首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 36 clones were randomly selected from a recombinant DNA library of small polydisperse circular DNA (spcDNA) molecules from HeLa cells and were shown to contain repetitive sequences of different reiteration frequencies that ranged from several hundred to several hundred thousand per genome. Sequencing of representative clones revealed tandem repeats of alphoid (alpha) satellite DNA, clustered repeats of the Alu family, KpnI family sequences, tandem repeats of an alpha satellite DNA specific to the X chromosome (alpha X), and A + T-rich segments carrying short stretches of poly(A) or poly(T). DNA rearrangement was frequently found in the repetitive sequences enriched in these spcDNA clones. Short regions of homology that were patchy and inverted were often found, especially at the novel joint where spcDNA sequences are circularized. The presence of these inverted repeats suggests that HeLa spcDNAs are formed by a mechanism that involves looping out of the spcDNA region and joining of the flanking DNA by illegitimate recombination.  相似文献   

2.
Summary Restriction fragments from the fraction of small polydisperse circular DNA (spcDNA) were cloned in pBR322. The spcDNA was prepared from cell cultures derived from an angiofibroma of a patient with tuberous sclerosis (TS). Such cultures have been shown previously to contain increased amounts of spcDNA. Four cloned spcDNA fragments containing single-copy sequences were chosen to characterize the homologous chromosomal DNA segments by restriction analysis. When used as hybridization probes, these four fragments generate well-defined nonvariable patterns in the chromosomal DNA from healthy donors. The restriction patterns obtained with one of the fragments (D-C4) can best be interpreted by assuming the presence of two copies of the homologous sequences in chromosomal DNA. A second sequence, A-B4, occurs at least 30–50 times in the haploid human genome. In both cases the duplicated regions span relatively large segments of DNA.  相似文献   

3.
Small polydisperse circular (spc) DNA was isolated and cloned, using BglII from Chinese hamster ovary (CHO) cells. The properties of 47 clones containing at least 43 different BglII fragments are reported. The majority of the clones probably contain entire sequences from individual spcDNA molecules. Most of the clones were homologous to sequences in CHO cell chromosomal DNA, and many were also homologous to mouse LMTK- cell chromosomal sequences. The majority of homologous CHO cell chromosomal sequences were repetitive, although a few may be single copy. Only a small fraction of cloned spcDNA molecules were present in every cell; most occurred less frequently than once in 15 cells. Localization studies indicated that at least a portion of spcDNA is associated with the nucleus in CHO cells.  相似文献   

4.
We have isolated, cloned and analyzed small polydisperse circular (spc) DNA from mouse 3T6 cells. The representation of highly repeated mouse genome sequence families in spcDNA has been examined, and the B1 repeat appears overrepresented in spcDNA by two criteria. The majority of spcDNA clones, however, is made out by as yet uncharacterized middle repetitive sequences. We have investigated the increase in the spcDNA population upon cycloheximide treatment of individual sequences, which are found to amplify differentially.  相似文献   

5.
6.
Lilly JW  Havey MJ 《Genetics》2001,159(1):317-328
Closely related cucurbit species possess eightfold differences in the sizes of their mitochondrial genomes. We cloned mitochondrial DNA (mtDNA) fragments showing strong hybridization signals to cucumber mtDNA and little or no signal to watermelon mtDNA. The cucumber mtDNA clones carried short (30-53 bp), repetitive DNA motifs that were often degenerate, overlapping, and showed no homology to any sequences currently in the databases. On the basis of dot-blot hybridizations, seven repetitive DNA motifs accounted for >13% (194 kb) of the cucumber mitochondrial genome, equaling >50% of the size of the Arabidopsis mitochondrial genome. Sequence analysis of 136 kb of cucumber mtDNA revealed only 11.2% with significant homology to previously characterized mitochondrial sequences, 2.4% to chloroplast DNA, and 15% to the seven repetitive DNA motifs. The remaining 71.4% of the sequence was unique to the cucumber mitochondrial genome. There was <4% sequence colinearity surrounding the watermelon and cucumber atp9 coding regions, and the much smaller watermelon mitochondrial genome possessed no significant amounts of cucumber repetitive DNAs. Our results demonstrate that the expanded cucumber mitochondrial genome is in part due to extensive duplication of short repetitive sequences, possibly by recombination and/or replication slippage.  相似文献   

7.
Saturation of human chromosome 3 with unique sequence hybridization probes   总被引:4,自引:0,他引:4  
We have generated chromosome 3-specific recombinant libraries in both lambda and cosmid cloning vectors starting with somatic cell hybrids (hamster/human) containing either an intact chromosome 3 or a chromosome 3 with an interstitial deletion removing 75% of long-arm sequences. The libraries contained between 2 X 10(5) and 5 X 10(6) independent recombinants. Approximately 2% of the recombinants in these libraries contain inserts of human DNA. These were identified by hybridizing the recombinants to radioactively labeled total human DNA. Over 2500 recombinants containing human DNA were isolated from these various libraries and DNA was prepared from each of them. This represents 80,000 kb of cloned chromosome 3 sequences. One-third of the DNAs were digested with EcoRI or HindIII, and fragments free of repetitive sequences were radioactively labeled using random hexanucleotide primers and tested as unique sequence hybridization probes. Over 6500 of the fragments were tested and of these 758 were unique sequence probes with minimal or no background hybridization. Their hybridization only to chromosome 3 was verified. These probes, which were derived from 452 independent recombinants, should provide an effective saturation of human chromosome 3.  相似文献   

8.
Small polydispersed circular DNA(spcDNA) was isolated from cultivated HeLa cells. Cells were treated by cycloheximide in concentrations of 1 and 50 micrograms/ml. Gradient fractions were dot blotted to nitrocellulose filters and were hybridized with different repetitive DNAs. The pool of repetitive DNA sequences in fraction of spcDNA increased for cycloheximide treated cells. The content of Alu sequences increased by 1.5-2.5 times, "classical" satellite DNA--by 5-7 times, alpha-satellite--by 3-5 times.  相似文献   

9.
R L Neve  G A Bruns  T P Dryja  D M Kurnit 《Gene》1983,23(3):343-354
Human Alu repeat ("BLUR") sequences have been cloned into the mini-plasmid vector piVX. The resulting piBLUR clones have been used to rescue selectively, by recombination, bacteriophage carrying human DNA sequences from genomic libraries constructed using DNA from rodent-human somatic cell hybrids. piBLUR clones are able to retrieve human clones from such libraries because at least one Alu family repeat is present on most 15 to 20 kb fragments of human DNA and because of the relative species-specificity of the sequences comprising the Alu family. The rapid, selective plaque purification achieved results in the construction of a collection of recombinant phage carrying diverse human DNA inserts from a specific subset of the human karyotype. Subfragments of two recombinants rescued from a mouse-human somatic cell hybrid containing human chromosomes X, 10, 13, and 22 were mapped to human chromosomes X and 13, respectively, demonstrating the utility of this protocol for the isolation of human chromosome-specific DNA sequences from appropriate somatic cell hybrids.  相似文献   

10.
Repetitive sequences constitute a significant component of most eukaryotic genomes, and the isolation and characterization of repetitive DNA sequences provide an insight into the organization and evolution of the genome of interest. We report the isolation and characterization of the major classes of repetitive sequences from the genome of Panax ginseng. The isolation of repetitive DNA from P. ginseng was achieved by the reannealing of chemically hydrolyzed (200 bp-1 kb fragments) and heat-denatured genomic DNA to low C(o)t value. The low C(o)t fraction was cloned, and fifty-five P. ginseng clones were identified that contained repetitive sequences. Sequence analysis revealed that the fraction includes repetitive telomeric sequences, species-specific satellite sequences, chloroplast DNA fragments and sequences that are homologous to retrotransposons. Two of the retrotransposon-like sequences are homologous to Ty1/ copia-type retroelements of Zea mays, and six cloned sequences are homologous to various regions of the del retrotransposon of Lilium henryi. The del retrotransposon-like sequences and several novel repetitive DNA sequences from P. ginseng were used to differentiate P. ginseng from P. quinquefolius, and should be useful for evolutionary studies of these disjunct species.  相似文献   

11.
A large proportion (0.5-1%) of total mouse DNA is cleaved by Bam HI into fragments whose size is about 500 base pairs. A cloned member of this repetitive family of DNA sequences (BAM5 family) was sequenced by the dideoxy chain termination procedure and shown to contain 507 base pairs. The sequence exhibited no unusual or remarkable features. Repetitive sequences complementary to the cloned BAM5 fragment were found in rat DNA, but not in feline or human DNA. Restriction mapping suggested that many BAM5 sequences were components of much larger repetitive DNAs which were scattered throughout the mouse genome. The BAM5 sequences within the larger repetitive DNAs did not appear to be arranged tandemly or as members of scrambled tandem repeats. RNA homologous to the cloned BAM5 sequence was detected in cultured mouse cells, but not in cultured rat cells.  相似文献   

12.
The pattern of DNA sequence organization in the genome of Cycas revoluta was analyzed by DNA/DNA reassociation. Reassociation of 400 base pair (bp) fragments to various C0t values indicates the presence of at least four kinetic classes: the foldback plus very highly repetitive sequences (15%), the fast repeats (24%), the slow repeats (44%), and the single copy (17%). The latter component reassociates with a rate constant 1×10–4 M–1S–1 corresponding to a complexity of 1.6× 106 kb per haploid genome. A haploid C. revoluta nucleus contains approximately 10.3 pg DNA. The single-copy sequences account for about 28% of the DNA, but only 17% reassociate with single-copy kinetics because of interspersion with repetitive sequences. — The interspersion of repetitive and single-copy sequences was examined by reassociation of DNA fragments of varying length to C0t values of 70 and 500. A major (65%) and homogeneous class of single-copy sequences averaging 1,100 bp in length is interspersed in a short period pattern with repeated sequences. A minor (35%) heterogeneous single-copy component is interspersed in a long-period pattern. The majority of repetitive sequences have a length distribution of 100–350 bp with subclasses averaging 150 and 300 bp in length. Repeat sequences with a wide range in sizes exceeding 2 kilobase pair (kb) are also present in this genome. — The size and distribution of inverted repeat (ir) sequences in the DNA of C. revoluta were studied by electron microscopy. It is estimated that there are approximately 4 × 106 ir pairs (one per 2.33 kb) that form almost equal numbers of looped and unlooped palindromes. This high value is 2.5 times that found in wheat DNA. These palindromes are in general randomly distributed in the genome with an average interpalindrome distance of 1.6 kb. The majority (about 85%) of ir sequences of both types of palindromes belong to a main-size class, with an average length of 210 bp in the unlooped and and 163 bp in the looped type. These values are comparable to those reported for some other plant and animal genomes. Distribution of length of single stranded loops showed a main-size class (75%) with an average length of 220 bp.  相似文献   

13.
Summary The entire set of transferred chloroplast DNA sequences in the mitochondrial genome of rice (Oryza sativa cv. Nipponbare) was identified using clone banks that cover the chloroplast and mitochondrial genomes. The mitochondrial fragments that were homologous to chloroplast DNA were mapped and sequenced. The nucleotide sequences around the termini of integrated chloroplast sequences in the rice mtDNA revealed no common sequences or structures that might enhance the transfer of DNA. Sixteen chloroplast sequences, ranging from 32 bases to 6.8 kb in length, were found to be dispersed throughout the rice mitochondrial genome. The total length of these sequences is equal to approximately 6% (22 kb) of the rice mitochondrial genome and to 19% of the chloroplast genome. The transfer of segments of chloroplast DNA seems to have occurred at different times, both before and after the divergence of rice and maize. The mitochondrial genome appears to have been rearranged after the transfer of chloroplast sequences as a result of recombination at these sequences. The rice mitochondrial DNA contains nine intact tRNA genes and three tRNA pseudogenes derived from the chloroplast genome.  相似文献   

14.
15.
Cloning of heat-shock locus 93D from Drosophila melanogaster.   总被引:6,自引:1,他引:5       下载免费PDF全文
Using the microcloning approach a number of recombinant lambda phages carrying DNA from the 93D region have been isolated. Screening genomic libraries, cloned in phage lambda or cosmid vectors, with this isolated DNA yielded a series of overlapping DNA fragments from the region 93D6-7 as shown by in situ hybridization to polytene chromosomes. In vitro 32P-labelled nuclear RNA prepared from heat-shocked third instar larvae hybridized specifically to one fragment within 85 kb of cloned DNA. The region which is specifically transcribed after heat shock could be defined to a cluster of internally-repetitive DNA and its neighbouring proximal sequences. Over a sequence of 10-12 kb in length the DNA is cut into repeat units of approximately 280 nucleotides by the restriction endonuclease TaqI. The TaqI repeat sequences are unique in the Drosophila genome.  相似文献   

16.
P J Wejksnora 《Gene》1985,33(3):285-292
We have examined the ribosomal RNA (rRNA) genes of the Chinese hamster ovary (CHO) cell line. A partial EcoRI library of genomic CHO DNA was prepared using lambda Charon-4A. We isolated two recombinants containing the region transcribed as 45S pre-rRNA and 13 kb of external spacer flanking 5' and 3' to the transcribed region. These sequences show restriction site homology with the vast majority of the genomic sequences complementary to rRNA. In addition to this form of rDNA, Southern blot analysis of EcoRI-cut CHO genomic DNA reveals numerous minor fragments ranging from 2 to 19 kb which are complementary to 18S rRNA. We isolated one clone which contains the 18S rRNA gene and sequences 5' which appear to contain length heterogeneity within the non-transcribed spacer region. We have nine additional cloned EcoRI fragments in which the homology with 18S rRNA is limited to a 0.9-kb EcoRI-HindIII fragment. This EcoRI-HindIII fragment is present in each of the cloned EcoRI fragments, and is flanked on both sides by apparently nonribosomal sequences which bear little restriction site homology with each other or the major cloned rDNA repeat.  相似文献   

17.
Twenty-eight Bam H 1 restriction fragments were isolated from normal mitochondrial DNA of maize by recombinant DNA techniques to investigate the organization of the mitochondrial genome. Each cloned fragment was tested by molecular hybridization against a Bam digest of total mitochondrial DNA. Using Southern transfers, we identified the normal fragment of origin for d each clone. Twenty-three of the tested clones hybridized only to the fragment from which the clone was derived. In five cases, labeling of an additional band indicated some sequence repetition in the mitochondrial genome. Four clones from normal mitochondrial DNA were found which share sequences with the plasmid-like DNAs, S-1 and S-2, found in S male sterile cytoplasm. The total sequence complexity of the clones tested is 121×106 d (daltons), which approximates two thirds of the total mitochondrial genome (estimated at 183×106 d). Most fragments do not share homology with other fragments, and the total length of unique fragments exceeds that of the largest circular molecules observed. Therefore, the different size classes of circular molecules most likely represent genetically discrete chromosomes in a complex organelle genome. The variable abundance of different mitochondrial chromosomes is of special interest because it represents an unusual mechanism for the control of gene expression by regulation of gene copy number. This mechanism may play an important role in metabolism or biogenesis of mitochondria in the development of higher plants.  相似文献   

18.
19.
Yonemura I  Nakada K  Sato A  Hayashi J  Fujita K  Kaneko S  Itaya M 《Gene》2007,391(1-2):171-177
The complete mouse mitochondrial genome (16.3 kb) was directly cloned into a Bacillus subtilis genome (BGM) vector. Two DNA segments of 2.06 and 2.14 kb that flank the internal 12 kb of the mitochondrial DNA (mtDNA) were subcloned into an Escherichia coli plasmid. Subsequent integration of the plasmid at the cloning locus of the BGM vector yielded a derivative specific for the targeted cloning of the internal 12-kb mtDNA region. The BGM vector took up mtDNA purified from mouse liver and integrated it by homologous recombination at the two preinstalled mtDNA-flanking sequences. The complete cloned mtDNA in the BGM vector was converted to a covalently closed circular (ccc) plasmid form via gene conversion in B. subtilis. The mtDNA carried on this plasmid was then isolated and transferred to E. coli. DNA sequence fidelity and stability through the BGM vector-mediated cloning process were confirmed.  相似文献   

20.
We have identified and sequenced two members of a chicken middle repetitive DNA sequence family. By reassociation kinetics, members of this family (termed CRl) are estimated to be present in 1500-7000 copies per chicken haploid genome. The first family member sequenced (CRlUla) is located approximately 2 kb upstream from the previously cloned chicken Ul RNA gene. The second CRl sequence (CRl)Va) is located approximately 12 kb downstream from the 3' end of the chicken ovalbumin gene. The region of homology between these two sequences extends over a region of approximately 160 base pairs. In each case, the 160 base pair region is flanked by imperfect, but homologous, short direct repeats 10-15 base pairs in length. When the CRl sequences are compared with mammalian ubiquitous interspersed repetitive DNA sequences (human Alu and Mouse Bl families), several regions of extensive homology are evident. In addition, the short nucleotide sequence CAGCCTGG which is completely conserved in ubiquitous repetitive sequence families from several mammalian species is also conserved at a homologous position in the chicken sequences. These data imply that at least certain aspects of the sequence and structure of these interspersed repeats must predate the avian-mammalian divergence. It seems that the CRl family may possibly represent an avian counterpart of the mammalian ubiquitous repeats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号