首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myosin light chain kinase and a fraction of type II cAMP-dependent protein kinase have been partially purified from bovine brain by affinity chromatography on calmodulin-Sepharose. The myosin kinase was purified approximately 3700-fold and has an estimated molecular weight of 130,000 +/- 10,000 by sodium dodecyl sulfate gel electrophoresis. A fraction of soluble cAMP-dependent protein kinase also bound to calmodulin-Sepharose and was purified 2300-fold. A fraction of this cAMP-dependent protein kinase after purification by glycerol gradient centrifugation was shown to contain the two subunits of calcineurin, a major calmodulin-binding protein in brain, and the two subunits of type II cAMP-dependent protein kinase in a ratio of 1:1:2:2. Its sedimentation coefficient was 8.1 S and 9.0 S when centrifuged in the absence or presence of calmodulin, suggesting the formation of a complex between calmodulin and protein kinase. Our results suggest the possibility that calcineurin may be involved in the interaction between the protein kinase and calmodulin. Furthermore, our studies imply that the regulatory subunit of the cAMP-dependent protein kinase, but not the catalytic subunit, is the site of interaction with calmodulin since the catalytic subunit of protein kinase was partially resolved from the complex by cAMP.  相似文献   

2.
A cAMP-dependent protein kinase from mycelia of Saccobolus platensis was characterized. The holoenzyme seems to be a dimer (i.e., regulatory subunit--catalytic subunit) of 78,000 Da, slightly activated by cAMP but susceptible to dissociation into its subunits by cAMP, or by kemptide and protamine, the best substrates for Saccobolus protein kinase. The regulatory subunit was purified to homogeneity by affinity chromatography. It is highly specific for cAMP and has two types of binding sites but failed to inhibit the phosphotransferase activity of the homologous or the heterologous (bovine heart) catalytic components. The activity of the catalytic subunit was completely abolished by the regulatory component of the bovine heart protein kinase as well as by a synthetic peptide corresponding to the active site of the mammalian protein kinase inhibitor. The data suggest that interaction between the subunits of the S. platensis protein kinase is different than that found in cAMP-dependent protein kinases from other sources. Similarities and differences between the Saccobolus protein kinase and enzymes from low eucaryotes and mammalian tissues are discussed.  相似文献   

3.
A rapid and efficient method for purifying cAMP-dependent protein kinase (PKA) holoenzyme based on immunoaffinity chromatography was developed. The affinity column was prepared by coupling a polyclonal antibody raised against the PKA regulatory subunit to NHS-activated Sepharose. The holoenzyme purified by this procedure from the bivalve molluskMytilus galloprovincialiswas shown to be fully active as judged by (1) its cAMP-binding activity, (2) its cAMP-dependent protein kinase activity, and (3) its autophosphorylation ability. Moreover, together with both regulatory and catalytic subunits, which constitute the PKA holoenzyme, a protein with a molecular mass of approximately 200 kDa was copurified, and results from gel-filtration chromatography showed that it was associated with a fraction of PKA. Therefore, this immunoaffinity purification technique could also be useful to isolate such proteins as interact with PKAin vivo.  相似文献   

4.
p-Fluorosulfonylbenzoyl 5'-adenosine (FSO2BzAdo) was shown previously to be an irreversible inhibitor of the catalytic subunit of cAMP-dependent protein kinase II from porcine skeletal muscle (Zoller, M. J., and Taylor, S. S. (1979) J. Biol. Chem. 254, 8363-8368). The catalytic subunit of porcine heart cAMP-dependent protein kinase was also inhibited following incubation with FSO2[14C]BzAdo, and inhibition was shown to result from the stoichiometric, covalent modification of a single lysine residue. The amino acid sequence in an extended region around the carboxybenzenesulfonyl lysine (CBS-lysine) was elucidated by characterizing both tryptic and cyanogen bromide peptides containing the 14C-modified residue. The sequence in this region was Leu-Val-Lys-His-Lys-Glu-Thr-Gly-Asn-His-Phe-Ala-Met-Lys(CBS)-Ile-Leu-Asp-Lys-Glu-Lys-Val-Val-Lys-Leu-Lys-Gln-Ile. The covalently modified residue corresponded to lysine 71 in the overall polypeptide chain. Homologies to bovine heart catalytic subunit and to a site modified by FSO2BzAdo in phosphofructokinase are considered.  相似文献   

5.
It has been shown that cAMP-dependent phosphorylation of a soluble sperm protein is important for the initiation of flagellar motion. The suggestion has been made that this motility initiation protein, named axokinin, is the major 56,000-dalton phosphoprotein present in both dog sperm and in other cells containing axokinin-like activity. Since the regulatory subunit of a type II cAMP-dependent protein kinase is a ubiquitous cAMP-dependent phosphoprotein of similar subunit molecular weight as reported for axokinin, we have addressed the question of how many soluble 56,000-dalton cAMP-dependent phosphoproteins are present in mammalian sperm. We report that in bovine sperm cytosol, the ratio of the type I to type II cAMP-dependent protein kinase is approximately 1:1. The type II regulatory subunit is related to the non-neural form of the enzyme and undergoes a phosphorylation-dependent electrophoretic mobility shift. The apparent subunit molecular weights of the phospho and dephospho forms are 56,000 and 54,000 daltons, respectively. When bovine sperm cytosol or detergent extracts are phosphorylated in the presence of catalytic subunits, two major proteins are phosphorylated and have subunit molecular weights of 56,000 and 40,000 daltons. If, however, the type II regulatory subunit (RII) is quantitatively removed from these extracts using either immobilized cAMP or an anti-RII monoclonal affinity column, the ability to phosphorylate the 56,000- but not 40,000-dalton polypeptide is lost. These data suggest that the major 56,000 dalton cAMP-dependent phosphoprotein present in bovine sperm is the regulatory subunit of a type II cAMP-dependent protein kinase and not the motility initiator protein, axokinin.  相似文献   

6.
A synthetic peptide of 18 amino acids corresponding to the inhibitory domain of the heat-stable protein kinase inhibitor was synthesized and shown to inhibit both the C alpha and C beta isoforms of the catalytic (C) subunit of cAMP-dependent protein kinase. Extracts from cells transfected with expression vectors coding for the C alpha or the C beta isoform of the C subunit required 200 nM protein kinase inhibitor peptide for half-maximal inhibition of kinase activity in extracts from these cells. An affinity column was constructed using this synthetic peptide, and the column was incubated with protein extracts from cells overexpressing C alpha or C beta. Elution of the affinity column with arginine allowed single step isolation of purified C alpha and C beta subunits. The C alpha and C beta proteins were enriched 200-400-fold from cellular extracts by this single step of affinity chromatography. No residual inhibitory peptide activity could be detected in the purified protein. The purified C subunit isoforms were used to demonstrate preferential antibody reactivity with the C alpha isoform by Western blot analysis. Furthermore, preliminary characterization showed both isoforms have similar apparent Km values for ATP (4 microM) and for Kemptide (5.6 microM). These results demonstrate that a combination of affinity chromatography employing peptides derived from the heat-stable protein kinase inhibitor protein and the use of cells overexpressing C subunit related proteins may be an effective means for purification and characterization of the C subunit isoforms. Furthermore, this method of purification may be applicable to other kinases which are known to be specifically inhibited by small peptides.  相似文献   

7.
The purification and functional characterization of protein kinase A catalytic subunit (PKAcat) from bovine lens cytosol has been described. Purification to homogeneity has been achieved by using 100 kDa cut-off membrane filtration followed by Sephacryl S-300 chromatography and finally fractionating on High Q anion exchange column. The purified protein migrates as a single band of molecular mass ∼41 kDa on 12.5% SDS-PAGE. Proteomic data from ion trap LC-MS when analyzed through NCBI blast program reveals significant homology (52%) with bovine zeta-crystallin and also some homology with pig casein kinase I alpha chain (38%) and SLA-DR1 beta 1 domain (38%). The search does not indicate homology with any known catalytic subunit of PKA. Inspite of the significant homology with the zeta-crystallin, our protein is different from it in terms of molecular mass. pI value of the kinase (5.3) obtained from 2D analysis is also different from zeta-crystallin (8.5). The protein is found to contain 17% α-helix, 26.5% β-sheet, 21.4% turn and 34.7% random coil. The active catalytic subunit of the bovine lens cAMP-dependent kinase belongs to Type I Cα subtype. The enzyme shows maximum activity at 30 min incubation in presence of 5 mM MgCl2 and 50 μM ATP. The kinase shows broad substrate specificity. It prefers Ser over Thr as phosphorylating residue. Phosphorylation of crystallin proteins, major protein fraction of bovine lens and phosphorylation of chaperone protein α crystallin by the kinase suggests that the kinase plays some crucial role in regulation of chaperone function within lens.  相似文献   

8.
A study is presented of the cAMP-dependent phosphorylation in bovine heart mitochondria of three proteins of 42, 16 and 6.5 kDa associated to the inner membrane. These proteins are also phosphorylated by the cytosolic cAMP-dependent protein kinase and by the purified catalytic subunit of this enzyme. In the cytosol, proteins of 16 and 6.5 kDa are phosphorylated by the cAMP-dependent kinase. It is possible that cytosolic and mitochondrial cAMP-dependent kinases phosphorylate the same proteins in the two compartments.  相似文献   

9.
Bovine heart phosphorylase kinase has been isolated by a procedure involving precipitation with polyethylene glycol, DEAE-Sephacel chromatography and calmodulin-Sepharose affinity chromatography. The isolated enzyme had a specific activity of 8.3 IU/mg of protein at pH 8.2 at 30 degrees C in the presence of 1% glycogen. The native enzyme had a sedimentation coefficient of 23 S and the Mr of the alpha', beta, gamma, and delta subunits, were 140,000, 130,000, 46,000, and 18,000, respectively. Activation of the phosphorylase kinase by the catalytic subunit of bovine heart cAMP-dependent protein kinase increases the pH 6.8/8.2 activity ratio from 0.01 to 0.32-0.38. Glycogen (1%) decreased the Km of the activated phosphorylase kinase at pH 6.8 for phosphorylase b from 5.5 to 1.25 mg/ml. Trypsin treatment increased the pH 6.8 activity but decreased the pH 8.2 activity. During this process the alpha' subunit was converted to a Mr 110,000 polypeptide and the enzyme activity was converted essentially to a 5.9 S species having an apparent Mr of 100,000 as determined by gel filtration. On extended trypsin treatment only one major polypeptide corresponding to the beta subunit remained. The same polypeptide was present in the active fractions following gel filtration of the trypsinized kinase.  相似文献   

10.
Arginine vasopressin (antidiuretic hormone, ADH) stimulation of sodium transport in high electrical resistance epithelia is accompanied by adenylate cyclase stimulation and cAMP accumulation. The hypothesis of direct phosphorylation of the purified amiloride-blockable epithelial Na+ channel protein by cAMP-dependent protein kinase A after ADH treatment of cultured cells was investigated in this study. Phosphate-depleted A6 cells (a cell line derived from toad kidney) were exposed to 32PO4(3-) in the absence or presence of basolateral ADH (100 milliunits/ml). After 20 min (the time needed for ADH to increase maximally Na+ transport), the Na+ channels were extracted from the cells and purified. At every stage of purification, only one subunit of the Na+ channel, namely, the 315-kDa subunit, was specifically phosphorylated as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography or scintillation counting. In addition, a polyclonal antibody raised against purified epithelial Na+ channel protein was able to immunoprecipitate the phosphorylated channel protein from a detergent-solubilized fraction of vasopressin-treated A6 cells. This same subunit was also specifically phosphorylated in vitro when the purified Na+ channel protein was incubated with gamma-[32P]ATP and the purified catalytic subunit of the cAMP-dependent protein kinase. Thus, only a single component, the 315-kDa subunit, of the Na+ channel protein complex (which is composed of six subunits) can be phosphorylated both in vivo and in vitro. This subunit is selectively phosphorylated by the catalytic subunit of cAMP-dependent protein kinase to a level of 2-3 mol of 32P/mol of protein.  相似文献   

11.
While attempting to isolate a cDNA clone for the catalytic subunit of the bovine cAMP-dependent protein kinase, we have isolated cDNAs which code for a protein slightly different than the known amino acid sequence. The alternate cDNA was identified by screening a bovine pituitary cDNA library using synthetic oligonucleotides predicted from the known amino acid sequence of the catalytic subunit. The cDNA which we identified, encodes a protein which is 93% identical to the known amino acid sequence of the bovine catalytic subunit. It seems likely that this cDNA represents a previously undiscovered catalytic subunit of the cAMP-dependent protein kinase. The mRNA for the alternate catalytic subunit is different in size from the mRNA coding for the previously known catalytic subunit and also has a different tissue distribution. These findings suggest that there are at least two different genes for the catalytic subunit. The differences in amino acid sequence and tissue distribution suggest the possibility of important functional differences in the two enzymes.  相似文献   

12.
A peptide affinity inactivator, Ac-Leu-Arg-Arg-Ala-(BrAc)Orn-Leu-Gly, was used as a tool to probe for active site residues in the catalytic subunit of bovine cAMP-dependent protein kinase. The peptide inactivated the catalytic subunit in an active site-directed and monophasic manner with a first-order rate constant of 0.03 min-1 and a dissociation constant of 675 microM. Studies with radioactive peptide indicated that approximately one equivalent of peptide was incorporated into each protein molecule. Protein sequencing identified the modified residue as Cys-199. A possible location for Cys-199 within the active site is suggested.  相似文献   

13.
Novel affinity ligands, consisting of ATP-resembling part coupled with specificity determining peptide fragment, were proposed for purification of protein kinases. Following this approach affinity sorbents based on two closely similar ligands AdoC-Aoc-Arg4-Lys and AdoC-Aoc-Arg4-NH(CH2)6NH2, where AdoC stands for adenosine-5'-carboxylic acid and Aoc for amino-octanoic acid, were synthesized and tested for purification of recombinant protein kinase A catalytic subunit directly from crude cell extract. Elution of the enzyme with MgATP as well as L-arginine yielded homogeneous protein kinase A preparation in a single purification step. Also protein kinase A from pig heart homogenate was selectively isolated using MgATP as eluting agent. Protein kinase with acidic specificity determinant (CK2) as well as other proteins possessing nucleotide binding site (L-type pyruvate kinase) or sites for wide variety of different ligands (bovine serum albumin) did not bind to the column, pointing to high selectivity of the bi-functional binding mode of the affinity ligand.  相似文献   

14.
The effects of cyclic AMP treatment on total cAMP-dependent protein kinase activity in GH3 pituitary tumor cells have been studied. Incubation of cells for 24 h with 1 microM forskolin resulted in a 50% decrease in total cAMP-dependent protein kinase activity which was reversible upon removal of forskolin from culture media. A similar response was observed in GH3 cells treated with 5 ng/ml cholera toxin and 0.5 mM dibutyryl cAMP but not 0.5 mM dibutyryl cGMP. Northern blot analysis demonstrated that the steady-state level of the mRNA for each of the six kinase subunit isoforms studied was not detectably altered after treatment with 1 microM forskolin for 24 h. The concentration of catalytic subunit was also assessed by binding studies using a radiolabeled heat-stable protein kinase inhibitor. Treatment of GH3 cells with 1 microM forskolin for 24 h reduced protein kinase inhibitor binding activity by 50%, consistent with the observed forskolin-induced decrease in total kinase activity. Analysis of endogenous heat-stable protein kinase inhibitor activity in GH3 cell extracts showed no significant difference between forskolin-treated cells and cells maintained under control conditions. To assess possible effects on catalytic subunit degradation, pulse-chase experiments were performed and radiolabeled catalytic subunit was isolated by affinity chromatography. The results demonstrated that treatment of cells with chlorophenylthio-cAMP detectably increased the apparent degradation of radiolabeled catalytic subunit. The increased degradation of the catalytic subunit was sufficient to account for the observed decreases in kinase activity. These results suggest that relatively long term cAMP treatment can alter total cAMP-dependent protein kinase activity through effects to alter the degradation of the catalytic subunit of the enzyme.  相似文献   

15.
The phosphorylation of the calmodulin-dependent enzyme myosin light chain kinase, purified from bovine tracheal smooth muscle and human blood platelets, by the catalytic subunit of cAMP-dependent protein kinase and by cGMP-dependent protein kinase was investigated. When myosin light chain kinase which has calmodulin bound is phosphorylated by the catalytic subunit of cAMP-dependent protein kinase, 1 mol of phosphate is incorporated per mol of tracheal myosin light chain kinase or platelet myosin light chain kinase, with no effect on the catalytic activity. Phosphorylation when calmodulin is not bound results in the incorporation of 2 mol of phosphate and significantly decreases the activity. The decrease in myosin light chain kinase activity is due to a 5 to 7-fold increase in the amount of calmodulin required for half-maximal activation of both tracheal and platelet myosin light chain kinase. In contrast to the results with the catalytic subunit of cAMP-dependent protein kinase, cGMP-dependent protein kinase cannot phosphorylate tracheal myosin light chain kinase in the presence of bound calmodulin. When calmodulin is not bound to tracheal myosin light chain kinase, cGMP-dependent protein kinase phosphorylates only one site, and this phosphorylation has no effect on myosin light chain kinase activity. On the other hand, cGMP-dependent protein kinase incorporates phosphate into two sites in platelet myosin light chain kinase when calmodulin is not bound. The sites phosphorylated by the two cyclic nucleotide-dependent protein kinases were compared by two-dimensional peptide mapping following extensive tryptic digestion of the phosphorylated myosin light chain kinases. With respect to the tracheal myosin light chain kinase, the single site phosphorylated by cGMP-dependent protein kinase when calmodulin is not bound appears to be the same site phosphorylated in the tracheal enzyme by the catalytic subunit of cAMP-dependent protein kinase when calmodulin is bound. With respect to the platelet myosin light chain kinase, the additional site that was phosphorylated by cGMP-dependent protein kinase when calmodulin was not bound was different from that phosphorylated by the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

16.
B A Hemmings 《FEBS letters》1986,196(1):126-130
The cAMP-dependent protein kinase from LLC-PK1 cells can be activated in vivo by calcitonin and vasopressin, or forskolin. Continuous treatment of cells with these agents results in a decrease of total cAMP-PK activity. The loss of kinase activity was enhanced when either of these three agents was incubated in the presence of isobutylmethylxanthine. Results obtained using affinity purified antibodies to the catalytic subunit show that the loss of kinase was due to specific proteolysis of this subunit.  相似文献   

17.
Gunzburg J  Veron M 《The EMBO journal》1982,1(9):1063-1068
We demonstrate the occurrence of a cAMP-dependent protein kinase in Dictyostelium discoideum cells at the terminal stage of differentiation. A cAMP-binding component was purified to homogeneity by affinity chromatography. This subunit inhibits the activity of purified catalytic subunit from beef heart protein kinase; the inhibition is reversed upon addition of cAMP. The protein is highly specific for cAMP and has a dissociation constant of 4 nM. The isolated regulatory subunit is a monomer of 39 K, with a sedimentation coefficient of 3.5S and a frictional coefficient of 1.24. The differences between this regulatory subunit and regulatory subunits of protein kinases from other sources are discussed.  相似文献   

18.
The activity of the eukaryotic elongation factor 2 (eEF-2)-specific Ca(2+)- and calmodulin-dependent protein kinase III (CaM PK III) is regulated by phosphorylation. The kinase can be inactivated by treatment with alkaline phosphatase and subsequently reactivated by endogenous protein kinase. This kinase can be substituted for by the catalytic subunit of cAMP-dependent protein kinase but not by casein kinase II. The purified kinase preparation contains only one protein as judged by gel electrophoresis. This protein has a molecular mass of approximately 90 kDa and an isoelectric point of 5.2. Reactivation of the eEF-2 kinase is associated with the phosphorylation of this protein. The amino acid sequence obtained from the 90-kDa protein reveals substantial homology with that of murine heat shock protein 86 (HSP 86) a member of the HSP 90-family. Conventional preparations of HSP 90 contain an inactive eEF-2 kinase that could be activated after dephosphorylation and phosphorylation by the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

19.
Two murine monoclonal antibodies (H5 and B6) generated against bovine heart type II regulatory subunit of cAMP-dependent protein kinase were shown to cross-react equally well with the homologous subunit from porcine heart. The antibodies demonstrated specificity for only the type II regulatory subunit and showed negligible cross-reactivity with the type I regulatory subunit, the catalytic subunit, and cGMP-dependent protein kinase. Following limited proteolysis of type II regulatory subunit with chymotrypsin, the H5 monoclonal antibody was shown to cross-react with the Mr = 37,000 cAMP-binding domain corresponding to the COOH-terminal region of the polypeptide chain. To more specifically localize the antigenic sites, the porcine type II regulatory subunit was carboxymethylated and cleaved with cyanogen bromide. Both monoclonal antibodies cross-reacted with the NH2-terminal CNBr peptide, and this peptide demonstrated affinities similar to native bovine type II regulatory subunit in competitive displacement radioimmunoassays. Tryptic cleavage of this CNBr fragment destroyed all antigenicity for both monoclonal antibodies, whereas antigenicity was retained following chymotryptic digestion. A single major immunoreactive chymotryptic fragment that cross-reacted with H5 was isolated by gel filtration and reverse phase high performance liquid chromatography. this peptide retained the complete antigenic site and had the following sequence: Asn-Pro-Asp-Glu-Glu-Glu-Glu-Asp-Thr-Asp-Pro-Arg-Val-Ile-His-Pro-Lys-Thr-Asp-Gl n. This antigenic site was localized just beyond the major site of autophosphorylation, approximately a third of the distance from the NH2-terminal end of the polypeptide chain.  相似文献   

20.
Smooth muscle myosin light chain kinase is phosphorylated in vitro by protein kinase C purified from human platelets. When myosin light chain kinase which has calmodulin bound is phosphorylated by protein kinase C, 0.8-1.1 mol of phosphate is incorporated per mol of myosin light chain kinase with no effect on its enzyme activity. Phosphorylation of myosin light chain kinase with no calmodulin bound results in the incorporation of 2-2.4 mol of phosphate and significantly decreases the rate of myosin light chain kinase activity. The decrease in myosin light chain kinase activity is due to a 3.3-fold increase in the concentration of calmodulin necessary for the half-maximal activation of myosin light chain kinase. The sites phosphorylated by protein kinase C and the catalytic subunit of cAMP-dependent protein kinase were compared by two-dimensional peptide mapping following extensive tryptic digestion of phosphorylated myosin light chain kinase. The single site phosphorylated by protein kinase C when calmodulin is bound to myosin light chain kinase (site 3) is different from that phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 1). The additional site that is phosphorylated by protein kinase C when calmodulin is not bound appears to be the same site phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 2). These studies confirm the important role of site 2 in binding calmodulin to myosin light chain kinase. Sequential studies using both protein kinase C and the catalytic subunit of cAMP-dependent protein kinase suggest that the phosphorylation of site 1 also plays a part in decreasing the affinity of myosin light chain kinase for calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号