首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蛋白质亚细胞定位的生物信息学研究   总被引:3,自引:1,他引:3  
细胞中蛋白质合成后被转运到特定的细胞器中,只有转运到正确的部位才能参与细胞的各种生命活动,如果定位发生偏差,将会对细胞功能甚至生命产生重大影响.蛋白质的亚细胞定位是蛋白质功能研究的重要方面,也是生物信息学中的热点问题,数据库的构建和亚细胞定位分析及预测加速了蛋白质结构和功能的研究.  相似文献   

2.
【考点要求】本题考查的核心概念是基冈对性状的控制作用。由于蛋白质是生命的承担者,不同细胞的结构和功能不同,是因为细胞内合成的蛋白质种类和数量不同,而信使RNA是合成蛋白质的直接模板。本题也承载着对考生理解能力的考查一  相似文献   

3.
蛋白质是生命的物质基础,在生物体中行驶着极为重要的功能,各种细胞活动和生命过程的发生都需要蛋白质的参与。例如,DNA复制转录,RNA翻译,以及信号传导等过程中发挥关键作用的聚合酶、翻译复合物、信号传导受体等都是蛋白质。正常细胞体内的所有蛋白质都由20种天然存在的氨基酸组成,它们通过立体构象变化及翻译后修饰等来控制其功能的发挥。而在实际应用中,学者们为了实现不同的研究目的,发展了很多在蛋白质中引入20种自然氨基酸之外的非自然氨基酸(unnatural amino acid,UAA)的方法,如化学修饰合成、体外翻译、遗传密码扩展等,从而将蛋白质的性质根据研究和应用的需要进行拓展。本文综述了各类化学与生物中引入非自然氨基酸的方法,并介绍了非自然氨基酸在化学生物学研究中的最新应用。  相似文献   

4.
蛋白质是生物体的重要组成部分并参与细胞内几乎所有的生物学过程.随着越来越多物种基因组序列的测定,准确理解基因产物的功能并探索蛋白质功能多样性的原因,已经成为当前的研究热点.为了研究蛋白质的功能,已有大量蛋白质的静态三维结构被测定.但是,蛋白功能最终受其动力学行为所控制,这包括折叠过程、构象波动、分子运动以及蛋白质-配体相互作用等.基于自由能图谱理论,本文深入讨论了蛋白质动力学的底层物理化学机制,并回答了以下问题:蛋白质为什么能够折叠、以及如何折叠成其天然三维结构?为什么蛋白质的动力学特征是固有的?其动力学行为如何控制蛋白质的功能?讨论结果将有助于后基因组时代生命科学研究中蛋白质结构-功能关系的理解.  相似文献   

5.
蛋白质合成后被转运到特定的细胞器中,只有转运到正确的部位才能参与细胞的各种生命活动,有效地发挥功能,因此蛋白质的功能与其亚细胞定位有着密切的联系,通过确定蛋白质在细胞中的位置可以获取蛋白质功能和结构的信息。在近二十年中,蛋白质亚细胞定位预测算法研究已经取得很大的成绩,在此基础上,蛋白质在细胞器内亚结构的定位预测研究,如对蛋白质亚线粒体和亚叶绿体定位的研究成为更深层次的问题,本文简要介绍国内外在蛋白质亚叶绿体和亚线粒体定位预测方面的研究进展。  相似文献   

6.
种子蛋白质组的研究进展   总被引:7,自引:1,他引:6  
蛋白质组学是通过对全套蛋白质动态的研究,来阐明生物体、组织、细胞和亚细胞全部蛋白质的表达模式及功能模式。大量可用的核苷酸序列信息和灵敏高速的质谱鉴定技术,使得蛋白质组学方法为分析模式植物和农作物的复杂功能开辟了新的途径。目前,种子蛋白质组研究主要集中在两个方面:一方面是鉴定尽可能多的蛋白,以创建种子特定生命时期的蛋白质组参照图谱;另一方面主要集中在差异蛋白质组,通过比较分析不同蛋白质组,以探明关键功能蛋白。该文综述了近年来种子蛋白质组的研究进展,内容包括种子发育过程中蛋白质组的变化,与种子休眠/萌发相关的蛋白质组、翻译后修饰蛋白质组、细胞与亚细胞差异蛋白质组以及环境因子对种子蛋白质组的影响;并对种子蛋白质组研究的热点问题进行了展望。  相似文献   

7.
蛋白质组学是通过对全套蛋白质动态的研究, 来阐明生物体、组织、细胞和亚细胞全部蛋白质的表达模式及功能模式。大量可用的核苷酸序列信息和灵敏高速的质谱鉴定技术, 使得蛋白质组学方法为分析模式植物和农作物的复杂功能开辟了新的途径。目前, 种子蛋白质组研究主要集中在两个方面: 一方面是鉴定尽可能多的蛋白, 以创建种子特定生命时期的蛋白质组参照图谱; 另一方面主要集中在差异蛋白质组, 通过比较分析不同蛋白质组, 以探明关键功能蛋白。该文综述了近年来种子蛋白质组的研究进展, 内容包括种子发育过程中蛋白质组的变化, 与种子休眠/萌发相关的蛋白质组、翻译后修饰蛋白质组、细胞与亚细胞差异蛋白质组以及环境因子对种子蛋白质组的影响; 并对种子蛋白质组研究的热点问题进行了展望。  相似文献   

8.
蛋白质分子中酪氨酸残基的可逆性磷酸化作为真核生物信号转导的一个重要组成部分,参与了多种细胞功能调节,包括细胞增殖、迁移以及细胞间相互作用等。目前认为这种可逆性的磷酸化调节主要是受控于蛋白酪氨酸激酶(PTK)及蛋白酪氨酸磷酸酯酶(PTP)这两种酶活性的动态平衡。因此,与PTK一样,PTP对于体内各种生命活动起着非常重要的生物学作用。文章综述了近年来PTP在信号转导中的调控作用,特别是其在肿瘤发生、发展过程中的作用、以及其本身的结构与调控的研究进展。  相似文献   

9.
<正>生命每时每刻都在制造蛋白质,大部分蛋白质需要经过翻译后修饰并进一步折叠出正确空间结构后被运输到特定位置发挥正确生物学功能。然而细胞在营养缺乏、病毒感染等不利环境下,容易导致蛋白质修饰异常而破坏蛋白质折叠,造成大量未折叠蛋白质积累而损伤细胞功能。为此,细胞需通过三方面调整来适应环境,包括减少翻译以缓解新生蛋白的折叠需求;降解未折叠蛋白质以减轻损伤;增加细胞伴侣蛋白表达以协助蛋白质折叠,这个过  相似文献   

10.
蛋白质在细胞的生命里起着重大的作用。它们参与细胞结构;它们是细胞内进行的各种化学反应的催化工具;它们通过各种机制来控制酶促反应的速度。蛋白质的肽键水解时,释放出氨基酸,这些氨基酸既可进行氧化也可进行糖、脂肪酸,卟啉及其他细胞成分的合成。它们是生物毒素的物质基础,它们也以抗体的形式来保卫脊椎动物抵抗外来侵袭,其他天然物质没有一个能象蛋白质这样完成如此大量而广泛的功能的。  相似文献   

11.
泛素化修饰是真核细胞内广泛存在的一种修饰形式,受到该修饰的蛋白质分子遍及基因转录、蛋白质翻译、信号转导、细胞周期控制以及生长发育等几乎所有的生命活动过程,对生命体正常功能的发挥具有重要作用。泛素化修饰的失调会给生命体带来一系列负面影响,严重者将导致疾病,甚至危及生命。泛素连接酶E3是泛素化修饰反应中底物特异性的直接决定者,其机制研究不仅可揭示蛋白质质量控制和生命活动功能的奥秘,也将为疾病关联失调蛋白的精准调控和精准医学实践提供技术支撑。现结合当前对泛素连接酶E3研究的最新进展,阐述泛素连接酶E3发挥作用时与不同类型泛素链之间的特异性关系,旨在为蛋白质功能调控的分子机制、药物研制和疾病诊治提供新思路。  相似文献   

12.
蛋白质是生命的重要物质基础之一,也是生命活动的主要承担者.蛋白质丰度与其执行的生物学功能息息相关,受基因表达各个过程严格精密的调控.蛋白质丰度的直接影响因素包括相应mRNA初始量、蛋白质合成速率和降解速率.细胞对此3因素的调控将决定蛋白质最终的丰度.得益于定量蛋白质组学的飞速发展,规模化蛋白质丰度数据的产出,使得研究者可致力于发掘蛋白质丰度与其内在性质(如进化特征、结构特征、功能类型等)间规律性的相关性,这对于深入认识生命系统组成的基本原则具有重要意义.本文总结了蛋白质丰度调控及蛋白质丰度与其内在性质相关性的最新研究进展,及对这些规律性现象反映的生物学意义的解读.  相似文献   

13.
<正>理论考试1共计3 h。1~11题:生命蓝图;12~21题:生命的组成与生长;22~33题:对世界作出反应;34~46题:分享世界。对世界作出反应22.细胞蛋白图谱:蛋白质在细胞中的定位决定了其与哪些分子相互作用,进而影响它们的功能。瑞典和剑桥的科学家合作,使用显微镜在多种细胞类型中绘制了多于12 000个人类蛋白的定位。下图中,圆周周围的实心条表示每个细胞器内的所有不同类型的蛋白质,不同细胞器中相同类型的蛋白质之间以线条相连。  相似文献   

14.
蛋白质的亚细胞定位是进行蛋白质功能研究的重要信息.蛋白质合成后被转运到特定的细胞器中,只有转运到正确的部位才能参与细胞的各种生命活动,有效地发挥功能.尝试了将保守序列及蛋白质相互作用数据的编码信息结合传统的氨基酸组成编码,采用支持向量机进行蛋白质亚细胞定位预测,在真核生物中5轮交叉验证精度达到91.8%,得到了显著的提高.  相似文献   

15.
蛋白质的翻译后修饰是细胞生命活动的基本形式之一,对蛋白质生物功能的发挥具有极为重要的影响,包括细胞的生长、分化、代谢等生命过程。赖氨酸酰化修饰是重要研究内容之一,其广泛参与细胞分化、细胞代谢等重要生理活动,成为生命科学领域研究热点。随着生物质谱的扫描速度、灵敏度、分辨率的不断提高,近几年来许多新的赖氨酸酰化修饰被研究者鉴定。该文总结了琥珀酰化、巴豆酰化、丙二酰化、戊二酰化、2-羟基异丁酰化、β-羟基丁酰化等新型赖氨酸酰化修饰的发现确证、修饰调控酶、底物鉴定和生理病理功能等方面的最新研究进展。  相似文献   

16.
蛋白质的空间结构又称为三维结构或构象(conformation),特定的空间构象是蛋白质发挥其各种功能的结构基础。由于蛋白质担负着复杂的生化反应,因此在生物合成以后,蛋白质本身也经历着复杂的生理过程;蛋白质自翻译以后,需进行一系列的翻译后过程,包括跨膜转运、修饰加工、折叠复性、生化反应、生物降解等,这些过程都伴随着蛋白质的结构转换。随着对疯牛病的研究,人们发现:蛋白质分子的氨基酸序列虽不改变,但其空间结构或构象的改变也能引起疾病。同时,越来越多的研究表明,一些遗传性疾病是由于基因突变导致了蛋白质的错误折叠,这些突变并不直接影响蛋白质的功能结构域,但由于蛋白质的错误折叠,干扰了其正确运输,形成对细胞有毒性作用的聚积物。  相似文献   

17.
蛋白质组中蛋白质磷酸化研究进展   总被引:2,自引:0,他引:2  
Yang C  Wang ZG  Zhu PF 《生理科学进展》2004,35(2):119-124
随着后基因组时代的到来 ,对生命体器官、组织或细胞的全部蛋白质的表达、修饰及相互作用的研究已成为蛋白质组学的重要任务。蛋白质磷酸化是细胞内信号转导和酶调控最常见的机制之一 ,人类基因组约 2 %的基因编码 5 0 0种激酶和 10 0种磷酸酶。蛋白质磷酸化和去磷酸化作为原核和真核细胞表达调控的关键环节 ,了解其对功能的影响可以深入理解生命系统在分子水平的调控状况。目前蛋白质组磷酸化研究仍是功能基因组面临的重大课题 ,本文对此作一综述  相似文献   

18.
线粒体活性氧增多、线粒体DNA突变和拷贝数改变、Ca~(2+)超载、凋亡异常等功能障碍与肿瘤发生、生长、侵袭、转移密切相关.随着研究的逐渐深入,人们认识到线粒体是个动态的细胞器,在生理、病理因素刺激下,经线粒体融合/分裂、线粒体自噬、线粒体生物合成以及线粒体分子伴侣和线粒体未折叠蛋白反应的协同调控,在细胞器和分子水平达到对线粒体及其蛋白质的质量控制,限制和延缓功能受损线粒体的积累和过度增多,维持线粒体数量、形态、功能和蛋白质量的动态平衡,保证细胞正常生命活动的进行,使其更好地适应环境.若线粒体及其蛋白的稳态调节能力下降或失衡,会导致受损线粒体的积累并引发细胞内环境的紊乱,影响线粒体功能的正常发挥,从而诱导正常细胞的恶性转化.  相似文献   

19.
丝状真菌不仅是致病菌,而且在异源表达工业酶、化学制品以及药物活性物质中发挥着越来越重要的作用。随着人类基因组计划的实施和推进,生命科学研究已进入了功能基因组时代,特别是蛋白质组学,在蛋白质水平对丝状真菌细胞生命过程中蛋白质功能和蛋白质之间的相互作用以及特殊条件下的变化机制进行研究,对生命的复杂活动进行深入而又全面的认识也为丝状真菌工业酶制剂和重组药物的开发提供广阔的创新空间。本文综述了蛋白质组学的研究内容和方法,总结了其在丝状真菌致病菌、抗生素产生菌和纤维素酶产生菌中的应用现状。不同层次的功能基因组学分析可以从各个角度掌握生物体的代谢网络和调控机制,本文还对蛋白质组学以及功能基因组学各部分内容的整合运用进行了展望。  相似文献   

20.
细胞中蛋白质处于不断合成和降解的动态更新过程中,其稳态与细胞功能密切相关。细胞中存在多种蛋白质质量控制(protein quality control,PQC)机制来监测蛋白质合成和降解过程的异常,以确保蛋白质组的完整性和细胞适应性。核糖体是细胞内数量最多的细胞器,系细胞内蛋白质合成的主要场所。现已明确,核糖体相关质量控制(ribosome-associated quality control,RQC)与核糖体自噬能通过溶酶体依赖和非依赖途径调节细胞内核糖体数量及功能以维持蛋白质稳态,从而增强细胞在应激状态下的适应能力。RQC失调、核糖体自噬障碍则参与多种疾病的发生及发展过程,靶向RQC和核糖体自噬可能成为防治多种疾病的有效手段。本综述聚焦核糖体相关的PQC途径,并进一步讨论了它们在蛋白质稳态维持中的重要地位及其在人类疾病发生发展中的潜在作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号