首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims (i) To describe at the level of local communities latitudinal gradients in the species richness of different families of New World bats and to explore the generality of such gradients. (ii) To characterize the relative effects of changes in the richness of each family to the richness of entire communities. (iii) To determine differences in the rate and direction of latitudinal gradients in species richness within families. (iv) To evaluate how differences among families regarding latitudinal gradients in species richness influence the latitudinal gradient in species richness of entire communities. Location Continental New World ranging from the northern continental United States (Iowa, 42° N) to eastern Paraguay (Canindeyú, 24° S). Methods Data on the species composition of communities came from 32 intensively sampled sites. Analyses focused on species richness of five of nine New World bat families. Multivariate analysis of variance and discriminant function analysis determined and described differences among temperate, subtropical, and tropical climatic zones regarding the species richness of bat families. Simple linear regression described latitudinal gradients in species richness of families. Path analysis was used to describe: (i) the direct effect of latitude on species richness of communities, (ii) the indirect effects of latitude on the species richness of communities through its effect on the species richness of each family, (iii) the relative effects of latitude on the species richness of bat families, and (iv) the relative contribution of each family to variation in the species richness of communities. Results Highly significant differences among climatic zones existed primarily because of a difference between the temperate zone and the tropical and subtropical zones combined. This difference was associated with the high number of vespertilionids in the temperate zone and the high number of phyllostomids in the tropical and subtropical zones. Latitudinal gradients in species richness were contingent on phylogeny. Although only three of the five families exhibited significant gradients, all families except for the Vespertilionidae exhibited indistinguishable increases in species richness with decreases in latitude. The Emballonuridae, Phyllostomidae and Vespertilionidae exhibited significant latitudinal gradients whereby the former two families exhibited the classical increase in species richness with decreasing latitude and the latter family exhibited the opposite pattern. Variation in species richness of all families contributed significantly to variation in the species richness of entire communities. Nonetheless, the Phyllostomidae made a significantly stronger contribution to changes in species richness of communities than did all other families. Much of the latitudinal gradient in species richness of communities could be accounted for by the effects of latitude on the species richness of constituent families. Main conclusions Ecological and evolutionary differences among higher taxonomic units, particularly those differences involving life‐history traits, predispose taxa to exhibit different patterns of diversity along environmental gradients. This may be particularly true along extensive gradients such as latitude. Nonetheless, species rich taxa, by virtue of their greater absolute rates of change, can dominate and therefore define the pattern of diversity at a higher taxonomic level and eclipse differences among less represented taxa in their response to environmental gradients. This is true not only with respect to how bats drive the latitudinal gradient in species richness for all mammals, but also for how the Phyllostomidae drives the latitudinal gradient for all bats in the New World. Better understanding of the mechanistic basis of latitudinal gradients of diversity may come from comparing and contrasting patterns across lower taxonomic levels of a higher taxon and by identifying key ecological and evolutionary traits that are associated with such differences.  相似文献   

2.
Aim  A latitudinal gradient in species richness, defined as a decrease in biodiversity away from the equator, is one of the oldest known patterns in ecology and evolutionary biology. However, there are also many known cases of increasing poleward diversity, forming inverse latitudinal biodiversity gradients. As only three processes (speciation, extinction and dispersal) can directly affect species richness in areas, similar factors may be responsible for both classical (high tropical diversity) and inverse (high temperate diversity) gradients. Thus, a modified explanation for differential species richness which accounts for both patterns would be preferable to one which only explains high tropical biodiversity.
Location  The New World.
Methods  We test several proposed ecological, temporal, evolutionary and spatial explanations for latitudinal diversity gradients in the New World snake tribe Lampropeltini, which exhibits its highest biodiversity in temperate regions.
Results  We find that an extratropical peak in species richness is not explained by latitudinal variation in diversification rate, the mid-domain effect, or Rapoport's rule. Rather, earlier colonization and longer duration in the temperate zones allowing more time for speciation to increase biodiversity, phylogenetic niche conservatism limiting tropical dispersal and the expansion of the temperate zones in the Tertiary better explain inverse diversity gradients in this group.
Main conclusions  Our conclusions are the inverse of the predictions made by the tropical conservatism hypothesis to explain higher biodiversity near the equator. Therefore, we suggest that the processes invoked are not intrinsic to the tropics but are dependent on historical biogeography to determine the distribution of species richness, which we refer to as the 'biogeographical conservatism hypothesis'.  相似文献   

3.
Aim  Relationships between range size and species richness are contentious, yet they are key to testing the various hypotheses that attempt to explain latitudinal diversity gradients. Our goal is to utilize the largest data set yet compiled for New World woody plant biogeography to describe and assess these relationships between species richness and range size.
Location  North and South America.
Methods  We estimated the latitudinal extent of 12,980 species of woody plants (trees, shrubs, lianas). From these estimates we quantified latitudinal patterns of species richness and range size. We compared our observations with expectations derived from two null models.
Results   Peak richness and the smallest- and largest-ranged species are generally found close to the equator. In contrast to prominent diversity hypotheses: (1) mean latitudinal extent of tropical species is greater than expected; (2) latitudinal extent appears to be decoupled from species richness across New World latitudes, with abrupt transitions across subtropical latitudes; and (3) mean latitudinal extents show equatorial and north temperate peaks and subtropical minima. Our results suggest that patterns of range size and richness appear to be influenced by three broadly overlapping biotic domains (biotic provinces) for New World woody plants.
Main conclusions  Hypotheses that assume a direct relationship between range size and species richness may explain richness patterns within these domains, but cannot explain gradients in richness across the New World.  相似文献   

4.
Several hypotheses attempt to explain the latitudinal gradient of species diversity, but some basic aspects of the pattern remain insufficiently explored, including the effect of scales and the role of beta diversity. To explore such components of the latitudinal gradient, we tested the hypothesis of covariation, which states that the gradient of species diversity should show the same pattern regardless of the scale of analysis. The hypothesis implies that there should be no gradients of beta diversity, of regional range size within regions, and of the slope of the species-area curve. For the fauna of North American mammals, we found contrasting results for bats and non-volant species. We could reject the hypothesis of covariation for non-volant mammals, for which the number of species increases towards lower latitudes, but at different rates depending on the scale. Also, for this group, beta diversity is higher at lower latitudes, the regional range size within regions is smaller at lower latitudes, and z, the slope of the species-area relationship is higher at lower latitudes. Contrarily bats did not show significant deviations from the predictions of the hypothesis of covariation: at two different scales, species richness shows similar trends of increase at lower latitudes, and no gradient can be demonstrated for beta diversity, for regional range size, or for the slopes of the species-area curve. Our results show that the higher diversity of non-volant mammals in tropical areas of North America is a consequence of the increase in beta diversity and not of higher diversity at smaller scales. In contrast, the diversity of bats at both scales is higher at lower latitudes. These contrasting patterns suggest different causes for the latitudinal gradient of species diversity in the two groups that are ultimately determined by differences in the patterns of geographic distribution of the species.  相似文献   

5.
Abstract. Although the latitudinal gradient of species richness for mammals in North America is well documented, few investigators have quantified the relationship in South America. We examined the pattern in North and South America, at two spatial scales (2.5° and 5°) for each of two sampling methods (quadrats and latitudinal bands). A scale effect was evident for quadrats but not for bands. Significant linear relationships between species richness and latitude were found for three faunal groups: all mammals, nonvolant species, and bats. Effects of area confound the latitudinal relationship. By statistically removing such effects, we found that the latitudinal gradient is not an artifact of the species-area relationship, and that the latitudinal gradients for North and South America were statistically indistinguishable. Our data suggest that both faunal subgroups, nonvolant species and bats, contributed substantially to the overall mammalian pattern. Further, multiple regression analyses showed that only latitude is a necessary variable to explain bat richness; for nonvolant species, in addition to latitude, area and longitude may be important.  相似文献   

6.
One hypothesis for the latitudinal gradient in species richness observed in most animal taxa is that the richness of a region is determined by its geographic area. However, the relationship between geographic area and species richness across regions is generally weak. It has been suggested that this is because species from the tropics spill out of this region of high richness, artificially inflating the richness of other regions. This generates the interesting prediction that the area and richness of extra-tropical regions should be more strongly correlated if tropical species are excluded. We test this prediction using the avifauna of the New World. We find that there is indeed a relationship between the land area and species richness of a region once tropical species are excluded. This relationship is independent of the latitude and productivity of regions. Both latitude and productivity can explain variance in richness unexplained by land area. There is no relationship between land area and species richness if tropical species are not excluded from the analysis, suggesting that tropical species do indeed mask the relationship between richness and area. We conclude that our results generally support the geographic area hypothesis, although tests of its other predictions and on other land masses are required.  相似文献   

7.
Area and the latitudinal diversity gradient for terrestrial birds   总被引:3,自引:0,他引:3  
We tested the hypothesis that area represents the primary explanation for the latitudinal diversity gradient using breeding terrestrial birds of North America, the northern Palearctic, Australia and the Afrotropics as our focal group. We tested two propositions inherent to the area hypothesis: (1) tropical biomes are larger than extra-tropical biomes, and (2) there is a significant species-area relationship for birds at the biome scale of resolution. Using a more realistic definition of biomes which incorporates the effects of both energy and water, we find no support for either proposition, leading us to conclude that the area per se does not explain terrestrial latitudinal diversity gradients.  相似文献   

8.
One of the more vexing issues in ecology is how historical processes affect contemporary patterns of biodiversity. Accordingly, few models have been presented. Two corollary models (centre of origin, time-for-speciation) can be used to make quantitative predictions characterizing the tropical niche conservatism hypothesis and describe diversification as diffusion and subsequent cladogenesis of species away from the place of origin of a higher taxon in the tropics. Predictions derived from such models are: (i) species richness declines toward the periphery of the range of a higher taxon; (ii) taxa are more derived toward the periphery than the centre; (iii) ages of taxa are lower toward the periphery than the centre; and (iv) ages and measures of derivedness are less variable toward the periphery of the range of a higher taxon. I tested these predictions to better understand the formation of one of the most ubiquitous patterns of biodiversity-the latitudinal gradient in species richness. Results indicate well-supported predictions for New World leaf-nosed bats and that diversification has had strong influences on latitudinal gradients of species richness. A better understanding of how evolutionary diversification of taxa contributes to formation of patterns of species richness along environmental gradients is necessary to fully understand spatial variation in biodiversity.  相似文献   

9.
QIAN  HONG 《Annals of botany》1999,83(3):271-283
This paper reports: (1) patterns of taxonomic richness of vascularplants in North America (north of Mexico), an area accountingfor 16.6% of the total world land, in relation to latitudinaland longitudinal gradients; (2) floristic relationships betweendifferent latitudinal zones, longitudinal zones, and geographicregions of North America; and (3) floristic relationships betweenNorth America and Eurasia at various geographic scales. NorthAmerica was geographically divided into twelve regions, whichwere latitudinally grouped into four zones, each with threeregions, and longitudinally grouped into three zones, each withfour regions. The native vascular flora of North America consistsof 162 orders, 280 families, 1904 genera and 15352 species.Along the latitudinal gradient, species richness shows a strikingincrease with decreasing latitude (e.g. the northernmost latitudinalzone has only 11.7% of the number of species in the southernmostlatitudinal zone). However, about 63% of the species of thenorthernmost latitudinal zone are also present in the southernmostlatitudinal zone of North America. Among the three longitudinalzones, the zone on the Pacific coast has 1.48 and 1.64-timesas many species as the zones in the interior and on the Atlanticcoast, respectively. About 36% of the species in the zone ofthe Atlantic coast also occur in the Pacific coast zone. However,each of over 40% of the species in North America occupies lessthan 10% of the total land area of North America. Some 48% ofthe genera and 6.5% of the species of North America are alsonative to Eurasia. In general, the number of genera common toNorth America and Eurasia increased from the north to the southand from the west to the east of North America, whereas thenumber of species common to the two continents decreased alongthe same two geographic gradients.Copyright 1999 Annals of BotanyCompany Asia, biodiversity, Europe, floristic similarity, latitudinal and longitudinal gradients, North America, taxonomic richness.  相似文献   

10.
Over the last two decades, although much has been learned regarding the multifaceted nature of biodiversity, relatively little is known regarding spatial variation in constituents other than species richness. This is particularly true along extensive environmental gradients such as latitude. Herein, we describe latitudinal gradients in the functional diversity of New World bat communities. Bat species from each of 32 communities were assigned to one of seven functional groups. Latitudinal gradients existed for the richness, diversity and scaled‐dominance of functional groups. No significant patterns were observed for evenness of functional groups. Measures of functional diversity were different in magnitude and increased towards the equator at a faster rate than expected given the underlying spatial variation in species richness. Thus, latitudinal gradient in species richness alone do not cause the latitudinal gradient in functional diversity. When variation in species composition of the regional fauna of each community was incorporated into analyses, many differences between observed and simulated patterns of functional diversity were not significant. This suggests that those processes that determine the composition of regional faunas strongly influence the latitudinal gradient in functional diversity at the local level. Nonetheless, functional diversity was lower than expected across observed sites. Community‐wide responses to variation in the quantity and quality of resources at the local level probably contribute to differences in functional diversity at local and regional scales and enhance beta diversity.  相似文献   

11.
High species richness and endemism in tropical mountains are recognized as major contributors to the latitudinal diversity gradient. The processes underlying mountain speciation, however, are largely untested. The prevalence of steep ecogeographic gradients and the geographic isolation of populations by topographic features are predicted to promote speciation in mountains. We evaluate these processes in a species-rich Neotropical genus of understory herbs that range from the lowlands to montane forests and have higher species richness in topographically complex regions. We ask whether climatic niche divergence, geographic isolation, and pollination shifts differ between mountain-influenced and lowland Amazonian sister pairs inferred from a 756-gene phylogeny. Neotropical Costus ancestors diverged in Central America during a period of mountain formation in the last 3 million years with later colonization of Amazonia. Although climatic divergence, geographic isolation, and pollination shifts are prevalent in general, these factors do not differ between mountain-influenced and Amazonian sister pairs. Despite higher climatic niche and species diversity in the mountains, speciation modes in Costus appear similar across regions. Thus, greater species richness in tropical mountains may reflect differences in colonization history, diversification rates, or the prevalence of rapidly evolving plant life forms, rather than differences in speciation mode.  相似文献   

12.
Understanding patterns of species richness at broad geographic extents remains one of the most challenging yet necessary scientific goals of our time. Many hypotheses have been proposed to account for spatial variation in species richness; among them, environmental determinants have played a central role. In this study, we use data on regional bat species richness in the New World to study redundancy and complementarity of three environmental hypotheses: energy, heterogeneity and seasonality. We accomplish this by partitioning variation in species richness among components associated with unique and combined effects of variables from each hypotheses, and by partitioning the overall richness gradient into gradients of species with varying breadths of geographic distribution. These three environmental hypotheses explain most variation in the species richness gradient of all bats, but do not account for all positive spatial autocorrelation at short distances. Although environmental predictors are highly redundant, energy and seasonality explain different and complementary fractions of variation in species richness of all bats. On the other hand, heterogeneity variables contribute little to explain this gradient. However, results change dramatically when richness is estimated for groups of species with different sizes of geographic distribution. First, the amount of variation explained by environment decreases with a decrease in range size; this suggests that richness gradients of small‐ranged species can not be explained as easily as those of broadly distributed species, as has been implied by analyses that do not consider differences in range size among species. Second, the relative contribution of environmental predictors to explained variation also changes with change in range size. Seasonality and energy are good predictors of species with broad distributions, but they loose almost all explanatory power for richness of species with small ranges. In contrast, heterogeneity, which is a relatively poor predictor of richness of species with large ranges, becomes the main predictor of richness gradients of species with restricted distributions. This suggests that range size is a different dimension on which heterogeneity and other environmental characteristics are complementary to each other. Our results suggest that determinants of species richness gradients might be complex, or at least more complex than many studies have previously suggested.  相似文献   

13.
Theodore H. Fleming 《Oikos》2005,111(3):556-562
Non-random statistical patterns have long been of interest to community ecologists. Recent studies of communities of mutualists have revealed non-random patterns in terms of connectance, degree of specialization, and nestedness. Currently unstudied, however, are the detailed statistical relationships between tropical vertebrate mutualists and their food plants in different parts of the world. Here, I review 87 studies that quantify the relationship between species richness of nectar- or fruit-eating birds and bats and species richness of their food plants in New and Old World, mostly tropical, communities. This analysis revealed that in the New World, number of plant-visiting birds and bats per community was significantly correlated with number of food plants and that the slopes of regression equations were the same for nectarivores and frugivores. The New World quantitative assembly rule states that it takes about three species of flowers or fruits to support one species of plant-visiting bird or bat. This relationship does not appear to exist in Old World communities, in which species richness of nectar- or fruit-eating birds or bats was independent of species richness of their food plants. These geographic differences likely reflect a greater degree of feeding specialization in plant-visiting vertebrates in the New World than in the Old World. I hypothesize that hemispheric differences in the spatio-temporal predictability (STP) of food resources ultimately determine levels of dietary specialization and structure in communities of New and Old World plant-visiting vertebrates.  相似文献   

14.
Latitudinal gradients in diversity: real patterns and random models   总被引:4,自引:0,他引:4  
Mid-domain models have been argued lo provide a default explanation for the best known spatial pattern in biodiversity, namely the latitudinal gradient in species richness. These models assume no environmental gradients, but merely a random latitudinal association between the size and placement of the geographic ranges of species. A mid-domain peak in richness is generated because when the latitudinal extents of species in a given taxonomic group are bounded to north and south, perhaps by a physical constraint such as a continental edge or perhaps by a climatic constraint such as a critical temperature or precipitation threshold, then the number of ways in which ranges can be distributed changes systematically between the bounds. In addition, such models make predictions about latitudinal variation in the latitudinal extents of the distributions of species, and in beta diversity (the spatial turnover in species identities). Here we test how well five mid-domain models predict observed latitudinal patterns of species richness, latitudinal extent and beta diversity in two groups of birds, parrots and woodpeckers, across the New World. Whilst both groups exhibit clear gradients in richness and beta diversity and the general trend in species richness is acceptably predicted (but not accurately, unless substantial empirical information is assumed), the fit of these models is uniformly poor for beta diversity and latitudinal range extent. This suggests either that, at least for these data, as presently formulated mid-domain models are too simplistic, or that in practice the mid-domain effect is not significant in determining geographical variation in diversity.  相似文献   

15.
Are latitudinal gradients in regional diversity random or biased with respect to body size? Using data for the New World avifauna, I show that the slope of the increase in regional species richness from the Arctic to the equator is not independent of body size. The increase is steepest among small and medium‐sized species, and shallowest among the largest species. This is reflected in latitudinal variation in the shape of frequency distributions of body sizes in regional subsets of the New World avifauna. Because species are added disproportionately in small and medium size classes towards low latitudes, distributions become less widely spread along the body size axis than expected from the number of species. These patterns suggest an interaction between the effects of latitude and body size on species richness, implying that mechanisms which vary with both latitude and body size may be important determinants of high tropical diversity in New World birds.  相似文献   

16.
Why do mountains support so many species of birds?   总被引:1,自引:0,他引:1  
Although topographic complexity is often associated with high bird diversity at broad geographic scales, little is known about the relative contributions of geomorphologic heterogeneity and altitudinal climatic gradients found in mountains. We analysed the birds in the western mountains of the New World to examine the two‐fold effect of topography on species richness patterns, using two grains at the intercontinental extent and within temperate and tropical latitudes. Birds were also classified as montane or lowland, based on their overall distributions in the hemisphere. We estimated range in temperature within each cell and the standard deviation in elevation (topographic roughness) based on all pixels within each cell. We used path analysis to test for the independent effects of topographic roughness and temperature range on species richness while controlling for the collinearity between topographic variables. At the intercontinental extent, actual evapotranspiration (AET) was the primary driver of species richness patterns of all species taken together and of lowland species considered separately. In contrast, within‐cell temperature gradients strongly influenced the richness of montane species. Regional partitioning of the data also suggested that range in temperature either by itself or acting in combination with AET had the strongest “effect” on montane bird species richness everywhere. Topographic roughness had weaker “effects” on richness variation throughout, although its positive relationship with richness increased slightly in the tropics. We conclude that bird diversity gradients in mountains primarily reflect local climatic gradients. Widespread (lowland) species and narrow‐ranged (montane) species respond similarly to changes in the environment, differing only in that the richness of lowland species correlates better with broad‐scale climatic effects (AET), whereas mesoscale climatic variation accounts for richness patterns of montane species. Thus, latitudinal and altitudinal gradients in species richness can be explained through similar climatic‐based processes, as has long been argued.  相似文献   

17.
Robert N. Reed 《Ecography》2003,26(1):107-117
Many higher taxa exhibit latitudinal gradients in species richness, geographic range size, and body size. However, these variables are often interdependent, such that examinations of univariate or bivariate patterns alone may be misleading. Therefore, I examined latitudinal gradients in, and relationships between, species richness, geographic range size, and body size among 144 species of New World venomous snakes [families Elapidae (coral snakes) and Viperidae (pitvipers)]. Both lineages are monophyletic, collectively span 99° of latitude, and are extremely variable in body size and geographic range sizes. Coral snakes exhibit highest species richness near the equator, while pitviper species richness peaks in Central America. Species – range size distributions were strongly right-skewed for both families. There was little support for Bergmann's rule or Rapoport's rule for snakes of either family, as neither body size nor range size increased significantly with latitude. However, range area and median range latitude were positively correlated above 15° N, indicating a possible "Rapoport effect" at high northern latitudes. Geographic range size was positively associated with body size. Available continental area strongly influenced range size. Comparative (phylogenetically-based) analyses revealed that shared history is a poor predictor of range size variation within clades. Among vipers, trends in geographic range sizes may have been structured more by historical biogeography than by macroecological biotic factors.  相似文献   

18.
Ectomycorrhizal (ECM) fungi play major ecological roles in temperate and tropical ecosystems. Although the richness of ECM fungal communities and the factors controlling their structure have been documented at local spatial scales, how they vary at larger spatial scales remains unclear. In this issue of Molecular Ecology, Tedersoo et al. (2012) present the results of a meta‐analysis of ECM fungal community structure that sheds important new light on global‐scale patterns. Using data from 69 study systems and 6021 fungal species, the researchers found that ECM fungal richness does not fit the classic latitudinal diversity gradient in which species richness peaks at lower latitudes. Instead, richness of ECM fungal communities has a unimodal relationship with latitude that peaks in temperate zones. Intriguingly, this conclusion suggests the mechanisms driving ECM fungal community richness may differ from those of many other organisms, including their plant hosts. Future research will be key to determine the robustness of this pattern and to examine the processes that generate and maintain global‐scale gradients of ECM fungal richness.  相似文献   

19.
Species are unevenly distributed among genera within clades and regions, with most genera species-poor and few species-rich. At regional scales, this structure to taxonomic diversity is generated via speciation, extinction and geographical range dynamics. Here, we use a global database of extant marine bivalves to characterize the taxonomic structure of climate zones and provinces. Our analyses reveal a general, Zipf–Mandelbrot form to the distribution of species among genera, with faunas from similar climate zones exhibiting similar taxonomic structure. Provinces that contain older taxa and/or encompass larger areas are expected to be more species-rich. Although both median genus age and provincial area correlate with measures of taxonomic structure, these relationships are interdependent, nonlinear and driven primarily by contrasts between tropical and extra-tropical faunas. Provincial area and taxonomic structure are largely decoupled within climate zones. Counter to the expectation that genus age and species richness should positively covary, diverse and highly structured provincial faunas are dominated by young genera. The marked differences between tropical and temperate faunas suggest strong spatial variation in evolutionary rates and invasion frequencies. Such variation contradicts biogeographic models that scale taxonomic diversity to geographical area.  相似文献   

20.
The increase in species diversity from the Poles to the Equator is a major biogeographic pattern, but the mechanisms underlying it remain obscure. Our aim is to contribute to their clarification by describing the latitudinal gradients in species richness and in evolutionary age of species of New World bats, and testing if those patterns may be explained by the niche conservatism hypothesis. Maps of species ranges were used to estimate species richness in a 100 x 100 km grid. Root distances in a molecular phylogeny were used as a proxy for the age of species, and the mean root distance of the species in each cell of the grid was estimated. Generalised additive models were used to relate latitude with both species richness and mean root distance. This was done for each of the three most specious bat families and for all Chiroptera combined. Species richness increases towards the Equator in the whole of the Chiroptera and in the Phyllostomidae and Molossidae, families that radiated in the tropics, but the opposite trend is observed in the Vespertilionidae, which has a presumed temperate origin. In the whole of the Chiroptera, and in the three main families, there were more basal species in the higher latitudes, and more derived species in tropical areas. In general, our results were not consistent with the predictions of niche conservatism. Tropical niche conservatism seems to keep bat clades of tropical origin from colonizing temperate zones, as they lack adaptations to survive cold winters, such as the capacity to hibernate. However, the lower diversity of Vespertilionidae in the Neotropics is better explained by competition with a diverse pre-existing community of bats than by niche conservatism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号