首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endogenous endonuclease activity of chromatin in isolated rat liver nuclei in the presence of Mn2+, Mg2+ and Ca2+ + Mg2+ was studied. The existence of a Mn2+-dependent endonuclease activity not coupled with the Ca2+, Mg2+-dependent endonuclease was demonstrated, which was weaker than the former one in isolated cell nuclei but higher than in the preparation of Ca2+, Mg2+-dependent nuclease obtained by gel filtration through Toyopearl HW 60F. The Mn2+-dependent splitting of chromatin predominantly occurs at linker DNA of distal parts of chromatin loops. A split-off of purified DNA was more universal than in the presence of Ca2+, Mg2+-dependent endonuclease; the hydrolysis rate of native and denaturated DNA appeared to be the same.  相似文献   

2.
Comparison of catalytic properties of a Mn2(+)-dependent and a Ca2+, Mg2+ dependent endonucleases of rat liver cell nuclei was carried out. The Mn2(+)-dependent endonuclease has Mr 31 kDa by SDS-PAAG-electrophoresis; pH optimum 5.5; calcium-magnesium synergism less than 3 in rat liver DNA, RF M13 DNA and phage M13 DNA. The rate of hydrolysis of single strand and double strand circular DNA was the same. The Mn2(+)-dependent endonuclease split DNA by double hit manner, and didn't change the manner in the presence of different divalent cations. Ca2+, Mg2(+)-dependent endonuclease has pH optimum 6.5; calcium-magnesium synergism up to 40 in rat liver DNA and 175 in RF M13 DNA. The rate of hydrolysis of single strand DNA was higher than double-strand DNA.  相似文献   

3.
The functional confirmation of availability of Ca2+ transport initially-active systems in the embryo cells of loach Misgurnus fossilis L. has been obtained. Using thapsigargin, the specific inhibitor of endoplasmic reticulum of Ca2+, Mg(2+)-ATPase, this enzyme activity was divided into thapsigargin-sensitive (actually endoplasmic reticulum Ca2+, Mg(2+)-ATPase) and thapsigargin-insensitive (plasma membrane Ca2+, Mg(2+)-ATPase) constituents. The Ca(2+)-independent Mg(2+)-dependent ATPase activity makes above 39.7% of the common Ca2+, Mg(2+)-ATPase activity of embryo loach. The periodic changes of Ca2+, Mg(2+)-ATPase activity (except for the changes of plasma membrane Ca2+, Mg(2+)-ATPase activity) were found out, which coincide with periodic [Ca2+]i oscillations during the synchronous divisions of loach blastomers embryos.  相似文献   

4.
In order to determine the ratio of activities of major endonucleases of rat liver chromatin, a stepwise fractionation of cell nuclear extracts by chromatography on phosphocellulose and gel filtration through Toyopearl HW60 was carried out. This procedure resulted in partially purified preparations of Ca2+,Mg2+-dependent endonuclease (55 +/- 10 kD), Ca2+,Mg2+-dependent endonuclease (30 +/- 10 kD), Mn2+-dependent endonuclease (30 +/- 5 kD) and acid cation-independent endonuclease. The Ca2+,Mg2+-dependent endonuclease with Mr of 55 +/- 10 kD made up to 57% of the nuclear extract activity in the presence of Ca2+ + Mg2+ and revealed a high calcium-magnesium synergism. Under the same experimental conditions, the 30 +/- 10 kD enzyme made up to 33% of the nuclear extract activity and revealed a low synergism. The activity of Mn2+-dependent endonuclease made up to 26% of the total nuclear extract activity in the presence of Mn2+, that of acid endonuclease--11% of the extract activity in 1 mM EDTA at pH 5.0. It was assumed that the low molecular weight Ca2+,Mg2+-dependent endonuclease represents a product of limited proteolysis of high molecular weight Ca2+,Mg2+-dependent endonuclease.  相似文献   

5.
Subacute intoxication was induced by the oral administration of sodium nitrate 200 mg/kg during 150 days to Wistar rats. After the time had been up severe damaging were found in liver, kidney, heart and thymic tissues. In the liver cells the DNA fragmentation in "scale" manner was found, but not in kidney and heart cells. Simultaneously, the Ca2+, Mg(2+)-depended endonucleases activity were increased in the liver nuclei extracts under intoxication. It was suggested that increasing of apoptosis in liver is the universal reaction to toxins.  相似文献   

6.
It is shown, that for correct definition of "basal" Ca(2+)-independent Mg(2+)-dependent ATPase ac-activity (10-13 mmol Pi/hour on 1 mg of protein) in a fraction of uterus smooth muscle cell plasma membranes is necessary to use in medium without calcium of an incubation not only EGTA and digitonin--of the factor of infringement in activity by this subcellular structure, but inhibitors of others Mg(2+)-dependent ATP-hydrolyse enzymatic systems localized as in plasma membrane (Na+, K(+)-ATPase) and in others subcellular frames, first of all, in mitochondria (Mg(2+)-ATPase) and endoplasmic reticulum (transport Ca2+, Mg(2+)-ATPase). In the case of a sacolemal fraction of a smooth muscle the contribution of others Mg(2+)-dependent ATP-hydrolyse systems in a common enzymatic hydrolysis ATP, which unconnected to functioning "basal" Ca(2+)-independent Mg(2+)-dependent ATPase, is very appreciable and achieves 35%. The researches, carried out in the frameworks of definition of initial velocity of enzymatic reaction, have enabled to define its some properties--cationic and anionic specificity, and also sensitivity to action of some inhibitors. It has appeared, that the "basal" Ca(2+)-independent Mg(2+)-dependent ATP-hydrolyse reaction is nonspecific rather both in relation to cations of divalent metals Me2+, and cations of monovalent metals and anions, which were utilized for support of ionic strength. The cations La--antagonist of cations Ca--practically did not influence enzymatic activity. The non-specific inhibitors transport of ATPases--p-chloromercuribenzoate, o-vanadate and eosine Y with a various degree of efficiency inhibited "basal" Ca(2+)-independent Mg(2+)-dependent ATP-hydrolyse reaction. On the basis of the analysis of the own and literary data the conclusion is made that "basal" Ca(2+)-independent Mg(2+)-dependent ATPase of a smooth muscle cell plasma membrane is considerably less sensitive to action of nonspecific inhibitors of the Ca(2+)-transporting systems, than these systems.  相似文献   

7.
A (Ca2+, Mg2+)-ATPase activity and a (Ca2+, Mg2+)-dependent phosphorylation from ATP have been found in plasma membrane fragments from squid optical nerves under conditions where contamination by intracellular organelles is unlikely. The properties of this (Ca2+, Mg2+)-ATPase activity are almost identical to those of the ATP-dependent uncoupled Ca2+ efflux observed in dialyzed squid giant axons. This gives further support to the notion that the mechanism responsible for maintaining the low levels of ionized Ca concentration in nerves at rest is not a Na+-Ca2+ exchange system but an ATP-driven uncoupled Ca2+ pump.  相似文献   

8.
Removal of extracellular Ca(2+) concentration ([Ca(2+)](o)) and pretreatment of canine basilar arterial rings with either an antagonist of voltage-gated Ca(2+) channels (verapamil), a selective antagonist of the sarcoplasmic reticulum Ca(2+) pump [thapsigargin (TSG)], caffeine plus a specific antagonist of ryanodine-sensitive Ca(2+) release (ryanodine), or a D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)]- mediated Ca(2+) release antagonist (heparin) markedly attenuates low extracellular Mg(2+) concentration ([Mg(2+)](o))-induced contractions. Low [Mg(2+)](o)-induced contractions are significantly inhibited by pretreatment of the vessels with G?-6976 [a protein kinase C-alpha (PKC-alpha)- and PKC-betaI-selective antagonist], bisindolylmaleimide I (Bis, a specific antagonist of PKC), and wortmannin or LY-294002 [selective antagonists of phosphatidylinositol-3 kinases (PI3Ks)]. These antagonists were also found to relax arterial contractions induced by low [Mg(2+)](o) in a concentration-dependent manner. The absence of [Ca(2+)](o) and preincubation of the cells with verapamil, TSG, heparin, or caffeine plus ryanodine markedly attenuates the transient and sustained elevations in the intracellular Ca(2+) concentration ([Ca(2+)](i)) induced by low-[Mg(2+)](o) medium. Low [Mg(2+)](o)-produced increases in [Ca(2+)](i) are also suppressed markedly in the presence of G?-6976, Bis, wortmannin, or LY-294002. The present study suggests that both Ca(2+) influx through voltage-gated Ca(2+) channels and Ca(2+) release from intracellular stores [both Ins(1,4,5)P(3) sensitive and ryanodine sensitive] play important roles in low-[Mg(2+)](o) medium-induced contractions of isolated canine basilar arteries. Such contractions are clearly associated with activation of PKC isoforms and PI3Ks.  相似文献   

9.
The effect of Mg2+ on hepatic microsomal Ca2+ and Sr2+ transport   总被引:2,自引:0,他引:2  
The ATP-dependent uptake of Ca2+ by rat liver microsomal fraction is dependent upon Mg2+. Studies of the Mg2+ requirement of the underlying microsomal Ca2+-ATPase have been hampered by the presence of a large basal Mg2+-ATPase activity. We have examined the effect of various Mg2+ concentrations on Mg2+-ATPase activity, Ca2+ uptake, Ca2+-ATPase activity and microsomal phosphoprotein formation. Both Mg2+-ATPase activity and Ca2+ uptake were markedly stimulated by increasing Mg2+ concentration. However, the Ca2+-ATPase activity, measured concomitantly with Ca2+ uptake, was apparently unaffected by changes in the Mg2+ concentration. In order to examine the apparent paradox of Mg2+ stimulation of Ca2+ uptake but not of Ca2+-ATPase activity, we examined the formation of the Ca2+-ATPase phosphoenzyme intermediate and formation of a Mg2+-dependent phosphoprotein, which we have proposed to be an attribute of the Mg2+-ATPase activity. We found that Ca2+ apparently inhibited formation of the Mg2+-dependent phosphoprotein both in the absence and presence of exogenous Mg2+. This suggests that Ca2+ may inhibit (at least partially) the Mg2+-ATPase activity. However, inclusion of the Ca2+ inhibition of Mg2+-ATPase activity in the calculation of Ca2+-ATPase activity reveals that this effect is insufficient to totally account for the stimulation of Ca2+ uptake by Mg2+. This suggests that Mg2+, in addition to stimulation of Ca2+-ATPase activity, may have a direct stimulatory effect on Ca2+ uptake in an as yet undefined fashion. In an effort to further examine the effect of Mg2+ on the microsomal Ca2+ transport system of rat liver, the interaction of this system with Sr2+ was examined. Sr2+ was sequestered into an A23187-releasable space in an ATP-dependent manner by rat liver microsomal fraction. The uptake of Sr2+ was similar to that of Ca2+ in terms of both rate and extent. A Sr2+-dependent ATPase activity was associated with the Sr2+ uptake. Sr2+ promoted formation of a phosphoprotein which was hydroxylamine-labile and base-labile. This phosphoprotein was indistinguishable from the Ca2+-dependent ATPase phosphoenzyme intermediate. Sr2+ uptake was markedly stimulated by exogenous Mg2+, but the Sr2+-dependent ATPase activity was unaffected by increasing Mg2+ concentrations. Sr2+ uptake and Sr2+-dependent ATPase activity were concomitantly inhibited by sodium vanadate. In contrast to Ca2+, Sr2+ had no effect on Mg2+-dependent phosphoprotein formation. Taken together, these data indicate that Mg2+ stimulated Ca2+ and Sr2+ transport by increasing the Ca2+ (Sr2+)/ATP ratio.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Isolation of Ca2+, Mg2+-dependent nuclease from calf thymus chromatin   总被引:1,自引:0,他引:1  
Ca2+,Mg2+-dependent nuclease was isolated from calf thymus chromatin by stepwise chromatography on DEAE-Sepharose, CM-Sephadex and DNA-Sepharose. The enzyme was purified more than 700-fold. SDS-PAGE electrophoresis revealed one protein band possessing an enzymatic activity. The molecular mass of the nuclease as determined by gel filtration is 25700 Da, that determined by 12% SDS polyacrylamide gel electrophoresis is 28,000 Da. In the presence of various ions the enzyme activity decreases in the following order: (Ca2+ + Mn2+) greater than (Ca2+ + Mg2+) greater than Mn2+; the pH optimum is at 8.0. In media with Mg2+, Ca2+, Co2+ and Zn2+ the nuclease is inactive. Some other properties of the enzyme are described.  相似文献   

11.
We examined the fragmentation of DNA treated with N-methyl-N-nitrosourea under conditions in which Ca2+, Mg2+-dependent endonuclease is active. The molecular mass of DNA found in mouse liver slices treated with methylnitrosurea in the presence of Ca2+ plus Mg2+ was 4 X 10(5) Da. Similar results were obtained with a reconstituted system containing partially purified Ca2+, Mg2+-dependent endonuclease and methylnitrosurea-treated DNA. The enzyme extensively cleaved methylnitrosurea-treated DNA, compared with non-treated DNA. The methylnitrosurea-treated nuclear proteins obtained from mouse liver nuclei had no effect on the DNA fragmentation by the enzyme. Using closed-circular DNA treated with methylnitrosurea, the enzyme produced single-strand cuts in the DNA, as was seen in non-treated, closed-circular DNA, however, the rate of hydrolysis was increased. Ca2+, Mg2+-dependent endonuclease thus warrants further investigation, with regard to the precise mechanism of extensive degradation of DNA in cells treated with carcinogenic alkylating agents.  相似文献   

12.
Subfractionation of sarcoplasmic reticulum from fast-twitch and slow-twitch rabbit skeletal muscles was performed on a sucrose density gradient. Vesicle fractions were characterized by: measurement of (Ca2+,Mg2+)-dependent (extra) ATPase, Mg2+-dependent (basal) ATPase, Ca2+ uptake characteristics, polypeptide patterns in sodium dodecylsulphate polyacrylamide gel electrophoreses, phosphoprotein formation and electronmicroscopy of negatively stained samples. In fast-twitch muscle, low and high density vesicles were separated. The latter showed high activity of (Ca2+,Mg2+)-dependent ATPase, negligible activity of Mg2+-dependent ATPase, high initial rate and high capacity of Ca2+ uptake, high amount of phosphorylated 115000-Mr polypeptide, and appeared morphologically as thin-walled vesicles covered with particles of 4 nm in diameter. Low density vesicles had little (Ca2+,Mg2+)-dependent ATPase but high Mg2+-dependent ATPase. Although the initial rate of Ca2+ uptake was markedly lower, the total capacity of uptake was comparable with that of high density vesicles. Phosphorylated 115000-Mr polypeptide was detectable at low concentrations. Instead, 57000 and 47000-Mr polypeptides were characterized as forming stable phosphoproteins in the presence of ATP and Mg2+. Negatively stained, these vesicles appeared to have smooth surfaces. It is suggested that low density vesicles represent a Ca2+ sequestering system different from that of high density vesicles and that Mg2+-dependent (basal) ATPase as well as the 57000 and 47000-Mr polypeptides are part of the Ca2+ transport system within the low density vesicles. According to the results from slow-twitch muscle, Ca2+ sequestration by the sarcoplasmic reticulum functions in this muscle type only through the low density vesicles.  相似文献   

13.
An endogenous Ca2+, Mg2+-dependent factor of enzymic nature (apparently an endonuclease) digests a part of chromatin in the rat liver nuclei producing DNA fragments of an uniform size. After 60 min of incubation at 15 degrees C and pH 7.50 in the presence of 5 mM MgCl2 and 2 mM CaCl2 87-93% of the total chromatin becomes soluble. The insoluble chromatin however contains 70-85% of the in vivo newly synthesized RNA. In regenerating liver the proportion of the insoluble residual chromatin increases while the radioactivity of the newly synthesized DNA in this fraction is highest. Residual chromatin can be solubilized by ultrasonic treatment only. The Ca2+, Mg2+-dependent dissolving factor is not present either in brain or in PMN leucocyte nuclei.  相似文献   

14.
The presence of Ca2+, Mg2+-dependent endonuclease activity in isolated brain cell nuclei was demonstrated and a comparison of some peculiarities of chromatin autolysis in rat brain and liver cell nuclei was carried out. Endogenous brain nuclease hydrolyzes chromatin into its structural subunits; its specific activity is 10,5 times as low as compared to the endogenous nuclease activity in rat liver nuclei. The dependency of the chromatin autolysis rate on pH and ionic composition of the incubation medium in isolated rate brain and liver nuclei appeared to be the same. The presence of Mn2+ changed the autolysis nature both in brain and in liver cell nuclei, the relative (as compared to Mg2+-dependent) Mn2+-dependent activity being higher in the brain cell nuclei. Possible differences of brain and liver chromatin structure (e. g. the presence of regions free of nucleosomic organization in brain chromatin) are assumed.  相似文献   

15.
Electrophorus electroplax microsomes were examined for Ca2+- and Mg2+-dependent ATPase activity. In addition to the previously reported low-affinity ATPase, a high-affinity (Ca2+,Mg2+)-ATPase was found. At low ATP and Mg2+ concentrations (200 microM or less), the high-affinity (Ca2+,Mg2+)-ATPase exhibits an activity of 18 nmol Pi mg-1 min-1 with 0.58 microM Ca2+. At higher ATP concentrations (3 mM), the low-affinity Ca2+-ATPase predominates, with an activity of 28 nmol Pi mg-1 min-1 with 1 mM Ca2+. In addition, Mg2+ can also activate the low-affinity ATPase (18 nmol Pi mg-1 min-1). The high-affinity ATPase hydrolyzes ATP at a greater rate than it does GTP, ITP, or UTP and is insensitive to ouabain, oligomycin, or dicyclohexylcarbodiimide inhibition. The high-affinity enzyme is inhibited by vanadate, trifluoperazine, and N-ethylmaleimide. Added calmodulin does not significantly stimulate enzyme activity; rinsing the microsomes with EGTA does not confer calmodulin sensitivity. Thus the high-affinity ATPase from electroplax microsomes is similar to the (Ca2+,Mg2+)-ATPase reported to be associated with Ca2+ transport, based on its affinity for calcium and its response to inhibitors. The low-affinity enzyme hydrolyzes all tested nucleoside triphosphates, as well as diphosphates, but not AMP. Vanadate and N-ethylmaleimide do not inhibit the low-affinity enzymes. The low-affinity enzyme reflects a nonspecific nucleoside triphosphatase, probably an ectoenzyme.  相似文献   

16.
The sea urchin embryo nuclei which retained their ability to maintain the DNA synthesis in an in vitro system were isolated. The DNA synthesis isolated nuclei was shown to be an ATP-dependent process which is inhibited by low concentrations of actinomycin D, a polymerase alpha araCTP inhibitor. The newly synthesized DNA is represented by short fragments of about 4S. After addition of Ca2+, Mg2+-dependent DNAase to sea urchin embryo nuclei, the synthesis of short DNA fragments is enhanced. This stimulating effect of Ca2+, Mg2+-dependent DNAase is ATP-dependent and is observed only within a narrow range of enzyme concentrations (of the order of 1-5 units of DNAase activity per ml of incubation sample). The increase in the enzyme concentration to 10 or more units of activity results in the depression of DNA synthesis. It is concluded that DNA replication in sea urchin embryo nuclei depends on the presence of active DNAases as well as on the number of accessible initiation sites of DNA replication.  相似文献   

17.
Fluoroaluminate, known modulator of G-proteins, inhibits ATP-hydrolase activity of purified solubilized Ca2+, Mg(2+)-ATPase from myometrium cell plasma membranes and Ca(2+)-transporting activity of this enzyme reconstituted into azolectin liposomes: 10 mM NaF plus 10 microM AlCl3 inhibited the primary activity by 95% and--by 81%. Inhibition of purified both solubilized and reconstituted Ca2+, Mg(2+)-ATPases by fluoroaluminate evidences for the possibility of direct interaction AlF4- with this enzyme without involvement of G-protein. The sensitivity to fluoroaluminate of sarcolemmal Ca2+, Mg(2+)-ATPase from myometrium is similar to that of Ca2+, Mg(2+)-ATPase from stomach smooth muscle.  相似文献   

18.
The mathematical model of smooth muscles contractile activity Ca(2+)-dependent control has been proposed on the base of Ca ions trans-sarcomal exchange biochemical mechanisms interpretation in myocytes. While analysing the model the conclusion should be made that kinetic parameters changes (in relation to Ca ions) Mg2+, ATP-dependent calcium pump of plasma membrane--Michaelis constant Km and transport process maximal velocity Vmax-render the effect on the character of the intracellular calcium transients and profile of full mechanokinetic curve. As well one more conclusion has been made that plasma membrane Mg2+, ATP-dependent calcium pump, which kinetic parameters under the physiologic conditions are subjected to modulation as the result of metabolic, pharmacologic and physico-chemical factors fulfills the essential role in supplying Ca(2+)-dependent control of the smooth muscles contractile response full cycle.  相似文献   

19.
The action of sodium nitroprusside, nitrite-anions and hydrogen peroxide on Ca2+, Mg(2+)-ATPase and Mg(2+)-ATPase (Ca(2+)-independent) enzymatic activity in myometrium sarcolemma fraction is investigated. It is established, that 0.1 mM sodium nitroprusside and 10(-8)-10(-5) M nitrite-anions essentially reduce Ca2+, Mg(2+)-ATPase activity whereas Mg(2+)-ATPase proved to be absolutely resistant to them. At rather high concentration of nitrite-anions (0.1 mM) appreciable stimulation of Ca2+, Mg(2+)-ATPase was observed. Hydrogen peroxide (10(-8)-10(-4)), depending on the concentration suppressed both enzymes activity. However, Ca2+, Mg(2+)-ATPase proved to be more sensitive to the action of H2O2 (seeming K(i) = 0.42 +/- 0.1 microM), than Mg(2+)-ATPase (seeming K(i) = 3.1 +/- 0.9 microM). At presence of 1 mM ditiothreitole (a reducer of SH groups of the membrane surface) action of investigated substances considerably decreased. Reagents on carboxic- (dicyclogexilcarbodiimid) and amino- groups of the membrane (trinitrobenzolsulfonic acid) inhibited both Ca2+, Mg(2+)-ATPase, and Mg(2+)-ATPase activity in membrane fractions. In the presence of noted reagents sodium nitroprusside and nitrite-anions action was not almost shown. Hence, nitrogen oxide, nitrite-anions and hydrogen peroxide suppress Ca2+, Mg(2+)-ATPase and Mg(2+)-ATPase (only hydrogen peroxide) activity in the plasmatic membrane of myometrium cells, and this action can be connected with direct updating of superficial chemical groups of the membrane.  相似文献   

20.
Purified myometrium cells plasma membrane Ca2+, Mg(2+)-ATPase was reconstitute in liposomes in functionally active state by the method of cholate dialysis: it showed ATP-hydrolase activity increased by 0.8 microM A23187 average 4 times and it showed Mg2+, ATP-dependent Ca(2+)-transporting activity. Reconstituted system transported Ca2+ at an initial rate of 114.4 +/- 16.3 nmol.min-1.mg-1 with the stoichiometry Ca2+: ATP = 1: (3.2-3.7). Calmodulin increased by 30% the initial rate of Ca(2+)-accumulation by the proteoliposomes with reconstituted Ca2+, Mg(2+)-ATPase; 0.1 mM orthovanadate decreased by 80% Ca(2+)-accumulation by this system. Ca2+, Mg(2+)-ATPase reconstituted in liposomes is just Ca(2+)-transporting ATPase of the plasma membrane. Obtained enzyme preparate can be utilised for study of the properties of this important energy-dependent Ca(2+)-transporting system of smooth muscle cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号