共查询到20条相似文献,搜索用时 15 毫秒
1.
Katerina Naka K Patra Vezyraki Alexandros Kalaitzakis Stelios Zerikiotis Lampros Michalis Charalampos Angelidis 《Cell stress & chaperones》2014,19(6):853-864
The aim of this study was to investigate the potential protective effect of the Hsp70 protein in the cardiac dysfunction induced by doxorubicin (DOX) and the mechanisms of its action. For this purpose, we used both wild-type mice (F1/F1) and Hsp70-transgenic mice (Tg/Tg) overexpressing human HSP70. Both types were subjected to chronic DOX administration (3 mg/kg intraperitoneally every week for 10 weeks, with an interval from weeks 4 to 6). Primary cell cultures isolated from embryos of these mice were also studied. During DOX administration, the mortality rate as well as weight reduction were lower in Tg/Tg compared to F1/F1 mice (P < 0.05). In vivo cardiac function assessment by transthoracic echocardiography showed that the reduction in left ventricular systolic function observed after DOX administration was lower in Tg/Tg mice (P < 0.05). The study in primary embryonic cell lines showed that the apoptosis after incubation with DOX was reduced in cells overexpressing Hsp70 (Tg/Tg), while the apoptotic pathway that was activated by DOX administration involved activated protein factors such as p53, Bax, caspase-9, caspase-3, and PARP-1. In myocardial protein extracts from identical mice with DOX-induced heart failure, the particular activated apoptotic pathway was confirmed, while the presence of Hsp70 appeared to inhibit the apoptotic pathway upstream of the p53 activation. Our results, in this DOX-induced heart failure model, indicate that Hsp70 overexpression in Tg/Tg transgenic mice provides protection from myocardial damage via an Hsp70-block in p53 activation, thus reducing the subsequent apoptotic mechanism. 相似文献
2.
3.
4.
Elena Y. Komarova Darya A. Meshalkina Nikolay D. Aksenov Ivan M. Pchelin Elena Martynova Boris A. Margulis Irina V. Guzhova 《Cell stress & chaperones》2015,20(2):343-354
Chaperone Hsp70 can cross the plasma membrane of living cells using mechanisms that so far have not received much research attention. Searching the part of the molecule that is responsible for transport ability of Hsp70, we found a cationic sequence composed of 20 amino acid residues on its surface, KST peptide, which was used in further experiments. We showed that KST peptide enters living cells of various origins with the same efficiency as the full-length chaperone. KST peptide is capable of carrying cargo with a molecular weight 30 times greater than its own into cells. When we compared the membrane-crossing activity of KST peptide in complex with Avidin (KST–Av complex) with that of similarly linked canonical TAT peptide, we found that TAT peptide penetrated SK-N-SH human neuroblastoma cells at a similar rate and efficiency as the KST peptide. Furthermore, KST peptide can carry protein complexes consisting of a specific antibody coupled to the peptide through the Avidin bridge. An antibody to Hsp70 delivered to SK-N-SH cells with high expression level of Hsp70 reduced the protective power of the chaperone and sensitized the cells to the pro-apoptotic effect of staurosporine. We studied the mechanisms of penetration of KST–Av and full-length Hsp70 inside human neuroblastoma SK-N-SH and human erythroleukemia K-562 cells and found that both used an active intracellular transport mechanism that included vesicular structures and negatively charged lipid membrane domains. Competition analysis of intracellular transport showed that the chaperone reduced intracellular penetration of KST peptide and conversely KST peptide prevented Hsp70 transport in a dose-dependent manner.
Electronic supplementary material
The online version of this article (doi:10.1007/s12192-014-0554-z) contains supplementary material, which is available to authorized users. 相似文献5.
吐温80合并温热诱导BGC-823胃癌细胞凋亡及对Hsp70,Bcl-2和Bax表达的影响 总被引:2,自引:0,他引:2
目的 观察膜活化剂吐温 80合并温热作用对BGC 82 3人胃癌细胞生长、凋亡及对Hsp70、Bcl 2、Bax表达的影响。方法 应用MTT法、荧光染色及DNA琼脂糖凝胶电泳 ,测定 0 1%吐温 80与 4 2℃ 10 0min合并作用对BGC 82 3细胞的抑制效应和诱导细胞凋亡的影响 ;应用免疫细胞化学染色 ,观察合并作用后不同时间 (0h、 8h、 16h、 2 4h)BGC 82 3细胞Hsp70、Bcl 2、Bax的表达改变。结果 ①吐温 80合并 4 2℃温热作用对细胞具有明显的抑制效应 (P <0 0 0 1)。②合并作用后 2 4h ,可见大量肿瘤细胞凋亡。③合并作用可明显抑制BGC 82 3细胞Hsp70的表达 ;Bcl 2、Bax的表达均增加 ,且Bax的表达强于Bcl 2 ,并全部分布在胞浆。结论 吐温 80合并 4 2℃温热可通过诱导细胞凋亡来抑制肿瘤细胞生长 ,其对细胞Hsp70表达的抑制和对Bcl 2、Bax表达及分布的影响可能与凋亡的发生有关 相似文献
6.
Heat shock proteins (Hsps) hold a dual role depending on their location. Inside cells, they fulfill essential survival functions as molecular chaperones forming complexes with intracellular polypeptides (self or foreign) to help in protein folding, the resolution of protein aggregates and intracellular protein transport. Released from the cell, they act as messengers communicating the cells’ interior protein composition to the immune system for initiation of immune responses against intracellular proteins. Here we describe the mechanisms by which Hsp70, the heat-inducible Hsp70 family member, crosstalks with the immune system. Further, we discuss that clinical hyperthermia could be a way to initiate the immunologic activity of Hsp70 by upregulating its expression and facilitating release through local necrosis. 相似文献
7.
Wang Y Wang SY Zhang XH Zhao M Hou CM Xu YJ Du ZY Yu XD 《Biochemical and biophysical research communications》2007,356(4):998-1003
Some pan-histone-deacetylase (HDAC) inhibitors have recently been reported to exert their anti-leukemia effect by inhibiting the activity of class IIB HDAC6, which is the deacetylase of Hsp90 and α-tubulin, thereby leading to hyperacetylation of Hsp90, disruption of its chaperone function and apoptosis. In this study, we compared the effect of a class I HDAC inhibitor FK228 with the pan-HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) on the Hsp90 chaperone function of K562 cells. We demonstrated that, although having a weaker inhibitory effect on HDAC6, FK228 mediated a similar disruption of Hsp90 chaperone function compared to SAHA. Unlike SAHA, FK228 did not mediate hyperacetylation of Hsp90, instead the acetylation of Hsp70 was increased and Bcr-Abl was increasingly associated with Hsp70 rather than Hsp90, forming an unstable complex that promotes Bcr-Abl degradation. These results indicated that FK228 may disrupt the function of Hsp90 indirectly through acetylation of Hsp70 and inhibition of its function. 相似文献
8.
Qinglian Liu Ce Liang Lei Zhou 《Protein science : a publication of the Protein Society》2020,29(2):378-390
As one of the most abundant and highly conserved molecular chaperones, the 70‐kDa heat shock proteins (Hsp70s) play a key role in maintaining cellular protein homeostasis (proteostasis), one of the most fundamental tasks for every living organism. In this role, Hsp70s are inextricably linked to many human diseases, most notably cancers and neurodegenerative diseases, and are increasingly recognized as important drug targets for developing novel therapeutics for these diseases. Hsp40s are a class of essential and universal partners for Hsp70s in almost all aspects of proteostasis. Thus, Hsp70s and Hsp40s together constitute one of the most important chaperone systems across all kingdoms of life. In recent years, we have witnessed significant progress in understanding the molecular mechanism of this chaperone system through structural and functional analysis. This review will focus on this recent progress, mainly from a structural perspective. 相似文献
9.
Huang M Wei JN Peng WX Liang J Zhao C Qian Y Dai G Yuan J Pan FY Xue B Sha JH Li CJ 《Cell stress & chaperones》2009,14(4):343-353
The cell cycle is controlled by regulators functioning at the right time and at the right place. We have found that calmodulin
(CaM) has specific distribution patterns during different cell-cycle stages. Here, we identify cell-cycle-specific binding
proteins of CaM and examine their function during cell-cycle progression. We first applied immunoprecipitation methods to
isolate CaM-binding proteins from cell lysates obtained at different cell-cycle phases and then identified these proteins
using mass spectrometry methods. A total of 41 proteins were identified including zinc finger proteins, ribosomal proteins,
and heat shock proteins operating in a Ca2+-dependent or independent manner. Fifteen proteins were shown to interact with CaM in a cell-phase-specific manner. The association
of the selected proteins and CaM were confirmed with in vitro immunoprecipitation and immunostaining methods. One of the identified
proteins, heat shock protein 70 (Hsp70), was further studied with respect to its cell-cycle-related function. In vivo fluorescence
resonance energy transfer (FRET) analysis showed that the interaction of CaM and Hsp70 was found in the nucleus during the
S phase. Overexpression of Hsp70 is shown to arrest cells at S phase and, thus, induce cell apoptosis. When we disrupted the
CaM-Hsp70 association with HSP70 truncation without the CaM-binding domain, we found that S-phase arrest and apoptosis could
be rescued. The results suggest that the spatial and temporal association of CaM and Hsp70 can regulate cell-cycle progression
and cell apoptosis. 相似文献
10.
Lena B?ttinger Silke Oeljeklaus Bernard Guiard Sabine Rospert Bettina Warscheid Thomas Becker 《The Journal of biological chemistry》2015,290(18):11611-11622
Mitochondrial Hsp70 (mtHsp70) mediates essential functions for mitochondrial biogenesis, like import and folding of proteins. In these processes, the chaperone cooperates with cochaperones, the presequence translocase, and other chaperone systems. The chaperonin Hsp60, together with its cofactor Hsp10, catalyzes folding of a subset of mtHsp70 client proteins. Hsp60 forms heptameric ring structures that provide a cavity for protein folding. How the Hsp60 rings are assembled is poorly understood. In a comprehensive interaction study, we found that mtHsp70 associates with Hsp60 and Hsp10. Surprisingly, mtHsp70 interacts with Hsp10 independently of Hsp60. The mtHsp70-Hsp10 complex binds to the unassembled Hsp60 precursor to promote its assembly into mature Hsp60 complexes. We conclude that coupling to Hsp10 recruits mtHsp70 to mediate the biogenesis of the heptameric Hsp60 rings. 相似文献
11.
Molecular chaperones are important components of mitochondrial protein biogenesis and are required to maintain the organellar function under normal and stress conditions. We addressed the functional role of the Hsp100/ClpB homolog Hsp78 during aggregation reactions and its functional cooperation with the main mitochondrial Hsp70, Ssc1, in mitochondria of the yeast Saccharomyces cerevisiae. By establishing an aggregation/disaggregation assay in intact mitochondria we demonstrated that Hsp78 is indispensable for the resolubilization of protein aggregates generated by heat stress under in vivo conditions. The ATP-dependent disaggregation activity of Hsp78 was capable of reversing the preprotein import defect of a destabilized mutant form of Ssc1. This role in disaggregation of Ssc1 is unique for Hsp78, since the recently identified, Hsp70-specific chaperone Zim17 had no effect on the resolubilization reaction. We observed only a minor effect of the second mitochondrial Hsp100 family member Mcx1 on protein disaggregation. A "holding" activity of the mitochondrial Hsp70 system was a prerequisite for a successful resolubilization of aggregated proteins. We conclude that the protective role of Hsp78 in thermotolerance is mainly based on maintaining the molecular chaperone Ssc1 in a soluble and functional state. 相似文献
12.
Currently, the identification of groups of amino acid residues that are important in the function, structure, or interaction of a protein can be both costly and prohibitively complex, involving vast numbers of mutagenesis experiments. Here, we present the application of a novel computational method, which identifies the presence of coevolution in a data set, thereby enabling the a priori identification of amino acid residues that play an important role in protein function. We have applied this method to the heat shock protein (Hsp) protein-folding system, studying the network between Hsp70, Hsp90, and Hop (heat shock-organizing protein). Our analysis has identified functional residues within the tetratricopeptide repeat (TPR) 1 and 2A domains in Hop, previously shown to be interacting with Hsp70 and Hsp90, respectively. Further, we have identified significant residues elsewhere in Hop within domains that have been recently proposed as being important for Hop interaction with Hsp70 and/or Hsp90. In addition, several amino acid sites present in groups of coevolution were identified as 3-dimensionally or linearly proximal to functionally important sites or domains. Based on our results, we also investigate a further functional domain within Hop, between TPR1 and TPR2A, which we suggest as being functionally important in the interaction of Hop with both Hsp70 and Hsp90 whether directly or otherwise. Our method has identified all the previously characterized functionally important regions in this system, thereby indicating the power of this method in the a priori identification of important regions for site-directed mutagenesis studies. 相似文献
13.
Involvement of the ubiquitin pathway in decreasing Ku70 levels in response to drug-induced apoptosis
Gama V Yoshida T Gomez JA Basile DP Mayo LD Haas AL Matsuyama S 《Experimental cell research》2006,312(4):488-499
Ku70 plays an important role in DNA damage repair and prevention of cell death. Previously, we reported that apoptosis caused a decrease in cellular Ku70 levels. In this study, we analyzed the mechanism of how Ku70 levels decrease during drug-induced apoptosis. In HeLa cells, staurosporin (STS) caused a decrease in Ku70 levels without significantly affecting Ku70 mRNA levels. We found that Ku70 protein was highly ubiquitinated in various cell types, such as HeLa, HEK293T, Dami (a megakaryocytic cell line), endothelial, and rat kidney cells. An increase in ubiquitinated Ku70 protein was observed in apoptotic cells, and proteasome inhibitors attenuated the decrease in Ku70 levels in apoptotic cells. These results suggest that the ubiquitin-proteasome proteolytic pathway plays a role in decreasing Ku70 levels in apoptotic cells. Ku70 forms a heterodimer with Ku80, which is required for the DNA repair activity of Ku proteins. We also found that Ku80 levels decreased in apoptotic cells and that Ku80 is a target of ubiquitin. Ubiquitinated Ku70 was not found in the Ku70-Ku80 heterodimer, suggesting that modification by ubiquitin inhibits Ku heterodimer formation. We propose that the ubiquitin-dependent modification of Ku70 plays an important role in the control of cellular levels of Ku70. 相似文献
14.
《Biomarkers》2013,18(1):31-38
Hsp90 inhibitors are under investigation in multiple human clinical trials for the treatment of cancers, including myeloma, breast cancer, prostate, lung, melanoma, gastrointestinal stromal tumour and acute myeloid leukaemia. The pharmacodynamic activity of Hsp90 inhibitors in the clinic is currently assessed by Hsp70 induction in peripheral blood mononuclear cells using Western blot analysis, a method that is laborious, semiquantitative and difficult to implement in the clinic. Since Hsp70 was reported to be secreted by tumour cells and elevated in sera of cancer patients, serum Hsp70 has been evaluated as a potentially more robust, easily and reproducibly measured biomarker of Hsp90 inhibition as an alternative to cytosolic Hsp70. A highly sensitive and specific electrochemiluminescent ELISA was developed to measure serum Hsp70 and employed to evaluate Hsp70 levels in both ex vivo and xenograft samples. In ex vivo studies, maximal secretion of Hsp70 by tumour cells was observed between 48 and 72?h after exposure to Hsp90 inhibitors. In in vivo studies a 3–4-fold increase in serum Hsp70 was observed following treatment with BIIB021 in tumour-bearing mice. Strikingly, secreted Hsp70 was detectable in mice transplanted with human tumours but not in naive mice indicating a direct origination from the transplanted tumours. Analysis of clinical samples revealed low baseline levels (2–15?ng ml?1) of Hsp70 in the serum of cancer patients and normal donors. Together these findings in laboratory studies and archived cancer patient sera suggest that serum Hsp70 could be a novel biomarker to assess reliably the pharmacological effects of Hsp90 inhibitors in clinical trials, especially under conditions where collection of tumour biopsies is not feasible. 相似文献
15.
16.
The level and phosphorylation of Hsp70 in the rat liver cytosol after adrenalectomy and hyperthermia
Hepatic heat shock protein Hsp70 synthesis and in vitro phosphorylation were studied in the liver cytosol of intact, adrenalectomized and dexamethasone-administered adrenalectomized rats after 41 degrees C whole body hyperthermic stress. Hsp70 was detected by immunoblotting with N27F3-4 monoclonal antibody recognizing both constitutive and inducible forms of the protein. A comparison between basal and heat stress-induced levels of the protein in the liver cytosol of the three groups of animals suggested that glucocorticoid hormones stimulate the basal synthesis of Hsp70 and inhibit its induction by stress. In both unstressed and hyperthermia-exposed animals, hepatic Hsp70 was detected as a phosphoprotein. The extent of its in vitro phosphorylation was found to be significantly reduced by heat stress or adrenalectomy, but dexamethasone failed to restore it to the original level. 相似文献
17.
Effects of exposure to a 1950 MHz radio frequency field on expression of Hsp70 and Hsp27 in human glioma cells 总被引:2,自引:0,他引:2
Miyakoshi J Takemasa K Takashima Y Ding GR Hirose H Koyama S 《Bioelectromagnetics》2005,26(4):251-257
Human glioma MO54 cells were used to investigate whether radio frequency (RF) field exposure could activate stress response genes. Cells were exposed to continuous wave 1950 MHz or sham conditions for up to 2 h. Specific absorption rates (SARs) were 1, 2, and 10 W/kg. For the cell growth experiment, cell numbers were counted at 0-4 days after exposure. Expression of Hsp27 and Hsp70, as well as the level of phosphorylated Hsp27 (78Ser) protein, was determined by Western blotting. It was found that sham exposed and RF exposed cells demonstrated a similar growth pattern up to 4 days after RF field exposure. RF field exposure at both 2 and 10 W/kg did not affect the growth of MO54 cells. In addition, there were no significant differences in protein expression of Hsp27 and Hsp70 between sham exposed and RF exposed cells at a SAR of 1, 2, or 10 W/kg for 1 and 2 h. However, exposure to RF field at a SAR of 10 W/kg for 1 and 2 h decreased the protein level of phosphorylated Hsp27 (78Ser) significantly. Our results suggest that although exposure to a 1950 MHz RF field has no effect on cell proliferation and expression of Hsp 27 and Hsp70, it may inhibit the phosphorylation of Hsp27 at Serine 78 in MO54 cells. 相似文献
18.
Production of coagulation factor VIII (FVIII) by recombinant cell lines is limited by its failure to reach or maintain the native conformation in the endoplasmic reticulum. This results in significant cytoplasmic degradation and/or aggregation of the misfolded product. The molecular chaperone Hsp70 was overexpressed in an attempt to increase the recombinant FVIII (rFVIII) secretion. The characteristics of increased Hsp70 expression were investigated by comparing a clone of BHK-21 cells expressing rFVIII (rBHK-21(host)) to a chaperone clone derived by transfection of the host clone with human Hsp70 (rBHK-21(Hsp70)) in small-scale batch cell cultures. To aid this investigation a number of fluorescence based cellular apoptosis assays were developed and optimized. These assays demonstrated sub-populations of rBHK-21(host) cells that were apoptotic in nature and were identified prior to the loss in plasma membrane integrity. Dual staining for intracellular rFVIII and caspase-3 activation showed a reduction in intracellular rFVIII in rBHK-21(host) cells that correlated with a significant increase in active caspase-3, suggesting that apoptosis was a factor limiting rFVIII secretion. In sharp contrast there was more intracellular rFVIII and less active caspase-3 in rBHK-21(Hsp70) cell cultures. Moreover when grown in batch culture, rBHK-21(Hsp70) cells released rFVIII of higher specific activity (active FVIII protein/total FVIII protein), suggesting improved product quality. Thus, increased expression of HSP70 led to an increased yield of a secreted recombinant protein by inhibition of apoptosis and promoting proper conformational maturation of rFVIII in sub-optimal bioreactor conditions. 相似文献
19.
Hsp70 chaperones assist protein folding by cycling between the ATP-bound T state with low affinity for substrates and the
ADP-bound R state with high affinity for substrates. The transition from the T to R state is catalyzed by the synergistic
action of the substrate and DnaJ cochaperones. The reverse transition from the R state to the T state is accelerated by the
nucleotide exchange factor GrpE. These two processes, T-to-R and R-to-T conversion, are affected differently by temperature
change. Here we modeled Hsp70-mediated protein folding under permanent and transient heat shock based on published experimental
data. Our simulation results were in agreement with in vitro wild-type Escherichia coli chaperone experimental data at 25°C and reflected R-to-T ratio dynamics in response to temperature effects. Our simulation
results suggested that the chaperone system evolved naturally to maintain the concentration of active protein as high as possible
during heat shock, even at the cost of recovered activity after return to optimal growth conditions. They also revealed that
the chaperone system evolved to suppress ATP consumption at non-optimal high growing temperatures. 相似文献
20.
Hsp105alpha and Hsp105beta are mammalian members of the Hsp105/110 family, a diverged subgroup of the Hsp70 family. Here, we show that Hsp105alpha and Hsp105beta bind non-native protein through the beta-sheet domain and suppress the aggregation of heat-denatured protein in the presence of ADP rather than ATP. In contrast, Hsc70/Hsp40 suppressed the aggregation of heat-denatured protein in the presence of ATP rather than ADP. Furthermore, the overexpression of Hsp105alpha but not Hsp70 in COS-7 cells rescued the inactivation of luciferase caused by ATP depletion. Thus, Hsp105/110 family proteins are suggested to function as a substitute for Hsp70 family proteins to suppress the aggregation of denatured proteins in cells under severe stress, in which the cellular ATP level decreases markedly. 相似文献