat conditions the total level of NAD is not limiting and the metabolic rates are fixed by the system at steady state. On the other hand, under transient conditions (such as those in batch cultivation) the increase in the total level of NAD can increase the rate of NADH-dependent pathways (ethanol) and therefore change the final distribution of metabolites. The effect of combining overexpression of the pncB gene with the substitution of the native cofactor-independent formate dehydrogenase (FDH) with an NAD(+)-dependent FDH was also investigated under anaerobic tube conditions. This manipulation produced a metabolic pattern that combines a high Et/Ac ratio similar to that obtained with the new FDH with an intermediate lactate level similar to that obtained with the overexpression of the pncB gene. It was found that addition of the pncB gene to the FDH system does not increase further the production of reduced metabolites because the system for NADH regeneration already reached the maximum theoretical yield of approximately 4 mol NADH/mol of glucose.  相似文献   

7.
We have established a simple kinetic model applicable to the enzyme cycling reaction for the determination of 3alpha-hydroxysteroids. This reaction was conducted under the reversible catalytic function of a single 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) with nucleotide cofactors, thio-NAD(+) (one of the NAD(+) analogues) for the oxidation of 3alpha-hydroxysteroids and NADH for the reduction of 3-oxosteroids. This model was constructed based on the reaction mechanism of 3alpha-HSD, following an ordered bi-bi mechanism with cofactor binding first, under the assumption that the respective enzyme-cofactor complexes were distributed according to the initial ratio of thio-NAD(+) to NADH by the rapid equilibrium of both enzyme-cofactor complexes. The cycling rate in the new kinetic model could be expressed with the dissociation constants of enzyme-cofactor complexes and the initial concentrations of cofactors and enzyme. The cycling rate was verified by a comparison with the experimental data using 3alpha-HSD from Pseudomonas sp. B-0831. The results showed that the experimental data corresponded well with the results obtained from the kinetic model.  相似文献   

8.
NADH is a key metabolic cofactor whose sensitive and specific detection in the cytosol of live cells has been difficult. We constructed a fluorescent biosensor of the cytosolic NADH-NAD(+) redox state by combining a circularly permuted GFP T-Sapphire with a bacterial NADH-binding protein, Rex. Although the initial construct reported [NADH] × [H(+)] / [NAD(+)], its pH sensitivity was eliminated by mutagenesis. The engineered biosensor Peredox reports cytosolic NADH:NAD(+) ratios and can be calibrated with exogenous lactate and pyruvate. We demonstrated its utility in several cultured and primary cell types. We found that glycolysis opposed the lactate dehydrogenase equilibrium to produce a reduced cytosolic NADH-NAD(+) redox state. We also observed different redox states in primary mouse astrocytes and neurons, consistent with hypothesized metabolic differences. Furthermore, using high-content image analysis, we monitored NADH responses to PI3K pathway inhibition in hundreds of live cells. As an NADH reporter, Peredox should enable better understanding of bioenergetics.  相似文献   

9.
陈雅维 《生物工程学报》2020,36(8):1515-1527
辅因子工程是代谢工程的一个新兴分支领域,主要通过直接调控细胞内关键酶的辅因子,如ATP/ADP、NADH/NAD+、NADPH/NADP+等的浓度和形式来实现代谢流的最大化,快速地将物质流导向目标代谢物。ATP作为一种重要辅因子参与微生物细胞内大量的酶催化反应,将物质代谢途径串联或并联成复杂的网络体系,最终使得物质代谢流的分配受到牵制。因此ATP调控策略有望成为微生物菌株改造的有利工具,用于提高目标代谢物的浓度和生产能力,强化微生物对于环境的耐受以及促进底物利用等。文中将重点论述目前常用的有效ATP调控策略以及ATP调控对于细胞代谢的影响,以期为微生物细胞工厂的高效构建提供参考。  相似文献   

10.
Tin (IV) oxide was made using an anodization and annealing method and was used as a working electrode in an electrochemical cofactor regeneration reaction. This material was formed with a large surface area, and by changing the preparation conditions, it was possible to control the morphology. Tin oxide has redox properties similar to those of frequently used mediators required for electron transfer between cofactors and an electrode. Therefore, by using tin oxide as a novel electrode, mediator-free electrochemical cofactor regeneration may be possible. Oxidation and reduction of the nicotinamide cofactors, NAD(P)H and NAD(P)+, were carried out under various reaction conditions. The results showed a high efficiency for oxidizing NADH over a broad range of pH and temperatures. The oxidation tendency of NADPH was also observed, and it demonstrated a similar reaction tendency as NADH. When using a tin oxide electrode, NAD+ was readily reduced to NADH, though the efficiency of this reaction was lower than for NADH oxidation. Oxidation of 2-propanol to acetone was used as a model system using alcohol dehydrogenase and the cofactor regeneration system suggested in this study. The electroenzymatic reaction showed efficient regeneration of NADP+ without a mediator.  相似文献   

11.
A critical factor in the biotechnological production of succinic acid with Corynebacterium glutamicum is the sufficient supply of NADH. It is conceivable that cofactor availability and the proportion of cofactor in the active form may play an important role in dictating the succinic acid yield. PntAB genes from Escherichia coli can directly catalyze the reversible hydride transfer and adjust the dynamic balance between NADP(H) and NAD(H). Hence, we studied the physiological effect of coenzyme systems by expressing the membrane‐bound transhydrogenase pntAB genes. We have shown experimentally that the pntAB genes could function as an alternative source of NADH. In an anaerobic fermentation with C. glutamicum NC‐3‐pntAB, a 16% higher succinic acid yield and a 57% higher production from glucose were obtained by pntAB expression. Moreover, the formation of by‐products was significantly decreased. The concomitant increase in the consumption of intracellular NADPH from 0.6 to 1.2 mmol/g CDW and the increased NADH/NAD+ ratio resulted from introduction of pntAB, suggesting that the membrane‐bound transhydrogenase converted excess NADPH to NADH for succinic acid production. Finally, we explored whether the transhydrogenase had different effects on the succinic acid formation on different carbon sources. The succinic acid yield was increased in the presence of pntAB by 16% on glucose, 7% on sucrose, and without large influence on fructose and xylose. The results of this study demonstrated that the effectiveness of cofactor manipulation could be a promising strategy applied in metabolic engineering. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:12–19, 2015  相似文献   

12.
Astrocytes are important glial cells in the brain providing metabolic support to neurons as well as contributing to brain signaling. These different functional levels have to be highly coordinated to allow for proper cell and brain function. In this study, we show that in astrocytes the NAD(+) /NADH redox state modulates dopamine-induced Ca(2+) signals thereby connecting metabolism and Ca(2+) signaling. Application of dopamine induced a dose-dependent increase in Ca(2+) signal frequency in these cells, which was dependent on D(1) -receptor signaling, glycolytic activity, an increase in cytosolic NADH and inositol 1,4,5-triphosphate receptor operated intracellular Ca(2+) stores. Application of dopamine at a low concentration (1 μM) did not induce an increase in Ca(2+) signal frequency by itself. However, simultaneously increasing cytosolic NADH content either by direct application of NADH or by application of lactate resulted in a pronounced increase in Ca(2+) signal frequency. This increase could be blocked by co-application of pyruvate, suggesting that indeed the NAD(+) /NADH redox state is regulating Ca(2+) signals. We conclude that at the NAD(+) /NADH redox state metabolic and signaling information is integrated in astrocytes, thereby most likely contributing to precisely coordinate these different tasks of astrocytes.  相似文献   

13.
Nicotinamide cofactors play numerous roles in cellular metabolic and biosynthetic reactions and intracellular signaling events. Recently, nicotinamide cofactors have been implicated in the function of cellular biological clocks. To gain insight into the possible roles of nicotinamide cofactors in complex time-related events, we have developed a rapid and sensitive method for extraction of NAD(P)(H) from cultured cells, separation of analytes by capillary electrophoresis, and detection by multiphoton excitation of fluorescence. Extraction and quantitation steps have been systematically characterized for optimal pH, detergent, temperature, sonication, filtration, efficiency, accuracy, and reproducibility. The method is suitable for extractions at 2- to 3-h intervals over 1 day or more or as frequently as every hour for shorter durations. Natively fluorescent NAD(P)H are assayed directly, and nonfluorescent NAD(P) are enzymatically reduced to their fluorescent counterparts before analysis. The method yields accurate values for cellular NADP, NADPH, and total NAD(H) levels and relative information on cellular NADH concentration; modification of the procedure allows full quantitation of all relevant species. We conclude that these assays are more suitable than any yet published for tracking variations in nicotinamide cofactor levels over periods of 1 day or more.  相似文献   

14.
We have applied the soluble pyridine nucleotide transhydrogenase of Pseudomonas fluorescens to a cell-free system for the regeneration of the nicotinamide cofactors NAD and NADP in the biological production of the important semisynthetic opiate drug hydromorphone. The original recombinant whole-cell system suffered from cofactor depletion resulting from the action of an NADP(+)-dependent morphine dehydrogenase and an NADH-dependent morphinone reductase. By applying a soluble pyridine nucleotide transhydrogenase, which can transfer reducing equivalents between NAD and NADP, we demonstrate with a cell-free system that efficient cofactor cycling in the presence of catalytic amounts of cofactors occurs, resulting in high yields of hydromorphone. The ratio of morphine dehydrogenase, morphinone reductase, and soluble pyridine nucleotide transhydrogenase is critical for diminishing the production of the unwanted by-product dihydromorphine and for optimum hydromorphone yields. Application of the soluble pyridine nucleotide transhydrogenase to the whole-cell system resulted in an improved biocatalyst with an extended lifetime. These results demonstrate the usefulness of the soluble pyridine nucleotide transhydrogenase and its wider application as a tool in metabolic engineering and biocatalysis.  相似文献   

15.
Nitric oxide reductase (Nor) cytochrome P450nor (P450nor) is unique because it is catalytically self-sufficient, receiving electrons directly from NADH or NADPH. However, little is known about the direct binding of NADH to cytochrome. Here, we report that oxidized pyridine nucleotides (NAD(+) and NADP(+)) and an analogue induce a spectral perturbation in bound heme when mixed with P450nor. The P450nor isoforms are classified according to electron donor specificity for NADH or NADPH. One type (Fnor, a P450nor of Fusarium oxysporum) utilizes only NADH. We found that NAD(+) induced a type I spectral change in Fnor, whereas NADP(+) induced a reverse type I spectral change, although the K(d) values for both were comparable. In contrast, NADP(+) as well as NAD(+) caused a type I spectral change in Tnor, a P450nor isozyme from Trichosporon cutaneum that utilizes both NADH and NADPH as electron donors. The B' helix region of Tnor ((73)SAGGKAAA(80)) contains some Ala and Gly residues, whereas the sequence is replaced at a few sites with more bulky amino acid residues in Fnor ((73)SASGKQAA(80)). A single mutation (S75G) significantly improved the NADPH- dependent Nor activity of Fnor, and the overall activity was accelerated via the NADPH-enhanced reduction step. These results showed that pyridine nucleotide cofactors can bind P450nor and that only a few residues in the B' helix region determine cofactor specificity. We further showed that a poor electron donor (NADPH) could also bind Fnor, but an appropriate configuration for electron transfer is blocked by steric hindrance mainly by Ser(75) against the 2'-phosphate moiety. The present results along with previous observations together revealed a novel motif for cofactor binding.  相似文献   

16.
NADPH is the key cofactor in L-isoleucine (Ile) biosynthetic pathway. To increase the Ile biosynthesis in Corynebacterium glutamicum ssp. lactofermentum JHI3-156, NADPH supply needs to be enhanced. Here NAD kinase, the key enzyme for the de novo biosynthesis of NADP(+) and NADPH, were cloned and expressed in JHI3-156, and their influences on Ile production were analysed. Meanwhile, enzyme properties of NAD kinase from JHI3-156 (CljPpnK) were compared with that from C. glutamicum ssp. lactofermentum ATCC 13869 (ClPpnK). Four variations existed between CljPpnK and ClPpnK. Both PpnKs were poly(P)/ATP-dependent NAD kinases that used ATP as the preferred phosphoryl donor and NAD(+) as the preferred acceptor. CljPpnK exhibited a higher activity and stability than ClPpnK and less sensitivity towards the effectors NADPH, NADP(+), and NADH, partly due to the variations between them. The S57P variation decreased their activity. Expression of CljppnK and ClppnK in JHI3-156 increased the ATP-NAD(+) kinase activity by 69- and 47-fold, respectively, the intracellular NADP(+) concentration by 36% and 101%, respectively, the NADPH concentration by 95% and 42%, respectively, and Ile production by 37% and 24%, respectively. These results suggest that overexpressing NAD kinase is a useful metabolic engineering strategy to improve NADPH supply and isoleucine biosynthesis.  相似文献   

17.
Glyoxylate and hydroxypyruvate are metabolites involved in the pathway of carbon in photorespiration. The chief glyoxylate-reducing enzyme in leaves is now known to be a cytosolic glyoxylate reductase that uses NADPH as the preferred cofactor but can also use NADH. Glyoxylate reductase has been isolated from spinach leaves, purified to homogeneity, and characterized kinetically and structurally. Chloroplasts contain lower levels of glyoxylate reductase activity supported by both NADPH and NADH, but it is not yet known whether a single chloroplastic enzyme catalyzes glyoxylate reduction with both cofactors. The major hydroxypyruvate reductase activity of leaves has long been known to be a highly active enzyme located in peroxisomes; it uses NADH as the preferred cofactor. To a lesser extent, NADPH can also be used by the peroxisomal enzyme. A second hydroxypyruvate reductase enzyme is located in the cytosol; it preferentially uses NADPH but can also use NADH as cofactor. In a barley mutant deficient in peroxisomal hydroxypyruvate reductase, the NADPH-preferring cytosolic form of the enzyme permits sufficient rates of hydroxypyruvate reduction to support continued substrate flow through the terminal stages of the photosynthetic carbon oxidation (glycolate/glycerate) pathway. The properties and metabolic significance of the cytosolic and organelle-localized glyoxylate and hydroxypyruvate reductase enzymes are discussed.  相似文献   

18.
生物体中大部分酶催化反应都需要辅因子参与,辅因子平衡对维持正常的细胞代谢至关重要,而辅因子失衡则会导致细胞生长和生产的紊乱。在微生物细胞工厂的构建中,通过调节辅因子代谢平衡来提高产物合成途径的效率,从而调控细胞生长与产物生产,使代谢流能够最大限度地流向目标产物,已经成为代谢调控的重要手段。目前常见的用于代谢调控的辅因子有NAD(P)H/NAD(P)+、辅酶、ATP/ADP等。围绕这几种辅因子的代谢途径及功能分类进行了综述,并总结了微生物中不同产物利用辅因子平衡策略进行合成调控的研究,以期为各类化合物的高效生物合成提供参考。  相似文献   

19.
In previous studies, we showed that cofactor manipulations can potentially be used as a tool in metabolic engineering. In this study, sugars similar to glucose, that can feed into glycolysis and pyruvate production, but with different oxidation states, were used as substrates. This provided a simple way of testing the effect of manipulating the NADH/NAD+ ratio or the availability of NADH on the metabolic patterns of Escherichia coli under anaerobic conditions and on the production of 1,2-propanediol (1,2-PD), which requires NADH for its synthesis. Production of 1,2-PD was achieved by overexpressing the two enzymes methylglyoxal synthase from Clostridium acetobutylicum and glycerol dehydrogenase from E. coli. In addition, the effect of eliminating a pathway competing for NADH by using a ldh strain (without lactate dehydrogenase activity) on the production of 1,2-PD was investigated. The oxidation state of the carbon source significantly affected the yield of metabolites, such as ethanol, acetate and lactate. However, feeding a more reduced carbon source did not increase the yield of 1,2-PD. The production of 1,2-PD with glucose as the carbon source was improved by the incorporation of a ldh mutation. The results of these experiments indicate that our current 1,2-PD production system is not limited by NADH, but rather by the pathways following the formation of methylglyoxal. Electronic Publication  相似文献   

20.
Nicotinamide adenine dinucleotide (NAD) and reduced NAD (NADH) levels have been measured in bacterial cultures. The cofactors were assayed by using the very sensitive cycling assay described previously by Cartier. Control experiments showed that the level of total NAD(H) falls during harvesting, and so samples were taken quickly from growing cultures and extracted immediately without separating the cells from the medium. Total NAD(H) ranged from 4.0 to 11.7 mumoles/g of dry cells for three facultative organisms, Klebsiella aerogenes, Escherichia coli, and Staphylococcus albus. NADH was remarkably constant in these bacteria; only one out of ten series of determinations was outside the range 1.4 to 1.9 mumoles/g of dry cells. NAD(+) showed much greater variation. An anaerobe (Clostridium welchii) had significantly more total NAD(H) whereas an aerobe Pseudomonas aeruginosa had about as much NAD(H) as the facultative organisms. NAD and NADH were measured during growth: once more NADH was much more constant than NAD. During change-over between aerobiosis and anaerobiosis, NADH showed a temporary increase but then returned to a constant level, whereas NAD changed from high aerobically to low anaerobically. These results are discussed in terms of the control mechanisms that may be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号