首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The osmoregulator trimethylamine-N-oxide (TMAO), commonplace in aquatic organisms, is used as the terminal electron acceptor for respiration in many bacterial species. The TMAO reductase (Tor) pathway for respiratory catalysis is controlled by a receptor system that comprises the TMAO-binding protein TorT, the sensor histidine kinase TorS, and the response regulator TorR. Here we study the TorS/TorT sensor system to gain mechanistic insight into signaling by histidine kinase receptors. We determined crystal structures for complexes of TorS sensor domains with apo TorT and with TorT (TMAO); we characterized TorS sensor associations with TorT in solution; we analyzed the thermodynamics of TMAO binding to TorT-TorS complexes; and we analyzed in vivo responses to TMAO through the TorT/TorS/TorR system to test structure-inspired hypotheses. TorS-TorT(apo) is an asymmetric 2:2 complex that binds TMAO with negative cooperativity to form a symmetric active kinase.  相似文献   

3.
4.
5.
Trimethylamine N-oxide (TMAO) can function as an electron acceptor in the anaerobic metabolism of both Rhodopseudomonas capsulata and Escherichia coli. In both bacteria, anaerobic growth in the presence of TMAO induces a system that can reduce TMAO to trimethylamine (TMA). Comparative studies, however, show that TMAO reduction serves different purposes in the organisms noted. In E. coli, anaerobic growth on sugars does not require the presence of TMAO, but in cells induced for TMAO reductase, TMAO can act as the terminal electron acceptor for membrane-associated oxidative phosphorylation. Anaerobic dark growth of R. capsulata is dependent on the presence of TMAO (or an analog) and in this organism a soluble system catalyzes anaerobic oxidation of NADH with TMAO. The mechanism, in R. capsulata, appears to involve a flavoprotein of the flavodoxin type and presumably represents a system for maintenance of redox balance during anaerobic dark fermentation of hexoses and related compounds.  相似文献   

6.
The trimethylamine N-oxide (TMAO) anaerobic respiratory system of Escherichia coli comprises a periplasmic terminal TMAO reductase (TorA) and a pentahaem c-type cytochrome (TorC), which is involved in electron transfer to TorA. The structural proteins are encoded by the torCAD operon whose expression is induced in the presence of TMAO through the TorS/TorR two-component system. By using a genomic library cloned into a multicopy plasmid, we identified TorC as a possible negative regulator of the tor operon. Interestingly, in trans overexpression of torC not only decreased the activity of a torA'-'lacZ fusion, but also dramatically reduced the amount of mature TorC cytochrome. This led us to propose that, after translocation, TorC apocytochrome downregulates the tor operon unless it is properly matured. In agreement with this hypothesis, we have shown that mini-Tn10 insertions within genes involved in the c-type cytochrome maturation pathway or haem biosynthesis decreased tor operon expression. Dithiothreitol (DTT), which reduces disulphide bonds and thus prevents the first step in c-type cytochrome formation, also strongly decreases the tor promoter activity. The DTT effect is TorC dependent, as it is abolished when torC is disrupted. In contrast, overexpression of the c-type cytochrome maturation (ccm ) genes relieved the tor operon of the negative control and allowed the bacteria to produce a higher amount of TorC holocytochrome. Therefore, the TorC negative autoregulation probably means that maturation of the c-type cytochrome is a limiting step for Tor system biogenesis. Genetic experiments have provided evidence that TorC control is mediated by the TorS/TorR two-component system and different from the tor anaerobic control. In our working model, TMAO and apoTorC bind to the periplasmic side of TorS, but TMAO activates TorS autophosphorylation, whereas apoTorC inhibits the TorS kinase activity.  相似文献   

7.
The manganese-containing isozyme of superoxide dismutase (MnSOD) is synthesized by Escherichia coli only during aerobiosis, in accordance with the fact that superoxide can be formed only in aerobic environments. In contrast, E. coli continues to synthesize the iron-containing isozyme (FeSOD) even in the absence of oxygen. A strain devoid of FeSOD exhibited no deficits during either anaerobic or continuously aerobic growth, but its growth lagged for 2 h during the transition from anaerobiosis to aerobiosis. Complementation of this defect with heterologous SODs established that anaerobic SOD synthesis per se is necessary to permit a smooth transition to aerobiosis. The growth deficit was eliminated by supplementation of the medium with branched-chain amino acids, indicating that the growth interruption was due to the established sensitivity of dihydroxyacid dehydratase to endogenous superoxide. Components of the anaerobic respiratory chain rapidly generated superoxide when exposed to oxygen in vitro, suggesting that this transition may be a period of acute oxidative stress. These results show that facultative bacteria must preemptively synthesize SOD during anaerobiosis in preparation for reaeration. The data suggest that evolution has chosen FeSOD for this function because of the relative availability of iron, in comparison to manganese, during anaerobiosis.  相似文献   

8.
Reduction of trimethylamine N-oxide (E'(0(TMAO/TMA)) = +130 mV) in Escherichia coli is carried out by the Tor system, an electron transfer chain encoded by the torCAD operon and made up of the periplasmic terminal reductase TorA and the membrane-anchored pentahemic c-type cytochrome TorC. Although the role of TorA in the reduction of trimethylamine N-oxide (TMAO) has been clearly established, no direct evidence for TorC involvement has been presented. TorC belongs to the NirT/NapC c-type cytochrome family based on homologies of its N-terminal tetrahemic domain (TorC(N)) to the cytochromes of this family, but TorC contains a C-terminal extension (TorC(C)) with an additional heme-binding site. In this study, we show that both domains are required for the anaerobic bacterial growth with TMAO. The intact TorC protein and its two domains, TorC(N) and TorC(C), were produced independently and purified for a biochemical characterization. The reduced form of TorC exhibited visible absorption maxima at 552, 523, and 417 nm. Mediated redox potentiometry of the heme centers of the purified components identified two negative midpoint potentials (-177 and -98 mV) localized in the tetrahemic TorC(N) and one positive midpoint potential (+120 mV) in the monohemic TorC(C). In agreement with these values, the in vitro reconstitution of electron transfer between TorC, TorC(N), or TorC(C) and TorA showed that only TorC and TorC(C) were capable of electron transfer to TorA. Surprisingly, interaction studies revealed that only TorC and TorC(N) strongly bind TorA. Therefore, TorC(C) directly transfers electrons to TorA, whereas TorC(N), which probably receives electrons from the menaquinone pool, is involved in both the electron transfer to TorC(C) and the binding to TorA.  相似文献   

9.
A crude microsomal fraction isolated from red hake (Urophycis chuss) muscle demethylated trimethylamine-N-oxide (TMAO). Two cofactor systems were capable of stimulating activity; the system of NADH and FMN required anaerobic conditions while the other system, composed of iron and cysteine and/or ascorbate functioned in the presence or absence of oxygen. The components of each cofactor system functioned synergistically and kinetic parameters were established for each. Of several amine compounds common to fish muscle, TMAO was the only substrate demethylated by the microsomes. Activity was inhibited by iodoacetamide, potassium cyanide, and sodium azide under certain conditions, but not by carbon monoxide. An enzymic nature of the reaction was demonstrated by the properties of heat lability, sensitivity to protease treatment, the requirement of microsomes for TMAO demethylation and by the exhibition of typical hyperbolic kinetics with respect to substrate (TMAO). Moreover, TMAO demethylation by the microsomes was 3 to 4 orders of magnitude faster than the non-enzymic reaction and the reaction was specific for dimethylamine (DMA) as product. It appears the two cofactor systems may share a common catalytic unit in the process of TMAO demethylation.  相似文献   

10.
In anaerobiosis, Escherichia coli can use trimethylamine N-oxide (TMAO) as a terminal electron acceptor. Reduction of TMAO in trimethylamine (TMA) is mainly performed by the respiratory TMAO reductase. This system is encoded by the torCAD operon, which is induced in the presence of TMAO. This regulation involves a two-component system comprising TorS, an unorthodox histidine kinase, and TorR, a response regulator. A third protein, TorT, sharing homologies with periplasmic binding proteins, plays a key role in this regulation because disruption of the torT gene abolishes tor expression. In this study we showed that TMAO protects TorT against degradation by the GluC endoproteinase and modifies its temperature-induced CD spectrum. We also isolated a TorT negative mutant that is no longer protected by TMAO from degradation by GluC. Isothermal titration calorimetry confirmed that TorT binds TMAO with a binding constant of 150 mum. Therefore, we conclude that TorT binds TMAO and that this binding promotes a conformational change of TorT. We also showed that TorT interacts with the periplasmic domain of TorS in both the presence and absence of TMAO but the TorT-TMAO complex induces a higher GluC protection of TorS than TorT alone. These results support the idea that TMAO binding to TorT induces a cascade of conformational changes from TorT to TorS, leading to TorS activation. We identified several homologues of the TorT protein that define a new family of periplasmic binding proteins. We thus propose that the members of this family bind TMAO or related compounds and that they are involved in signal transduction or even substrate transport.  相似文献   

11.
Vibrio cholerae is a Gram-negative bacterium that causes cholera. Although the pathogenesis caused by this deadly pathogen takes place in the intestine, commonly thought to be anaerobic, anaerobiosis-induced virulence regulations are not fully elucidated. Anerobic growth of the V. cholerae strain, N16961, was promoted when trimethylamine N-oxide (TMAO) was used as an alternative electron acceptor. Strikingly, cholera toxin (CT) production was markedly induced during anaerobic TMAO respiration. N16961 mutants unable to metabolize TMAO were incapable of producing CT, suggesting a mechanistic link between anaerobic TMAO respiration and CT production. TMAO reductase is transported to the periplasm via the twin arginine transport (TAT) system. A similar defect in both anaerobic TMAO respiration and CT production was also observed in a N16961 TAT mutant. In contrast, the abilities to grow on TMAO and to produce CT were not affected in a mutant of the general secretion pathway. This suggests that V. cholerae may utilize the TAT system to secrete CT during TMAO respiration. During anaerobic growth with TMAO, N16961 cells exhibit green fluorescence when stained with 2′,7′-dichlorofluorescein diacetate, a specific dye for reactive oxygen species (ROS). Furthermore, CT production was decreased in the presence of an ROS scavenger suggesting a positive role of ROS in regulating CT production. When TMAO was co-administered to infant mice infected with N16961, the mice exhibited more severe pathogenic symptoms. Together, our results reveal a novel anaerobic growth condition that stimulates V. cholerae to produce its major virulence factor.  相似文献   

12.
13.
Abstract Most representatives of the halophilic arachaeobacterial genera Halobacterium, Haloarcula and Haloferax tested were able to reduce dimethylsulfoxide (DMSO) to dimethylsulfide (DMS) and trimethylamine N -oxide (TMAO) to trimethylamine (TMA) under (semi)anaerobic conditions. In most cases the reduction of DMSO and TMAO was accompanied by an increase in cell yield. The ability to reduce DMSO or TMAO was not correlated to reduced DMSO or TMAO was not correlated with the ability to reduce nitrate to nitrite. Anaerobic respiration with DMSO and TMAO as electron acceptor supplies the halophilic archeobacteria with an additional mode of energy generation in the absence of molecular oxygen.  相似文献   

14.
Dimethylsulphoxide (DMSO) and trimethylamine oxide (TMAO) sustained anaerobic growth of Proteus vulgaris with the non-fermentable substrate lactate. Cytoplasmic membrane vesicles energized by electron transfer from formate to DMSO displayed anaerobic uptake of serine, which was hindered by metabolic inhibitors known to destroy the proton motive force. This showed that DMSO reduction was coupled with a chemiosmotic mechanism of energy conversion; similar data for TMAO respiration have been presented previously. All biochemical tests applied indicated that the oxides were reduced by the same reductase system. The DMSO and TMAO reductase activities showed the same mobility on ion-exchange chromatography, and polyacrylamide disc gel electrophoresis (pH 8.9), gradient gel electrophoresis, and gel isoelectric focusing; mol. wt. and pI determined were 95,000 and 4.6, respectively. DMSO inhibited reduction of [14C]TMAO in vesicles. The reductase was inducible to a certain extent; both oxides being equally efficient as inducers. TMAO was reduced at a higher rate than DMSO, explaining faster growth of cells and increased uptake of serine in vesicles with TMAO as electron acceptor. Comparative studies with Escherichia coli also gave evidence for common TMAO and DMSO reductase systems.Abbreviations TMAO trimethylamine oxide - DMSO dimethylsulphoxide  相似文献   

15.
Particular interest in fosfomycin has resurfaced because it is a highly beneficial antibiotic for the treatment of refractory infectious diseases caused by pathogens that are resistant to other commonly used antibiotics. The biological cost to cells of resistance to fosfomycin because of chromosomal mutation is high. We previously found that a bacterial two-component system, CpxAR, induces fosfomycin tolerance in enterohemorrhagic Escherichia coli (EHEC) O157:H7. This mechanism does not rely on irreversible genetic modification and allows EHEC to relieve the fitness burden that results from fosfomycin resistance in the absence of fosfomycin. Here we show that another two-component system, TorSRT, which was originally characterized as a regulatory system for anaerobic respiration utilizing trimethylamine-N-oxide (TMAO), also induces fosfomycin tolerance. Activation of the Tor regulatory pathway by overexpression of torR, which encodes the response regulator, or addition of TMAO increased fosfomycin tolerance in EHEC. We also show that phosphorylated TorR directly represses the expression of glpT, a gene that encodes a symporter of fosfomycin and glycerol-3-phosphate, and activation of the TorR protein results in the reduced uptake of fosfomycin by cells. However, cells in which the Tor pathway was activated had an impaired growth phenotype when cultured with glycerol-3-phosphate as a carbon substrate. These observations suggest that the TorSRT pathway is the second two-component system to reversibly control fosfomycin tolerance and glycerol-3-phosphate uptake in EHEC, and this may be beneficial for bacteria by alleviating the biological cost. We expect that this mechanism could be a potential target to enhance the utility of fosfomycin as chemotherapy against multidrug-resistant pathogens.  相似文献   

16.
It has been demonstrated that trimethylamine N-oxide (TMAO) serves as a driver of atherosclerosis, suggesting that reduction of TMAO level might be a potent method to prevent the progression of atherosclerosis. Herein, we explored the role of TMAO in the stability of carotid atherosclerotic plaques and disclosed the underlying mechanisms. The unstable carotid artery plaque models were established in C57/BL6 mice. L-carnitine (LCA) and methimazole (MMI) administration were applied to increase and reduce TMAO levels. Hematoxylin and eosin (H&E) staining, Sirius red, Perl’s staining, Masson trichrome staining and immunohistochemical staining with CD68 staining were used for histopathology analysis of the carotid artery plaque. M1 and M2 macrophagocyte markers were assessed by RT-PCR to determine the polarization of RAW264.7 cells. MMI administration for 2 weeks significantly decreased the plaque area, increased the thickness of the fibrous cap and reduced the size of the necrotic lipid cores, whereas 5-week of administration of MMI induced intraplate hemorrhage. LCA treatment further deteriorated the carotid atherosclerotic plaque but with no significant difference. In mechanism, we found that TMAO treatment impaired the M2 polarization and efferocytosis of RAW264.7 cells with no obvious effect on the M1 polarization. In conclusion, the present study demonstrated that TMAO reduction enhanced the stability of carotid atherosclerotic plaque through promoting macrophage M2 polarization and efferocytosis.  相似文献   

17.
The human gastrointestinal pathogen Campylobacter jejuni is a microaerophilic bacterium with a respiratory metabolism. The genome sequence of C. jejuni strain 11168 reveals the presence of genes that encode terminal reductases that are predicted to allow the use of a wide range of alternative electron acceptors to oxygen, including fumarate, nitrate, nitrite, and N- or S-oxides. All of these reductase activities were present in cells of strain 11168, and the molybdoenzyme encoded by Cj0264c was shown by mutagenesis to be responsible for both trimethylamine-N-oxide (TMAO) and dimethyl sulfoxide (DMSO) reduction. Nevertheless, growth of C. jejuni under strictly anaerobic conditions (with hydrogen or formate as electron donor) in the presence of any of the electron acceptors tested was insignificant. However, when fumarate, nitrate, nitrite, TMAO, or DMSO was added to microaerobic cultures in which the rate of oxygen transfer was severely restricted, clear increases in both the growth rate and final cell density compared to what was seen with the control were obtained, indicative of electron acceptor-dependent energy conservation. The C. jejuni genome encodes a single class I-type ribonucleotide reductase (RNR) which requires oxygen to generate a tyrosyl radical for catalysis. Electron microscopy of cells that had been incubated under strictly anaerobic conditions with an electron acceptor showed filamentation due to an inhibition of cell division similar to that induced by the RNR inhibitor hydroxyurea. An oxygen requirement for DNA synthesis can thus explain the lack of anaerobic growth of C. jejuni. The results indicate that strict anaerobiosis is a stress condition for C. jejuni but that alternative respiratory pathways can contribute significantly to energy conservation under oxygen-limited conditions, as might be found in vivo.  相似文献   

18.
In shallow marine teleost fishes, the osmolyte trimethylamine oxide (TMAO) is typically found at <70 mmol/kg wet weight. Recently we found deep-sea teleosts have up to 288 mmol/kg, increasing in the order shallow < bathyal < abyssal. We hypothesized that this protein stabilizer counteracts inhibition of proteins by hydrostatic pressure, and showed that, for lactate dehydrogenases (LDH), 250 mM TMAO fully offset an increase in NADH K(m) at physiological pressure, and partly reversed pressure-enhanced losses of activity at supranormal pressures. In this study, we examined other effects of pressure and TMAO on proteins of teleosts that live from 2000-5000 m (200-500 atmospheres [atm]). First, for LDH from a grenadier (Coryphaenoides leptolepis) at 500 atm for 8 hr, there was a significant 15% loss in activity (P < 0.05 relative to 1 atm control) that was reduced with 250 mM TMAO to an insignificant loss. Second, for pyruvate kinase from a morid cod (Antimora microlepis) at 200 atm, there was 73% increase in ADP K(m) without TMAO (P < 0.01 relative to K(m) at 1 atm) but only a 29% increase with 300 mM TMAO. Third, for G-actin from a grenadier (C. armatus) at 500 atm for 16 hr, there was a significant reduction of F-actin polymerization (P < 0.01 compared to polymerization at 1 atm) that was fully counteracted by 250 mM TMAO, but was unchanged in 250 mM glycine. These findings support the hypothesis. J. Exp. Zool. 289:172-176, 2001.  相似文献   

19.
20.
Here we investigate the expression of cylL(L)and cylL(S), the genes that encode the structural subunits of the cytolysin/haemolysin of Enterococcus faecalis, in response to aerobiosis conditions. Haemolysis assays of E. faecalis strains cultured under aerobic and anaerobic conditions revealed three different haemolytic phenotypes, one of which exhibited greater haemolysis under anaerobic conditions than under aerobic conditions, and was shown to be associated with the presence of the cyl genes. Reporter gene studies revealed that cylL(L) L(S) promoter activity was significantly greater (up to 8.6-fold) under anaerobic compared to aerobic conditions throughout batch growth, demonstrating that these genes are regulated in response to the degree of aerobiosis. Band shift assays confirmed the binding of a protein factor to the region between 202 and 37 bp upstream of the cylL(L)start codon, and a higher level of binding was observed with anaerobically derived cell-free extracts than with extracts of aerobically grown cells. This is the first report of an oxygen-regulated virulence factor in E. faecalis (that is distinct from the quorum-sensing regulatory system reported previously), and may be of in vivo relevance for the bacterium in biofilms and other environments characterised by oxygen gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号