首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycolate Metabolism and Excretion by Chlamydomonas reinhardtii   总被引:1,自引:1,他引:0  
The flux of glycolate through the C2 pathway in Chlamydomonas reinhardtii was estimated after inhibition of the pathway with aminooxyacetate (AOA) or aminoacetonitrile (AAN) by measurement of the accumulation of glycolate and glycine. Cells grown photoautotrophically in air excreted little glycolate except in the presence of 2 mm AOA when they excreted 5 micromoles glycolate per hour per milligram clorophyll. Cells grown on high CO2 (1-5%) when transferred to air produced three times as much glycolate, with half of the glycolate metabolized and half excreted. The lower amount of glycolate produced by the air-grown cells reflects the presence of a CO2 concentrating mechanism which raises the internal CO2 level and decreases the ribulose-1,5-bisP oxygenase reaction for glycolate production. Despite the presence of the CO2 concentrating mechanism, there was still a significant amount of glycolate produced and metabolized by air-grown Chlamydomonas. The capacity of these cells to metabolize between 5 and 10 micromoles of glycolate per hour per milligram chlorophyll was confirmed by measuring the biphasic uptake of added labeled glycolate. The initial rapid (<10 seconds) phase represented uptake of glycolate; the slow phase represented the metabolism of glycolate. The rates of glycolate metabolism were in agreement with those determined using the C2-cycle inhibitors during CO2 fixation.  相似文献   

2.
A combination of inhibitor and 15N studies were used to investigate the photorespiratory nitrogen cycle in maize, a C4 plant. Inhibitors used included isonicotinyl hydrazide which blocks the conversion of glycine to serine, methionine sulfoximine an inhibitor of GS and azaserine an inhibitor of GOGAT. Results from levels of ammonia and amino acids and the distribution of 15N into NH3, serine, glutamine and glutamate indicated that the photorespiratory N-cycle occurs in this C4 plant, but the rate of flux through this pathway is low as compared with that in C3 plants.Abbreviations Aza azasering - fw fresh weight - GOGAT glutamate synthase - GS glutamine synthetase - INH isonicotinyl hydrazide - MSO methionine sulfoximine  相似文献   

3.
Aminooxyacetate and aminoacetonitrile cause increased excretion of glycolate by the cyanobacterium Anabaena cylindrica. Both compounds also reduce NH4-N release induced by methionine sulfoximine in non-nitrogen-fixing cultures. Changes in amino acid pool sizes together with changes in activities of some enzymes related to glycolate metabolism show that glyoxylate to glycine conversion and glycine to serine conversion are inhibited by aminooxyacetate and aminoacetonitrile, respectively. The results also verify that photorespiratory glycolate metabolism via amination of glyoxylate is operative in A. cylindrica.  相似文献   

4.
Oliver DJ 《Plant physiology》1981,68(5):1031-1034
Mechanically isolated soybean leaf cells metabolized added glycolate by two mechanisms, the direct oxidation of glyoxylate and the decarboxylation of glycine. The rate of glyoxylate oxidation was dependent on the cellular glyoxylate concentration and was linear between 0.58 and 2.66 micromoles glyoxylate per milligram chlorophyll. The rate extrapolated to zero at a concentration of zero. The concentration and, therefore, the rate of oxidation of glyoxylate could be decreased by adding glutamate or serine to the cells. These substrates were amino donors for the transamination of glyoxylate to glycine. In the presence of these amino acids more CO2 was released from added glycolate via the glycine decarboxylation reaction and less by the direct oxidation of glyoxylate.  相似文献   

5.
Photoassimilation of Glycolate, Glycine and Serine by Euglena gracilis   总被引:1,自引:0,他引:1  
SYNOPSIS. Glycolate was readily utilized for growth by Euglena gracilis , strain Z, in the light at pH 3.8 under a variety of atmospheric conditions, including CO2-free air and nitrogen. Glycolate did not support growth in the dark as sole carbon source; no significant uptake of glycolate was observed under these conditions. However, cells grown in the light with glycolate as sole carbon source were still capable of glycolate uptake for up to 3 hr after transfer to darkness, and glycolate was taken up by cells utilizing glucose in the dark. The energy requirement for glycolate utilization could thus be met either by light, or by the aerobic metabolism of glucose in the dark. DCMU, an inhibitor of photosystem II, inhibited photoassimilation of glycolate. In the light, but again not in the dark, glycine and serine also served as sole source of carbon under CO2-free air, but not under nitrogen. Net release of ammonia to the medium accompanied the photoassimilation of glycine and serine. Of the several metabolicallyrelated compounds tested, only glycolate was utilized as sole carbon source in the light under "anaerobic" conditions. A lag in net chlorophyll synthesis occurred during the photoassimilation of glycolate glycine or serine. Determination of rates of photosynthetic 14CO2 fixation confirmed that some inhibition of photosynthetic capacity had occurred in response to utilization of glycolate and related compounds.  相似文献   

6.
Ta TC  Joy KW  Ireland RJ 《Plant physiology》1985,78(2):334-337
In pea leaves, much of the metabolism of imported asparagine is by transamination. This activity was previously shown to be localized in the peroxisomes, suggesting a possible connection between asparagine and photorespiratory nitrogen metabolism. This was investigated by examination of the transfer of 15N from the amino group of asparagine, supplied via the transpiration stream, in fully expanded pea leaves. Label was transferred to aspartate, glutamate, alanine, glycine, serine, ammonia, and glutamine (amide group). Under low oxygen (1.8%), or in the presence of α-hydroxy-2-pyridine methanesulfonic acid (an inhibitor of glycolate oxidase, a step in the photorespiratory formation of glyoxylate), there was a substantial (60-80%) decrease in transfer of label to glycine, serine, ammonia, and glutamine. Addition of isonicotinyl hydrazide (an inhibitor of formation of serine from glycine) caused a 70% decrease in transfer of asparagine amino nitrogen to serine, ammonia, and glutamine, while a 4-fold increase in labeling of glycine was observed. The results demonstrate the involvement of asparagine in photorespiration, and show that photorespiratory nitrogen metabolism is not a closed cyclic process.  相似文献   

7.
Woo KC  Osmond CB 《Plant physiology》1982,69(3):591-596
Intact chloroplasts isolated from spinach (Spinacia oleracea L.) leaves showed a light-dependent O(2) evolution (5.5 +/- 0.75 micromoles per milligram chlorophyll per hour) when supplied with ammonia and 2-oxoglutarate. This (ammonia, 2-oxoglutarate)-dependent O(2) evolution was stimulated 2- to 4-fold by the dicarboxylates, malate, succinate, fumarate, glutarate, and l-tartarate. Evolution of O(2) in the presence of malate was dependent on the presence of both 2-oxoglutarate and NH(4)Cl; malate with only either 2-oxoglutarate and NH(4)Cl alone did not support O(2) evolution. Furthermore, in the presence of malate, the amount of O(2) evolved was solely dependent on the amount of NH(4)Cl or 2-oxoglutarate added and malate did not affect the ratio of O(2) evolved to NH(4)Cl or 2-oxoglutarate consumed. Studies with inhibitors (2-(3,4-dichlorophenyl)-1,1-dimethyl urea, methionine sulfoximine, and azaserine) indicated that the above activity was directly linked to glutamine synthetase and glutamate synthase activity in the chloroplast and was not caused by the metabolism of malate. The V(max)/2 of (ammonia, 2-oxoglutarate)-dependent O(2) evolution was reached at 32 micromolar NH(4)Cl and 6 millimolar (approximately) 2-oxoglutarate in the absence of malate, and at 22 micromolar NH(4)Cl and 73 micromolar 2-oxoglutarate when malate (3 millimolar) was present.Intact chloroplasts isolated from pea (Pisum sativum) leaves also showed a stimulation of (ammonia, 2-oxoglutarate)-dependent O(2) evolution by malate. However glutamine was required for this activity even though glutamine with only either NH(4)Cl or 2-oxoglutarate did not respond to malate stimulation.The measured rates of (ammonia, 2-oxoglutarate)-dependent O(2) evolution in isolated spinach chloroplasts in the presence of malate were about 19.5 +/- 4.5 micromoles O(2) evolved per milligram chlorophyll per hour. This is adequate to sustain photorespiratory NH(3) recycling and the refixation of NH(3) arising from NO(3) under ambient conditions in the light. The role of the chloroplast in photorespiratory NH(3) recycling and the nature of the associated transport of 2-oxoglutarate into the chloroplast is discussed.  相似文献   

8.
The photorespiratory nitrogen cycle proposed by Keys et al. (Nature 275: 741–743, 1978) involved formation of glycine by transamination of glyoxylate in the peroxisomes utilizing glutamate. Subsequently, glycine is oxidized to ammonia, serine and CO2 in the mitochondria. The ammonia is reassimilated via the GS/GOGAT pathway generating glutamate. In this article, experimental evidence which suggests the occurrence of alternative mechanisms of glycolate and serine synthesis as well as of CO2 and ammonia evolution is discussed. The problem of utilization of NADH coupled to ATP synthesis during photosynthesis is still unresolved, which complicates the glycine oxidation reaction in light. Further, factors are presented that determine the availability of amino donors in the peroxisomes and of amino acids viz., glycine, serine and glutamate for the operation of the photorespiratory N cycle. Recent evidence regarding the role of formate arising out of the reaction of glyoxylate with H2O2 in the regulation of photosynthetic electron flow in the Hill reaction, as well as of photorespiratory substrates functioning as carbon sources for the citric acid cycle in the light or for export to the growing tissues, suggests that the role of photo-respiration in plant metabolism needs to be reexamined.  相似文献   

9.
Aerobic and anaerobic respiration in the intact spinach chloroplast   总被引:3,自引:3,他引:0       下载免费PDF全文
Aerobic and anaerobic chloroplastic respiration was monitored by measuring 14CO2 evolution from [14C]glucose in the darkened spinach (Spinacia oleracea) chloroplast and by estimating the conversion of fructose 1,6-bisphosphate to glycerate 3-phosphate in the darkened spinach chloroplast in air with O2 or in N2 with nitrite or oxaloacetate as electron acceptors. The pathway of 14CO2 evolution from labeled glucose in the absence and presence of the inhibitors iodoacetamide and glycolate 2-phosphate under air or N2 were those expected from the oxidative pentose phosphate cycle and glycolysis. Of the electron acceptors, O2 was the best (2.4 nanomoles CO2 per milligram chlorophyll per hour), followed by nitrite and oxaloacetate. With respect to glycerate 3-phosphate formation from fructose 1,6-bisphosphate, methylene blue increased the aerobic rate from 3.7 to 5.4 micromoles per milligram chlorophyll per hour. A rate of 4.8 micromoles per milligram chlorophyll per hour was observed under N2 with nitrite and oxaloacetate.  相似文献   

10.
A system has been developed for the isolation of photosynthetically active chloroplasts from leaves of Populus deltoides. A high proportion of the chloroplasts appeared intact. The maximum rates of different photosynthetic processes were as follows: CO2 fixation 3.5 micromoles per milligram chlorophyll per hour, noncyclic ATP synthesis 10 micromoles per milligram chlorophyll per hour, and cyclic ATP synthesis 300 micromoles per milligram chlorophyll per hour.  相似文献   

11.
Photorespiration involves the conversion of glycine to serine with the release of ammonia and CO2. In C3 terrestrial higher plants the flux through glycine and serine is so large that it results in the production of ammonia at a rate far exceeding that from reduction of new nitrogen entering the plant. The photorespiratory nitrogen cycle re-assimilates this ammonia using the enzymes glutamine synthetase and glutamine:2-oxoglutarateaminotransferase.  相似文献   

12.
Reddy AR  Suhasini M  Das VS 《Plant physiology》1987,84(4):1447-1450
Cut shoots of guayule (Parthenium argentatum Gray) were treated with four inhibitors of the glycolate pathway (α-hydroxypyridinemethanesulfonic acid; isonicotinic acid hydrazide, glycine hydroxamate, and amino-oxyacetate, AOA) in order to evaluate the role of photorespiratory intermediates in providing precursors for the biosynthesis of rubber. Photorespiratory CO2 evolution in guayule leaves was severely inhibited by AOA. Application of each of the four inhibitors has resulted in a significantly decreased incorporation of 14C into rubber fractions suggesting that the glycolate pathway is involved in the biosynthesis of rubber in guayule. However, the application of each of the glycolate pathway inhibitors showed no significant effect on photosynthetic CO2 fixation in the leaves. The inhibitors individually also reduced the incorporation of labeled glycolate, glyoxylate, and glycine into rubber, while the incorporation of serine and pyruvate was not affected. The effective inhibition of incorporation of glycolate pathway intermediates in the presence of AOA was due to an inhibition of glycine decarboxylase and serine hydroxymethyltransferase. It is concluded that serine is a putative photorespiratory intermediate in the biosynthesis of rubber via pyruvate and acetyl coenzyme A.  相似文献   

13.
When Lemna minor L. is supplied with the potent inhibitor of glutamine synthetase, methionine sulfoximine, rapid changes in free amino acid levels occur. Glutamine, glutamate, asparagine, aspartate, alanine, and serine levels decline concomitantly with ammonia accumulation. However, not all free amino acid pools deplete in response to this inhibitor. Several free amino acids including proline, valine, leucine, isoleucine, threonine, lysine, phenylalanine, tyrosine, histidine, and methionine exhibit severalfold accumulations within 24 hours of methionine sulfoximine treatment. To investigate whether these latter amino acid accumulations result from de novo synthesis via a methionine sulfoximine insensitive pathway of ammonia assimilation (e.g. glutamate dehydrogenase) or from protein turnover, fronds of Lemna minor were prelabeled with [15N]H4+ prior to supplying the inhibitor. Analyses of the 15N abundance of free amino acids suggest that protein turnover is the major source of these methionine sulfoximine induced amino acid accumulations. Thus, the pools of valine, leucine, isoleucine, proline, and threonine accumulated in response to the inhibitor in the presence of [15N]H4+, are 14N enriched and are not apparently derived from 15N-labeled precursors. To account for the selective accumulation of amino acids, such as valine, leucine, isoleucine, proline, and threonine, it is necessary to envisage that these free amino acids are relatively poorly catabolized in vivo. The amino acids which deplete in response to methionine sulfoximine (i.e. glutamate, glutamine, alanine, aspartate, asparagine, and serine) are all presumably rapidly catabolized to ammonia, either in the photorespiratory pathway or by alternative routes.  相似文献   

14.
Kirk PR  Leech RM 《Plant physiology》1972,50(2):228-234
The pool sizes of the common amino acids in purified intact chloroplasts from Vicia faba L. were measured (nanomoles per milligram chlorophyll). The three amino acids present in the highest concentrations were glutamate, aspartate, and threonine. Alanine, serine, and glycine were each present at levels between 15 and 20 nanomoles per milligram chlorophyll and 13 other amino acids were detectable at levels below 10.  相似文献   

15.
Shain Y  Gibbs M 《Plant physiology》1971,48(3):325-330
A reconstituted preparation requiring fructose 6-phosphate, transketolase, triphosphopyridine nucleotide, ferredoxin, fragmented spinach chloroplasts, and light capable of forming glycolate at rates of about 10 micromoles per milligram of chlorophyll per hour has been characterized. The glycolaldehyde-transketolase addition product could be substituted for fructose 6-phosphate and transketolase. The stoichiometry of the reaction was: 1 mole of fructose 6-phosphate consumed for each mole of glycolate and of reduced triphosphopyridine nucleotide produced. Evidence was presented indicating that glycolate formation was coupled to the photosystems of the photosynthetic electron transport chain. Synthesis of glycolate is envisaged as the result of either (a) a reaction between the upper two carbon atoms derived from fructose 6-phosphate and an uncharacterized oxidant generated by photosystem 2 or (b) hydrogen peroxide produced by the reoxidation of reduced triphos-phopyridine nucleotide or reduced ferredoxin by molecular oxygen.  相似文献   

16.
Robinson JM  Gibbs M 《Plant physiology》1982,70(5):1249-1254
Light-dependent O2 reduction concomitant with O2 evolution, ATP formation, and NADP reduction were determined in isolated spinach (Spinacia oleracea L. var. America) chloroplast lamellae fortified with NADP and ferredoxin. These reactions were investigated in the presence or absence of catalase, providing a tool to estimate the reduction of O2 to H2O2 (Mehler reaction) concomitant with NADP reduction. In the presence of 250 micromolar O2, O2 photoreduction, simultaneous with NADP photoreduction, was dependent upon light intensity, ferredoxin, Mn2+, NADP, and the extent of coupling of phosphorylation to electron flow.

In the presence of an uncoupling concentration of NH4+, saturating light intensity (>500 watts/square meter), saturating ferredoxin (10 micromolarity) rate-limiting to saturating NADP (0.2-0.9 millimolarity), and Mn2+ (50-1000 micromolarity), the maxium rates of O2 reduction were 13-25 micromoles/milligram chlorophyll per hour, while concomitant rates of O2 evolution and NADP reduction were 69 to 96 and 134 to 192 micromoles/milligram chlorophyll per hour, respectively. Catalase did not affect the rate of NADPH or ATP formation but decreased the NADPH:O2 ratios from 2.3-2.8 to 1.9-2.1 in the presence of rate-limiting as well as saturating concentrations of NADP.

Photosynthetic electron flow at a rate of 31 micromoles O2 evolved/milligram chlorophyll per hour was coupled to the synthesis of 91 micromoles ATP/milligram chlorophyll per hour, while the concomitant rate of O2 reduction was 0.6 micromoles/milligram chlorophyll per hour and was calculated to be associated with an apparent ATP formation of only 2 micromoles/milligram chlorophyll per hour. Thus, electron flow from H2O to O2 did not result in ATP formation significantly above that produced during NADP reduction.

  相似文献   

17.
The effect of nitrogen on excretion and metabolism of glycolate in Anabaena cylindrica (CCAP 1403/2a) was studied. Glycidate, an inhibitor of glutamate:glyoxylate aminotransferase (EC 2.6.1.4), reduced the L-methionine-DL-sulfoximine-induced NH4+ release by ca 40%, while net CO2 fixation and C2H2 reduction were not lowered. This indicates that at least a part of the glyoxylate synthesized in A. cylindrica is metabolized via glycine to serine. Addition of NH4Cl or glutamate to the medium reduced the excretion of glycolate. At pH 9, under air, NH4Cl reduced the excretion by 10–30% and under high pO2 (0.03 kPa CO2 in O2) by about 80–90%. At pH 7.5, under high pO2, NH4Cl and glulamate reduced the excretion by about 40 and 80%, respectively. Also, the presence of NH4Cl stimulated the animation of glyoxylate under such conditions as shown by an increased glycine pool and a decreased glutamate pool. We suggest that nitrogen regulates the capacity of A. cylindrica to retain and recycle glycolate intracellularly and that glutamate serves as an amino donor in the conversion of glyoxylate to glycine.  相似文献   

18.
The effects of added glycine hydroxamate on the photosynthetic incorporation of 14CO2 into metabolites by isolated mesophyll cells of spinach (Spinacia oleracea L.) was investigated under conditions favorable to photorespiratory (PR) metabolism (0.04% CO2 and 20% O2) and under conditions leading to nonphotorespiratory (NPR) metabolism (0.2% CO2 and 2.7% O2). Glycine hydroxamate (GH) is a competitive inhibitor of the photorespiratory conversion of glycine to serine, CO2 and NH4+. During PR fixation, addition of the inhibitor increased glycine and decreased glutamine labeling. In contrast, labeling of glycine decreased under NPR conditions. This suggests that when the rate of glycolate synthesis is slow, the primary route of glycine synthesis is through serine rather than from glycolate. GH addition increased serine labeling under PR conditions but not under NPR conditions. This increase in serine labeling at a time when glycine to serine conversion is partially blocked by the inhibitor may be due to serine accumulation via the “reverse” flow of photorespiration from 3-P-glycerate to hydroxypyruvate when glycine levels are high. GH increased glyoxylate and decreased glycolate labeling. These observations are discussed with respect to possible glyoxylate feedback inhibition of photorespiration.  相似文献   

19.
Isolation of Intact Chloroplasts from Dunaliella tertiolecta   总被引:10,自引:7,他引:3       下载免费PDF全文
Cells of Dunaliella tertiolecta from the log phase of growth were broken by rapid extrusion at low pressure through a Yeda press and the chloroplasts were isolated by centrifugation through a Percoll gradient. Osmolarity of the growth media, the suspending media, and the Percoll gradient was kept identical to minimize change in chloroplast volume and mitochondrial entrapment. The isolated intact chloroplasts were obtained in a 30 to 50% yield based on chlorophyll and were stable to washing with buffered medium. Isolated chloroplast yield and purity was dependent on cell culture condition; a cycle of 16 hours light and 8 hours dark with continuous high CO2 was optimum. Isolated chloroplasts were about 90% intact by microscopic examination, ferricyanide-dependent O2 evolution, and the distribution of four stromal enzymes. Enzymes associated with glycolate metabolism were not in the chloroplast fraction. The isolated chloroplasts with 10 millimolar bicarbonate evolved 24 micromoles of O2 and fixed 21 micromoles of CO2 per hour per milligram of chlorophyll, which rates were about one-third of those by whole cells. The inhibition of oxygen evolution by 10 millimolar phosphate was reversed by P-glycerate. Whole chloroplasts were also isolated from cells adapted to low CO2 in air for 24 hours. On low CO2 the cells excreted more gelatinous material, which had to be removed with additional washing of the cells, before it was possible to obtain good chloroplast preparations.  相似文献   

20.
Illuminated pea (Pisum sativum) chloroplasts actively catalyzed (glutamine plus alpha-ketoglutarate)-dependent O(2) evolution (average of 12 preparations 10.6 mumole mg chlorophyll per hour). The reaction was specific for glutamine and alpha-ketoglutarate; concentrations of 0.2 mm alpha-ketoglutarate and 0.6 mm glutamine, respectively, effected half-maximum rates of O(2) evolution. The reaction was inhibited by 3-(3,4-dichlorophenyl)-1-1-dimethylurea and did not occur in the dark. After osmotic shock chloroplasts did not catalyze O(2) evolution. The reaction was inhibited by azaserine and glutamate but not by 10 mm ammonia, 2.5 mm methionine sulfoximine, or 5 mm amino-oxyacetate; addition of amino-oxyacetate together with aspartate inhibited O(2) evolution. Arsenate (3 mm) enhanced O(2) evolution. The highest molar ratio for O(2) evolved per mole of alpha-ketoglutarate supplied was 0.40; the corresponding values for glutamine in the absence and presence of 3 mm arsenate were 0.20 and 0.24, respectively. The (glutamine plus alpha-ketoglutarate)-dependent O(2) evolution is attributed to photosynthetically coupled glutamate synthase activity and the activity is sufficient to account for the assimilation of inorganic nitrogen. The low molar ratio for glutamine is discussed.Chloroplasts also catalyzed (aspartate plus alpha-ketoglutarate)-dependent O(2) evolution but this reaction was inhibited by 5 mm amino-oxyacetate and it was insensitive to azaserine and methionine sulfoximine. This reaction was attributed to transaminase and photosynthetically coupled malate dehydrogenase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号