首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bacterial pathogens sense their environment, and in response, virulence genes are induced or repressed through spatial and temporal regulation. They are also subjected to stress conditions, which require appropriate responses. Recent research has revealed that RNAs are key regulators in pathogens. Small RNAs regulate the translation and/or stability of mRNAs that encode virulence proteins, or proteins with roles in adaptive responses, which are triggered by environmental cues and stresses. In most cases, these small RNAs act directly on target RNAs by an antisense mechanism. Other small RNAs act indirectly, by sequestration of regulatory proteins. Direct sensing of environmental signals can occur through induced structural changes in mRNAs.  相似文献   

3.
4.
细菌小RNA (Small RNAs,sRNAs)是一类长度大约在40?400个核酸之间,不编码蛋白质的RNA,在细菌适应环境方面起重要的调节作用。当环境中温度、营养、外膜蛋白、pH、铁等条件改变时,sRNA常常通过连接双组分信号转导系统和调节蛋白,来传递压力信号并调节应激响应,其作用方式一般是通过碱基互补配对的方式与靶mRNA结合,从而调控靶mRNA的翻译和稳定性;或直接与靶标蛋白质结合,调节靶标蛋白质的生物活性。本文总结了细菌在多种环境压力下,sRNA的调控响应机制。  相似文献   

5.
6.
7.
8.
Gene regulation by microRNAs   总被引:13,自引:0,他引:13  
  相似文献   

9.
细菌非编码小RNA(smallnon.codingRNAs,sRNAs)是一类长度为50~500nt、不编码蛋白质的功能RNA,在应对胁迫、毒力产生和新陈代谢等生命过程中起重要的调控作用。其主要通过碱基配对与靶mRNA发生作用,导致mRNA翻译和稳定性改变,从而在转录后水平调节基因的表达,最终影响细菌各种生命活动。近年来,利用生物信息学和分子生物学技术,已在细菌中筛选并鉴定得到了几百个sRNA。该文对细菌sRNA的筛选和鉴定方法作一简要综述。  相似文献   

10.
Small RNAs in Escherichia coli   总被引:10,自引:0,他引:10  
Bacterial cells contain several small RNAs (sRNAs) that are not translated. These stable, abundant RNAs act by multiple mechanisms, such as RNA-RNA basepairing, RNA-protein interactions and intrinsic RNA activity, and regulate diverse cellular functions, including RNA processing, mRNA stability, translation, protein stability and secretion.  相似文献   

11.
Small RNAs loaded into Argonaute proteins direct silencing of complementary target mRNAs. It has been proposed that multiple, imperfectly complementary small interfering RNAs or microRNAs, when bound to the 3' untranslated region of a target mRNA, function cooperatively to silence target expression. We report that, in cultured human HeLa cells and mouse embryonic fibroblasts, Argonaute1 (Ago1), Ago3, and Ago4 act cooperatively to silence both perfectly and partially complementary target RNAs bearing multiple small RNA-binding sites. Our data suggest that for Ago1, Ago3, and Ago4, multiple, adjacent small RNA-binding sites facilitate cooperative interactions that stabilize Argonaute binding. In contrast, small RNAs bound to Ago2 and pairing perfectly to an mRNA target act independently to silence expression. Noncooperative silencing by Ago2 does not require the endoribonuclease activity of the protein: A mutant Ago2 that cannot cleave its mRNA target also silences noncooperatively. We propose that Ago2 binds its targets by a mechanism fundamentally distinct from that used by the three other mammalian Argonaute proteins.  相似文献   

12.
Micros for microbes: non-coding regulatory RNAs in bacteria   总被引:24,自引:0,他引:24  
  相似文献   

13.
Small regulatory RNAs have been identified in a wide range of organisms, where they modify mRNA stability, translation or protein function. Small RNA regulators (sRNAs) either pair with mRNA targets or modify protein activities. Here we discuss current knowledge of the various proteins that interact with RNA regulators and review the physiologic implications of sRNA-protein complexes in DNA, RNA and protein metabolism, as well as in RNA and protein quality control in prokaryotes. Proteins that interact with the sRNAs can possess catalytic activity, induce conformational changes of the sRNA, or be sequestered by the sRNA to prevent the action of the protein.  相似文献   

14.
Information relay from gene to protein: the mRNP connection   总被引:5,自引:0,他引:5  
Eukaryotic messenger RNAs and their binding proteins are organized into structural units called ribonucleoprotein particles (mRNPs). Some mRNP proteins are ubiquitous, and might bind all mRNAs to ensure efficient translation. Other mRNA proteins, however, are cell-specific and bind only certain mRNAs that display regulated translation. This is particularly evident in early development, where some mRNP particles can be sequestered from the translational apparatus for months before they enter polysomes. Recent investigations suggest that these and other mRNP proteins bind specific sequences and regulate translation.  相似文献   

15.
16.
17.
Small RNAs (sRNAs) are important regulators of gene expression during bacterial stress and pathogenesis. sRNAs act by forming duplexes with mRNAs to alter their translation and degradation. In some bacteria, duplex formation is mediated by the Hfq protein, which can bind the sRNA and mRNA in each pair in a random order. Here we investigate the consequences of this random-order binding and experimentally demonstrate that it can counterintuitively cause high Hfq concentrations to suppress rather than promote sRNA activity in Escherichia coli. As a result, maximum sRNA activity occurs when the Hfq concentration is neither too low nor too high relative to the sRNA and mRNA concentrations (‘Hfq set-point’). We further show with models and experiments that random-order binding combined with the formation of a dead-end mRNA–Hfq complex causes high concentrations of an mRNA to inhibit its own duplex formation by sequestering Hfq. In such cases, maximum sRNA activity requires an optimal mRNA concentration (‘mRNA set-point’) as well as an optimal Hfq concentration. The Hfq and mRNA set-points generate novel regulatory properties that can be harnessed by native and synthetic gene circuits to provide greater control over sRNA activity, generate non-monotonic responses and enhance the robustness of expression.  相似文献   

18.
The microRNA world: small is mighty   总被引:15,自引:0,他引:15  
A new paradigm of RNA-directed gene expression regulation has emerged recently, profound in scope but arresting in the apparent simplicity of its core mechanism. Cells express numerous small ( approximately 22 nucleotide) RNAs that act as specificity determinants to direct destruction or translational repression of their mRNA targets. These small RNAs arise from processing of double-stranded RNA by the Dicer nuclease and incorporate with proteins that belong to the Argonaute family. Small RNAs might also target and silence homologous DNA sequences. The immense potential of small RNAs as controllers of gene networks is just beginning to unfold.  相似文献   

19.
Marcus E 《Cell》2004,116(1):1-2
Small regulatory RNAs can act by pairing with their target messages, targeting themselves and the mRNA for degradation; Lenz et al. (this issue of Cell) now report that multiple small RNAs are essential regulators of the quorum-sensing systems of Vibrio species, including the regulation of virulence in V. cholerae.  相似文献   

20.
Expanding roles for miRNAs and siRNAs in cell regulation   总被引:6,自引:0,他引:6  
The role of small RNAs as key regulators of mRNA turnover and translation has been well established. Recent advances indicate that the small RNAs termed microRNAs play important roles in cell proliferation, apoptosis and differentiation. Moreover, the microRNA mechanism is an efficient means to regulate production of a diverse range of proteins. As new microRNAs and their mRNA targets rapidly emerge, it is becoming apparent that RNA-based regulation of mRNAs may rival ubiquitination as a mechanism to control protein levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号