首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecular crowding effects on structure and stability of DNA   总被引:2,自引:1,他引:1  
Miyoshi D  Sugimoto N 《Biochimie》2008,90(7):1040-1051
Living cells contain a variety of biomolecules including nucleic acids, proteins, polysaccharides, and metabolites as well as other soluble and insoluble components. These biomolecules occupy a significant fraction (20-40%) of the cellular volume. The total concentration of biomolecules reaches 400gL(-1), leading to a crowded intracellular environment referred to as molecular crowding. Therefore, an understanding of the effects of molecular crowding conditions on biomolecules is important to broad research fields such as biochemical, medical, and pharmaceutical sciences. In this review, we describe molecular conditions in the cytoplasm and nucleus, which are totally different from in vitro conditions, and then show the biochemical and biophysical consequences of molecular crowding. Finally, we discuss the effect of molecular crowding on the structure, stability, and function of nucleic acids and the significance of molecular crowding in biotechnology and nanotechnology.  相似文献   

2.
The function of biomolecules is intrinsically linked to their structure and the complexes they form during function. Techniques for the determination of structures and dynamics of these nanometre assemblies are therefore important for an understanding on the molecular level. PELDOR (pulsed electron-electron double resonance) is a pulsed EPR method that can be used to reliably and precisely measure distances in the range 1.5-8?nm, to unravel orientations and to determine the number of monomers in complexes. In conjunction with site-directed spin labelling, it can be applied to biomolecules of all sizes in aqueous solutions or membranes. PELDOR is therefore complementary to the methods of X-ray crystallography, NMR and FRET (fluorescence resonance energy transfer) and is becoming a powerful method for structural determination of biomolecules. In the present review, the methods of PELDOR are discussed and examples where PELDOR has been used to obtain structural information on biomolecules are summarized.  相似文献   

3.
Resonance energy transfer (RET) is widely used to detect proximity between biomolecules. In transparent solution the maximum donor-to-acceptor distance for RET is about 70 A. We measured the effects of metallic silver island films on RET from the intrinsic tryptophan of a protein to a bound probe as the acceptor. These preliminary experiments revealed a dramatic increase in the apparent F?rster distance increasing from 28.6 to 63 A. These results suggest the use of silver island films for detecting long range proximity between biomolecules and for biotechnology applications based on RET.  相似文献   

4.
5.
G E Tranter 《Bio Systems》1987,20(1):37-48
The violation of parity by the weak interactions ensures that enantiomeric chiral molecules have inequivalent energies, one being inherently stabilized with respect to the other. These parity-violating energy differences have been calculated for a number of fundamental biomolecules including a series of alpha-amino acids, polypeptide structures, and a representative of the sugar series together with its variation over a possible prebiotic reaction path leading to alpha-amino acids. In each case the natural enantiomer found in terrestrial biochemistry was shown to be intrinsically stabilized and preferred over its unnatural enantiomer. The significance of these results in accounting for the prebiotic origins of the terrestrial biomolecular homochirality is discussed and the possible consequences of parity-violating energy differences in mineral catalysts during the prebiotic era considered.  相似文献   

6.

The most crucial role played by minerals was in the preconcentration of biomolecules or precursors of biomolecules in prebiotic seas. If this step had not occurred, molecular evolution would not have occurred. Thiocyanate is an important molecule in the formation of biomolecules as well as a catalyst for prebiotic reactions. The adsorption of thiocyanate onto ferrihydrite was carried out under pH and ion composition conditions in seawater that resembled those of prebiotic Earth. The seawater used in this work had high Mg2+, Ca2+ and SO42? concentrations. The most important result of this work was that ferrihydrite adsorbed thiocyanateata pH value (7.2?±?0.2) that usually does not adsorb thiocyanate. The high adsorptivity of Mg2+, Ca2+ and SO42?onto ferrihydrite showed that seawater ions can act as carriers of thiocyanate to the ferrihydrite surface, creating a huge outer-sphere complex. Kinetic adsorption and isotherm experiments showed the best fit for the pseudo-second-order model and an activation energy of 23.8 kJ mol?1forthe Langmuir-Freundlich model, respectively. Thermodynamic data showed positive ΔG values, which apparently contradict the adsorption isotherm data and kinetic data that was obtained. The adsorption of thiocyanate onto ferrihydrite could be explained by coupling with the exergonic SO42? adsorption onto ferrihydrite. The FTIR spectra showed no difference between the C≡N stretching peaks of adsorbed thiocyanate and free thiocyanate, corroborating the formation of an outer-sphere complex. All the results demonstrated the importance of the artificial seawater composition for the adsorption of thiocyanate and for understanding prebiotic chemistry.

  相似文献   

7.
Submarine hydrothermal systems on the early Earth may have been the sites from which life emerged. The potential for Strecker synthesis to produce biomolecules (amino and hydroxy acids) from starting compounds (ketones, aldehydes, HCN and ammonia) in such environments is evaluated quantitatively using thermodynamic data and parameters for the revised Helgeson-Kirkham-Flowers (HKF) equation of state. Although there is an overwhelming thermodynamic drive to form biomolecules by the Strecker synthesis at hydrothermal conditions, the availability and concentration of starting compounds limit the efficiency and productivity of Strecker reactions. Mechanisms for concentrating reactant compounds could help overcome this problem, but other mechanisms for production of biomolecules may have been required to produce the required compounds on the early Earth. Geochemical constraints imposed by hydrothermal systems provide important clues for determining the potential of these and other systems as sites for the emergence of life.  相似文献   

8.
Thermodynamic modelling of organic synthesis has largely been focused on deep-sea hydrothermal systems. When seawater mixes with hydrothermal fluids, redox gradients are established that serve as potential energy sources for the formation of organic compounds and biomolecules from inorganic starting materials. This energetic drive, which varies substantially depending on the type of host rock, is present and available both for abiotic (outside the cell) and biotic (inside the cell) processes. Here, we review and interpret a library of theoretical studies that target organic synthesis energetics. The biogeochemical scenarios evaluated include those in present-day hydrothermal systems and in putative early Earth environments. It is consistently and repeatedly shown in these studies that the formation of relatively simple organic compounds and biomolecules can be energy-yielding (exergonic) at conditions that occur in hydrothermal systems. Expanding on our ability to calculate biomass synthesis energetics, we also present here a new approach for estimating the energetics of polymerization reactions, specifically those associated with polypeptide formation from the requisite amino acids.  相似文献   

9.
通过测定中国西南季风常绿阔叶林不同演替阶段(演替15a,演替30a及原始林)群落中植物叶片与土壤中C、N、P含量,探索了季风常绿阔叶林不同演替阶段群落C、N、P化学计量特征及其与物种丰富度及多度的相关性。结果表明:土壤及植物中全N、全P含量及土壤中C含量均为演替30a群落中最低,而植物中C含量在不同演替阶段群落间无显著性差异。在不同演替阶段共有种中,40%的物种N含量原始林中最高,40%的物种P含量演替15a群落中最高,而80%的物种C含量无显著性差异。土壤中C:N比在不同演替阶段间无显著变化,而N:P及C:P比则随演替呈减小趋势。植物中C:N及C:P比均为演替30a群落最高,而N:P比则随演替呈增加趋势。不同演替阶段共有种的C:N比中,40%的物种原始林中最低,40%的物种无差异,而C:P与N:P比中则均有60%物种无显著性差异,但70%物种在演替15a群落中N:P小于14,演替30a群落中50%物种N:P在14—16,原始林中则有80%物种N:P大于16。群落物种丰富度及个体多度均与C:N、N:P、C:P无显著的相关性,但植物中的N、P与土壤的N、P分别具有显著的线性正相关,说明土壤中N、P供应量影响植物体中的N、P含量。  相似文献   

10.
We report the development of phosphorylcholine (PC) group-covered nanoparticles for multiple immobilization reactions; the surface of these nanoparticles facilitates bioreactions such as enzymatic reactions and molecular diagnoses. The nanoparticles were covered with a bioconjugate PC group containing a polymer backbone, and their surface properties were as follows: (1) suppression of nonspecific protein adsorption and (2) stabilization of immobilized biomolecules. In this study, biomolecules were immobilized on PC-covered nanoparticles by using different spacer lengths between the polymer backbone and biomolecules. The stability of the immobilized biomolecules was evaluated using horseradish peroxidase-labeled IgG, and the bioconjugate nanoparticles were stored at 4, 25, and 40 °C. The residual enzymatic activity of the peroxidase was monitored at a particular time. On the other hand, to test the role of these nanoparticles in molecular diagnosis, we used IgG-conjugated nanoparticles and the fluorescence resonance energy transfer (FRET) phenomenon. The IgG molecules were labeled with either donor or acceptor molecules, and each labeled IgG was simultaneously immobilized on the PC-covered nanoparticles. These labeled IgG molecules induce the FRET phenomenon upon capture of the target antigen provided they are in close proximity. The resulting fluorescence was readable via the FRET phenomenon. In the present study, C-reactive protein (CRP) was used as the target antigen, and the effect of the spacer length is discussed. The bioconjugated nanoparticles covered with PC groups are promising tools for tuning bioreactions.  相似文献   

11.
The ability of Mycobacterium tuberculosis (M. tuberculosis) to accumulate lipid-rich molecules as an energy source obtained from host cell debris remains interesting. Additionally, the potential of M. tuberculosis to survive under different stress conditions leading to its dormant state in pathogenesis remains elusive. The exact mechanism by which these lipid bodies generated in M. tuberculosis infection and utilized by bacilli inside infected macrophage for its survival is still not understood. In this, during bacillary infection, many metabolic pathways are involved that influence the survival of M. tuberculosis for their own support. However, the exact energy source derived from infecting host cells remain elusive. Therefore, this study highlights several alternative energy sources in the form of triacylglycerol (TAG) and fatty acids, i.e. oleic acids accumulation, which are essential in dormancy-like state under M. tuberculosis infection. The prominent stage in tuberculosis (TB) infection is re-establishment of M. tuberculosis under stress conditions and deployment of a confined strategy to utilize these biomolecules for its persistence survival. So, growing in our understanding of these pathways will help us in accelerating therapies, which could reduce TB prevalence world widely.  相似文献   

12.
Biomolecules, especially proteins and nucleic acids, have been widely studied to develop biochips for various applications in scientific fields ranging from bioelectronics to stem cell research. However, restrictions exist due to the inherent characteristics of biomolecules, such as instability and the constraint of granting the functionality to the biochip. Introduction of functional nanomaterials, recently being researched and developed, to biomolecules have been widely researched to develop the nanobiohybrid materials because such materials have the potential to enhance and extend the function of biomolecules on a biochip. The potential for applying nanobiohybrid materials is especially high in the field of bioelectronics. Research in bioelectronics is aimed at realizing electronic functions using the inherent properties of biomolecules. To achieve this, various biomolecules possessing unique properties have been combined with novel nanomaterials to develop bioelectronic devices such as highly sensitive electrochemical‐based bioelectronic sensing platforms, logic gates, and biocomputing systems. In this review, recently reported bioelectronic devices based on nanobiohybrid materials are discussed. The authors believe that this review will suggest innovative and creative directions to develop the next generation of multifunctional bioelectronic devices.  相似文献   

13.
The homochirality of biomolecules is a prerequisite for the origin and evolution of terrestrial life. The unique selection of D-monosaccharides, in particular, D-ribose in RNA and D-deoxyribose in DNA, leads to the construction of proteins by L-amino acids. This points to the exclusive role of stereoselectivity in the most important physiological processes. So far, there is no experimental confirmation for the theoretical calculations of the energy differences between enantiomers used for the explanation of the stereoselection of biomolecules. Therefore, the question of why nature prefers one configuration over the other still lacks a definitive answer. Here, we present the first experimental evidence that the D-enantiomer of RNA has a different electronic structure compared to the corresponding L-enantiomer. When varying the incident photon energy of the ultraviolet Raman probe across 5 eV, D- and L-isomers of the RNA duplex with the sequence [r(CUGGGCGG).r(CCGCCUGG)] show differences in the intensity of the vibrational modes with energies of 124.0 meV to 210.8 meV. The intensity difference of these vibrational modes can be traced back to energy differences in the electronic levels of D- and L-RNA leading to the preferential stabilization of the naturally occurring D-configuration of RNA over the L-configuration.  相似文献   

14.
Here we describe the protocols for negative or reverse detection of proteins, nucleic acids and lipopolysaccharides separated in polyacrylamide electrophoresis gels. These protocols are based on the selective synthesis and precipitation of a white imidazole-zinc complex in the gel, which is absent from those zones where biomolecules are located. These methods are highly sensitive (1-10 ng of biomolecules per band), very cheap as they use inexpensive, common laboratory reagents (imidazole and a Zn II salt), rapid (less than 20 min after gel washing), robust and simple (two steps). Reverse-stained biomolecules are reversibly fixed in the gel. After brief incubation in a zinc chelating agent, biomolecules can be recovered from the gel with the same efficiency as from unstained gels. In consequence, they are procedures of choice for micropreparative applications. References covering typical applications are included.  相似文献   

15.
We used FTIR spectroscopy to comparatively study the hydration of films prepared from nucleic acids (DNA and double-stranded RNA) and lipids (phosphatidylcholines and phosphatidylethanolamines chosen as the most abundant ones) at room temperature by varying the ambient relative humidity in terms of solvent-induced structural changes. The nucleic acids and phospholipids both display examples of polymorphism on the one hand and structural conservatism on the other; even closely related representatives behave differently in this respect. DNA undergoes a hydration-driven A-B conformational transition, but RNA maintains an A-like structure independently of the water activity. Similarly, a main transition between the solid and liquid-crystalline phases can be induced lyotropically in certain phosphatidylcholines, while their phosphatidylethanolamine counterparts do not exhibit chain melting under the same conditions. A principal difference concerning the structural changes that occur in the studied biomolecules is given by the relevant water-substrate stoichiometries. These are rather high in DNA and often low in phospholipids, suggesting different mechanisms of action of the hydration water that appears to induce structural changes on global- and local-mode levels, respectively.  相似文献   

16.
In the hydrothermal FeS-world origin of life scenarios nucleic acids are suggested to bind to iron (II) monosulphide precipitated from the reaction between hydrothermal sulphidic vent solutions and iron-bearing oceanic water. In lower temperature systems, the first precipitate from this process is nanoparticulate, metastable FeSm with a mackinawite structure. Although the interactions between bulk crystalline iron sulphide minerals and nucleic acids have been reported, their reaction with nanoparticulate FeSm has not previously been investigated. We investigated the binding of different nucleic acids, and their constituents, to freshly precipitated, nanoparticulate FeSm. The degree to which the organic molecules interacted with FeSm is chromosomal DNA > RNA > oligomeric DNA > deoxadenosine monophosphate approximately deoxyadenosine approximately adenine. Although we found that FeSm does not fluoresce within the visible spectrum and there is no quantum confinement effect seen in the absorption, the mechanism of linkage of the FeSm to these biomolecules appears to be primarily electrostatic and similar to that found for the attachment of ZnS quantum dots. The results of a preliminary study of similar reactions with nanoparticulate CuS further supported the suggestion that the interaction mechanism was generic for nanoparticulate transition metal sulphides. In terms of the FeS-world hypothesis, the results of this study further support the idea that sulphide minerals precipitated at hydrothermal vents interact with biomolecules and could have assisted in the formation and polymerisation of nucleic acids.  相似文献   

17.
A new protocol for the extraction and analysis of intracrystalline macromolecules has been developed that allows the rapid determination of the amino-acid composition of fossils. The technique utilizes decalcification with 2 M HCI, characterization of the soluble fraction of the biomolecules by automated amino-acid analysis, and differentiation using multivariate statistics. Compared to other methods, this technique allows sampling of indigenous degraded proteins in addition to the preserved remains of peptides, leading to the recovery of data from more reliable indigenous sources. Although the extraction method is demonstrated using fossil samples to demonstrate gross phylogenetic differences, there is much potential to use these biomolecules for a wide range of applications. □ Amino acids, brachiopods, fossil biomolecules, molecular phylogeny.  相似文献   

18.
The study of homo- and heterocluster quasimolecular ions of 20 L-amino acids (A) and five dipeptides by the TOF-PDMS method indicated that the intensity of quasimolecular ions of the corresponding homo-([An + H]+ and [Bm + H]+, where A and B are biomolecules (A, dipeptides), n and m = 1 .... 5) and heteroclusters ([An.Bm + H]+, n and m = 1 .... 5) depends mainly on the hydrophobicity of the constituents of the A cluster. The most intensive peaks of homo- and heterocluster ions were obtained for hydrophobic amino acids: L-Ile, L-Leu, L-Val, and L-Phe, and for dipeptides containing these amino acids. The assumption is made that the stereochemical parameters of heterocluster quasimolecular ions in the TOF-PDMS method are determined by the physicochemical mechanisms involved in the processes of ionization/desorption of biomolecules and do not reflect directly biologically significant interactions of biomolecules in vivo.  相似文献   

19.
Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing 13C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the 13C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well.  相似文献   

20.
Primary production is the basis for energy and biomolecule flow in food webs. Nutritional importance of terrestrial and plastic carbon via mixotrophic algae to upper trophic level is poorly studied. We explored this question by analysing the contribution of osmo- and phagomixotrophic species in boreal lakes and used 13C-labelled materials and compound-specific isotopes to determine biochemical fate of carbon backbone of leaves, lignin–hemicellulose and polystyrene at four-trophic level experiment. Microbes prepared similar amounts of amino acids from leaves and lignin, but four times more membrane lipids from lignin than leaves, and much less from polystyrene. Mixotrophic algae (Cryptomonas sp.) upgraded simple fatty acids to essential omega-3 and omega-6 polyunsaturated fatty acids. Labelled amino and fatty acids became integral parts of cell membranes of zooplankton (Daphnia magna) and fish (Danio rerio). These results show that terrestrial and plastic carbon can provide backbones for essential biomolecules of mixotrophic algae and consumers at higher trophic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号