首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
We investigated the roles of lipoprotein lipase and apolipoprotein E (apoE) secreted from human monocyte-derived macrophages in the uptake of very low density lipoproteins (VLDL). ApoCII-deficient VLDL were isolated from a patient with apoCII deficiency. The lipolytic conversion to higher density and the degradation of the apoCII-deficient VLDL by macrophages were very slight, whereas the addition of apoCII enhanced both their conversion and degradation. This suggests that the lipolysis and subsequent conversion of VLDL to lipoproteins of higher density are essential for the VLDL uptake by macrophages. VLDL incubated with macrophages obtained from subjects with E3/3 phenotype (E3/3-macrophages) showed a 17-fold greater affinity in inhibiting the binding of 2 micrograms/ml 125I-low density lipoprotein (LDL) to fibroblasts than native VLDL, whereas the incubation of VLDL with macrophages obtained from a subject with E2/2 phenotype (E2/2-macrophages) did not cause any increase in their affinity. Furthermore, 3 micrograms/ml 125I-VLDL obtained from a subject with E3/3 phenotype were degraded by E3/3-macrophages to a greater extent than by E2/2-macrophages (2-fold), indicating that VLDL uptake is influenced by the phenotype of apoE secreted by macrophages. From these results, we conclude that both lipolysis by lipoprotein lipase and incorporation of apoE secreted from macrophages alter the affinity of VLDL for the LDL receptors on the cells, resulting in facilitation of their receptor-mediated endocytosis.  相似文献   

2.
The precursor-product relationship of very low density (VLDL) and low density lipoproteins (LDL) was studied. VLDL obtained from normal (NTG) and hypertriglyceridemic (HTG) subjects was fractionated by zonal ultracentrifugation and subjected to in vitro lipolysis. The individual subfractions and their isolated lipolysis products, as well as IDL and LDL, were rigorously characterized. A striking difference in the contribution of cholesteryl ester to VLDL is noted. In NTG subfractions, the cholesteryl ester to protein ratio increases with decreasing density (VLDL-I----VLDL-III). This is the expected result of triglyceride loss through lipolysis and cholesteryl ester gain through core-lipid transfer protein action. In HTG subfractions there is an abnormal enrichment of cholesteryl esters that is most marked in VLDL-I and nearly absent in VLDL-III. Thus, the trend of the cholesteryl ester to protein ratios is reversed, being highest in HTG-VLDL-I and lowest in VLDL-III. This is incompatible with the precursor-product relationship described by the VLDL----IDL----LDL cascade. In vitro lipolysis studies support the conclusion that not all HTG-VLDL can be metabolized to LDL. While all NTG subfractions yield products that are LDL-like in size, density, and composition, only HTG-VLDL-III, whose composition is most similar to normal, does so. HTG VLDL-I and VLDL-II products are large and light populations that are highly enriched in cholesteryl ester. We suggest that this abnormal enrichment of HTG-VLDL with cholesteryl ester results from the prolonged action of core-lipid transfer protein on the slowly metabolized VLDL mass. This excess cholesteryl ester load, unaffected by the process of VLDL catabolism, remains entrapped within the abnormal particle. Therefore, lipolysis yields an abnormal, cholesteryl ester-rich product that can never become LDL.  相似文献   

3.
Secretion of triglycerides by the liver in ruminants as components of very low density lipoproteins particles is low as compared with that in primates or rodents. The rate-limiting steps for the hepatic export of very low density lipoproteins have been studied in liver slices to determine the origin of the low lipotropic capacity of calf liver compared to that of rat liver. The rates of production of apolipoprotein B (apo B) and albumin as well as the rate of secretion of VLDL-apolipoproteins were measured during 12-h incubation of liver slices in organo-culture using [35S]methionine-cysteine labeling. Hepatic apo B production was similar in the two animal species but the VLDL-apolipoprotein secretion rate for calf liver slices amounted to only 20% of that observed for rat liver slices. Although calf and rat liver slices synthesized similar amounts of total protein, the hepatic production of albumin, measured in cells and media, was much higher in calf than rat liver slices (around 2.7-fold), whereas the rate secretion of albumin was similar in the two species. Our results showed that the slow rate of secretion of VLDL by calf liver cells was not consecutive to a low rate of synthesis of apo B but rather to a defect in VLDL assembly and/or secretion.  相似文献   

4.
Lipoprotein lipase (LIPL or LPL; E.C.3.1.1.34) serves a dual function as a triglyceride lipase of circulating chylomicrons and very-low-density lipoproteins (VLDL) and facilitates receptor-mediated lipoprotein uptake into heart, muscle and adipose tissue. Comparative LPL amino acid sequences and protein structures and LPL gene locations were examined using data from several vertebrate genome projects. Mammalian LPL genes usually contained 9 coding exons on the positive strand. Vertebrate LPL sequences shared 58-99% identity as compared with 33-49% sequence identities with other vascular triglyceride lipases, hepatic lipase (HL) and endothelial lipase (EL). Two human LPL N-glycosylation sites were conserved among seven predicted sites for the vertebrate LPL sequences examined. Sequence alignments, key amino acid residues and conserved predicted secondary and tertiary structures were also studied. A CpG island was identified within the 5'-untranslated region of the human LPL gene which may contribute to the higher than average (×4.5 times) level of expression reported. Phylogenetic analyses examined the relationships and potential evolutionary origins of vertebrate lipase genes, LPL, LIPG (encoding EL) and LIPC (encoding HL) which suggested that these have been derived from gene duplication events of an ancestral neutral lipase gene, prior to the appearance of fish during vertebrate evolution. Comparative divergence rates for these vertebrate sequences indicated that LPL is evolving more slowly (2-3 times) than for LIPC and LIPG genes and proteins.  相似文献   

5.
HTG-VLDL1, like LDL, bind with high affinity to electrophoretically transferred, isolated LDL receptors partially purified from bovine adrenal glands. Ligand blotting techniques show that binding is calcium dependent; little or no binding of LDL or HTG-VLDL1 is observed in the presence of 10 mM EDTA. HTG-VLDL1 does not bind in the presence of 7 mM suramin, an inhibitor of LDL binding to the LDL receptor. Pretreatment of LDL with either thrombin or trypsin does not affect apoB-mediated LDL binding to the LDL receptor. ApoE-mediated binding of HTG-VLDL1 to the blotted LDL receptor is abolished or greatly decreased by thrombin treatment of HTG-VLDL1; trypsin treatment of HTG-VLDL1 abolishes binding. Reincorporation of apoE into trypsinized HTG-VLDL1 restores binding. These studies demonstrate unequivocally that HTG-VLDL1 bind to the LDL receptor, that the binding of HTG-VLDL1 to the isolated LDL receptor is mediated through the thrombin-accessible apoE, and that HTG-VLDL1 which bind via potentially dissociable apoE rather than non-transferable apoB can be used for ligand blotting.  相似文献   

6.
CTP:phosphocholine cytidylyltransferase (CT) is the key regulatory enzyme in the CDP-choline pathway for the biosynthesis of phosphatidylcholine (PC). We previously generated a mouse in which the hepatic CTalpha gene was specifically inactivated by the cre/loxP procedure. In CTalpha knock-out mice, plasma high density lipoprotein (HDL) and very low density lipoprotein (VLDL) levels were markedly lower than in wild type mice (Jacobs, R. L., Devlin, C., Tabas, I., and Vance, D. E. (2004) J. Biol. Chem. 279, 47402-47410.) To investigate the mechanism(s) responsible for the decrease in plasma lipoprotein levels, we isolated primary hepatocytes from knock-out and wild type mice. ABCA1 expression was reduced in knock-out hepatocytes and apoAI-dependent cholesterol, and PC efflux was impaired. When knock-out hepatocytes were infected with an adenovirus expressing CTalpha, apoAI-dependent PC efflux returned partially, whereas cholesterol efflux and ABCA1 levels were not restored to normal levels. Adenoviral expression of CTalpha did not increase VLDL secretion in knock-out hepatocytes, even though cellular PC levels returned to normal. However, in vivo adenoviral delivery of CTalpha normalized plasma HDL and VLDL levels in knock-out mice. The observations demonstrate that hepatic PC biosynthesis is a key player in maintaining plasma VLDL and HDL, and further underscores the importance of the liver in HDL formation.  相似文献   

7.
These studies have been carried out in rabbits with alloxan-induced diabetes in order to see if insulin deficiency affects low density lipoprotein (LDL) catabolism. The results showed that plasma LDL-cholesterol was lower in diabetic rabbits, associated with a fall in the cholesterol to protein ratio of LDL particles. In addition, 125I-LDL disappeared more slowly from plasma of diabetic rabbits, leading to a significant reduction in fractional catabolic rate and a decrease in residence time of 125I-LDL. These data demonstrated that LDL composition and catabolism are greatly altered as a consequence of insulin deficiency.  相似文献   

8.
9.
The LDL receptor (LDLR) and scavenger receptor class B type I (SR-BI) play physiological roles in LDL and HDL metabolism in vivo. In this study, we explored HDL metabolism in LDLR-deficient mice in comparison with WT littermates. Murine HDL was radiolabeled in the protein (125I) and in the cholesteryl ester (CE) moiety ([3H]). The metabolism of 125I-/[3H]HDL was investigated in plasma and in tissues of mice and in murine hepatocytes. In WT mice, liver and adrenals selectively take up HDL-associated CE ([3H]). In contrast, in LDLR−/− mice, selective HDL CE uptake is significantly reduced in liver and adrenals. In hepatocytes isolated from LDLR−/− mice, selective HDL CE uptake is substantially diminished compared with WT liver cells. Hepatic and adrenal protein expression of lipoprotein receptors SR-BI, cluster of differentiation 36 (CD36), and LDL receptor-related protein 1 (LRP1) was analyzed by immunoblots. The respective protein levels were identical both in hepatic and adrenal membranes prepared from WT or from LDLR−/− mice. In summary, an LDLR deficiency substantially decreases selective HDL CE uptake by liver and adrenals. This decrease is independent from regulation of receptor proteins like SR-BI, CD36, and LRP1. Thus, LDLR expression has a substantial impact on both HDL and LDL metabolism in mice.  相似文献   

10.
The relationship between the cholesteryl ester content of normal human very low density lipoprotein (VLDL) and its ability to bind to apolipoprotein E (apoE), heparin, and the low density lipoprotein (LDL) receptor have been compared. Plasma VLDL were separated by heparin affinity chromatography into two fractions: one with apoE and one without. Both fractions had the same cholesteryl ester content relative to apolipoprotein B (apoB). LDL, on the other hand, had a greater cholesteryl ester content. VLDL were modified by lipolysis to express the ability to bind apoE (Ishikawa, Y., Fielding, C. J., and Fielding, P. E. (1988) J. Biol. Chem. 263, 2744-2749). Lipolyzed VLDL with or without apoE were compared for their ability to bind to heparin or the up-regulated fibroblast LDL receptor. Lipolyzed VLDL bound with the same affinity to the receptor whether or not the particles contained apoE. ApoB, not apoE, appears then to be the important ligand for normal VLDL. On the other hand, modified VLDL without apoE, even though binding to the LDL receptor, did not bind to heparin. These data suggest that apoE mediates heparin binding in normal VLDL, that apoB mediates receptor binding, and that the cholesteryl ester content of VLDL is not a factor in the induction of the ability to bind apoE.  相似文献   

11.
Crude lipoprotein lipase, extracted from rat adipose tissue or heart acetone-ether powders, was purified about 300 and 350 fold respectively by affinity chromatography. Artifactual increments in the density of very low density lipoprotein, noted after incubation with the crude lipoprotein lipase extract from adipose tissue, were abolished when the purified enzyme was used. Purified enzymes from both tissues showed similar modifications of activity in the presence of activators and inhibitors. The triglyceride moieties of various natural substrates were preferentially hydrolysed in the order Very low density lipoprotein > Serum chylomicrons > Thoracic duct chylomicrons by both enzymes.  相似文献   

12.
The lipid substrate specificity of Manduca sexta lipid transfer particle (LTP) was examined in in vitro lipid transfer assays employing high density lipophorin and human low density lipoprotein (LDL) as donor/acceptor substrates. Unesterified cholesterol was found to exchange spontaneously between these substrate lipoproteins, and the extent of transfer/exchange was not affected by LTP. By contrast, transfer of labeled phosphatidylcholine and cholesteryl ester was dependent on LTP in a concentration-dependent manner. Facilitated phosphatidylcholine transfer occurred at a faster rate than facilitated cholesteryl ester transfer; this observation suggests that either LTP may have an inherent preference for polar lipids or the accessibility of specific lipids in the donor substrate particle influences their rate of transfer. The capacity of LDL to accept exogenous lipid from lipophorin was investigated by increasing the high density lipophorin:LDL ratio in transfer assays. At a 3:1 (protein) ratio in the presence of LTP, LDL became turbid (and aggregated LDL were observed by electron microscopy) indicating LDL has a finite capacity to accept exogenous lipid while maintaining an overall stable structure. When either isolated human non B very low density lipoprotein (VLDL) apoproteins or insect apolipophorin III (apoLp-III) were included in transfer experiments, the sample did not become turbid although lipid transfer proceeded to the same extent as in the absence of added apolipoprotein. The reduction in sample turbidity caused by exogenous apolipoprotein occurred in a concentration-dependent manner, suggesting that these proteins associate with the surface of LDL and stabilize the increment of lipid/water interface created by LTP-mediated net lipid transfer. The association of apolipoprotein with the surface of modified LDL was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, and scanning densitometry revealed that apoLp-III bound to the surface of LDL in a 1:14 apoB:apoLp-III molar ratio. Electron microscopy showed that apoLp-III-stabilized modified LDL particles have a larger diameter (29.2 +/- 2.6 nm) than that of control LDL (22.7 +/- 1.9 nm), consistent with the observed changes in particle density, lipid, and apolipoprotein content. Thus LTP-catalyzed vectorial lipid transfer can be used to introduce significant modifications into isolated LDL particles and provides a novel mechanism whereby VLDL-LDL interrelationships can be studied.  相似文献   

13.
Egg yolk very low density lipoprotein contained on the average 75% of lipid which could be extracted by ether and 25% of a residual lipoprotein, the classical lipovitellenin. The ether-extracted lipid was composed of 75% triglycerides, 7% sterols, 2% mono- and diglycerides, and 16% phospholipids. Lipovitellenin contained 48% lipid composed of 87% phospholipids, 11% triglycerides, and 2% sterols. The protein vitellenin was composed for the most part of units of 74,000 and 270,000 daltons molecular weight.Egg yolk very low density lipoprotein is polydisperse. Preparative ultracentrifugation separated it into six fractions of different average molecular size, and gel chromatography separated it into five. The fractions of larger molecular size contained more lipid and triglyceride than did the fractions of smaller molecular size. The proteins of the fractions appeared to be similar.Egg yolk very low density lipoproteins appear to be a series of molecules composed of cores of lipid of varying sizes with each core surrounded by a layer of lipovitellenin, which is composed principally of glycoprotein and phospholipid.  相似文献   

14.
In vitro lipolysis of very low density lipoprotein (VLDL) from normolipidemic and familial dysbetalipoproteinemic plasma by purified bovine milk lipoprotein lipase was studied using the combined single vertical spin and vertical autoprofile method of lipoprotein analysis. Lipolysis of normolipidemic plasma supplemented with autologous VLDL resulted in the progressive transformation of VLDL to low density lipoprotein (LDL) via intermediate density lipoprotein (IDL) with the transfer of the excess cholesterol to high density lipoprotein (HDL). At the end of 60 min lipolysis, 92-96% of VLDL triglyceride was hydrolyzed, and, with this process, greater than 95% of the VLDL cholesterol and 125-I-labeled VLDL protein was transferred from the VLDL to the LDL and HDL density region. When VLDL from the plasma of an individual with familial dysbetalipoproteinemia was substituted for VLDL from normolipidemic plasma, less than 50% of the VLDL cholesterol and 65% of 125I-labeled protein was removed from the VLDL density region, although 84-86% of VLDL triglyceride was lipolyzed. Analysis of familial dysbetalipoproteinemic VLDL fractions from pre- and post-lipolyzed plasma showed that the VLDL remaining in the postlipolyzed plasma (lipoprotein lipase-resistant VLDL) was richer in cholesteryl ester and tetramethylurea-insoluble proteins than that from prelipolysis plasma; the major apolipoproteins in the lipoprotein lipase-resistant VLDL were apoB and apoE. During lipolysis of normolipidemic VLDL containing trace amounts of 125I-labeled familial dysbetalipoproteinemic VLDL, removal of VLDL cholesterol was nearly complete from the VLDL density region, while removal of 125I-labeled protein was only partial. A competition study for lipoprotein lipase, comparing normolipidemic and familial dysbetalipoproteinemic VLDL to an artificial substrate ([3H]triolein), revealed that normolipidemic VLDL is clearly better than familial dysbetalipoproteinemic VLDL in competing for the release of 3H-labeled free fatty acids. The results of this study suggest that, in familial dysbetalipoproteinemic individuals, a subpopulation of VLDL rich in cholesteryl ester, apoB, and apoE is resistant to in vitro conversion by lipoprotein lipase to particles having LDL-like density. The presence of this lipoprotein lipase-resistant VLDL in familial dysbetalipoproteinemic subjects likely contributes to the increased level of cholesteryl ester-rich VLDL and IDL in the plasma of these subjects.  相似文献   

15.
16.
Hepatic apolipoprotein B100 (apoB100) associates with lipids to form dense lipoprotein particles in the endoplasmic reticulum (ER) and is further lipidated to very low density lipoproteins (VLDL). Because the VLDL diameter can exceed 200 nm, classical ER-derived vesicles may be unable to accommodate VLDLs. Using hepatic membranes and cytosol to reconstitute ER budding, apoB100-containing vesicles sedimented distinct from those harboring more typical cargo but contained Sec23. Moreover, ER exit of apoB was inhibited by dominant-negative Sar1. Budding required Sar1 regardless of whether oleic acid (OA) was added to stimulate apoB lipidation; therefore, either large apoB100-lipoproteins reside in secretory vesicles, or full lipidation occurs post-ER. Using membranes from cells incubated in the presence or absence of OA, we determined that apoB100-lipoproteins in ER vesicles had not become lipidated to VLDLs. VLDL particles resided in the Golgi, but not the ER, after fractionation of OA-treated cells. We conclude that apoB100-lipoproteins exit the ER in COPII vesicles, but under conditions favorable for VLDL formation final lipid loading occurs post-ER.  相似文献   

17.
Isotopic tracer methods of determining triglyceride-rich lipoprotein (TRL) kinetics are costly, time-consuming, and labor-intensive. This study aimed to develop a simpler and cost-effective method of obtaining TRL kinetic data, based on the fact that chylomicrons compete with large VLDL (VLDL(1); S(f) = 60-400) for the same catalytic pathway. Ten healthy subjects [seven men; fasting triglyceride (TG), 44.3-407.6 mg/dl; body mass index, 21-35 kg/m(2)] were given an intravenous infusion of a chylomicron-like TG emulsion (Intralipid; 0.1 g/kg bolus followed by 0.1 g/kg/h infusion) for 75-120 min to prevent the clearance of VLDL(1) by lipoprotein lipase. Multiple blood samples were taken during and after infusion for separation of Intralipid, VLDL(1), and VLDL(2) by ultracentrifugation. VLDL(1)-apolipoprotein B (apoB) and TG production rates were calculated from their linear increases in the VLDL(1) fraction during the infusion. Intralipid-TG clearance rate was determined from its exponential decay after infusion. The production rates of VLDL(1)-apoB and VLDL(1)-TG were (mean +/- SEM) 25.4 +/- 3.9 and 1,076.7 +/- 224.7 mg/h, respectively, and the Intralipid-TG clearance rate was 66.9 +/- 11.7 pools/day. Kinetic data obtained from this method agree with values obtained from stable isotope methods and show the expected relationships with indices of body fatness and insulin resistance (all P < 0.05). The protocol is relatively quick, inexpensive, and transferable to nonspecialist laboratories.  相似文献   

18.
To determine whether reduction of insulin resistance could ameliorate fructose-induced very low density lipoprotein (VLDL) oversecretion and to explore the mechanism of this effect, fructose-fed hamsters received placebo or rosiglitazone for 3 weeks. Rosiglitazone treatment led to normalization of the blunted insulin-mediated suppression of the glucose production rate and to a approximately 2-fold increase in whole body insulin-mediated glucose disappearance rate (p < 0.001). Rosiglitazone ameliorated the defect in hepatocyte insulin-stimulated tyrosine phosphorylation of the insulin receptor, IRS-1, and IRS-2 and the reduced protein mass of IRS-1 and IRS-2 induced by fructose feeding. Protein-tyrosine phosphatase 1B levels were increased with fructose feeding and were markedly reduced by rosiglitazone. Rosiglitazone treatment led to a approximately 50% reduction of VLDL secretion rates (p < 0.05) in vivo and ex vivo. VLDL clearance assessed directly in vivo was not significantly different in the FR (fructose-fed + rosiglitazone-treated) versus F (fructose-fed + placebo-treated) hamsters, although there was a trend toward a lower clearance with rosiglitazone. Enhanced stability of nascent apolipoprotein B (apoB) in fructose-fed hepatocytes was evident, and rosiglitazone treatment resulted in a significant reduction in apoB stability. The increase in intracellular mass of microsomal triglyceride transfer protein seen with fructose feeding was reduced by treatment with rosiglitazone. In conclusion, improvement of hepatic insulin signaling with rosiglitazone, a peroxisome proliferator-activated receptor gamma agonist, is associated with reduced hepatic VLDL assembly and secretion due to reduced intracellular apoB stability.  相似文献   

19.
The formation of low density lipoprotein (LDL) from very low density lipoprotein (VLDL) was studied after injecting 14C-radiomethylated or 125I-radioiodinated VLDL into rats. VLDL and LDL B apoprotein specific radioactivity time curves were obtained after tetramethylurea extraction of the lipoproteins. In all experiments, the specific activity of LDL B apoprotein did not intercept the VLDL curve at maximal heights, suggesting that not all LDL B apoprotein is derived from VLDL B apoprotein. Further subfractionation of LDL into the Sf 12-20, 5-12, and 0-5 ranges showed that most (65%) LDL B apoprotein was present in the Sf 0-5 fraction and that only a small proportion (6-15%) of this fraction was derived from VLDL. However, the curves obtained for the Sf 12-20 and 5-12 subfractions were consistent with a precursor-product relationship in which all of these fractions were derived entirely from VLDL catabolism. These results contrasted strikingly with similar data obtained for normal humans in which all LDL is derived from VLDL. In the rat, it appears that most of the B apoprotein in the Sf 0-5 range, which contains 65% of the total LDL B apoprotein, enters the plasma independently of VLDL secretion.  相似文献   

20.
Plasma lipoprotein metabolism was studied in vivo in two lines of chickens produced by selection for high and low plasma very low density lipoprotein (VLDL) concentration. Rates of VLDL secretion were measured by determining the rate of accumulation of triglyceride in the plasma after intravenous injection of anti-lipoprotein lipase antibody. The clearance of VLDL-triglyceride and its uptake into liver and adipose tissue was examined using radioactively labeled VLDL synthesized in vivo. The rate of VLDL secretion was about threefold higher in the high-VLDL line as compared to the leaner, low VLDL-line (6.7 vs 2.1 mumol VLDL triglyceride/h per ml of plasma). The clearance of VLDL from the circulation of the low VLDL line was much faster than that of the high VLDL line (t1/2 of 3.7 and 13.6 min, respectively). The proportion of administered radiolabel taken up by the abdominal fat pad was substantially greater in the fat line than in the lean line (11.9 vs 4.8%, respectively). Lipoprotein lipase activities in leg muscle and heart were consistently greater in the low-VLDL line and beta-hydroxybutyrate concentrations in the plasma of the low-VLDL line were significantly greater than those in the high-VLDL line (0.86 vs 0.48 mumol/ml). The results show that the approximately tenfold difference in plasma VLDL concentration between lines is primarily due to markedly different rates of hepatic VLDL production and that selection has made a major effect on partitioning of VLDL triglyceride between adipose and other tissues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号