首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During acute cardiac ischaemia/reperfusion (I/R), an increased plasma proprotein convertase subtilisin/kexin 9 (PCSK9) level instigates inflammatory and oxidative processes within ventricular myocytes, resulting in cardiac dysfunction. Therefore, PCSK9 inhibitor (PCSK9i) might exert cardioprotection against I/R injury. However, the effects of PCSK9i on the heart during I/R injury have not been investigated. The effects of PCSK9i given at different time‐points during I/R injury on left ventricular (LV) function were investigated. Male Wistar rats were subjected to cardiac I/R injury and divided into 3 treatment groups (n = 10/group): pre‐ischaemia, during ischaemia and upon onset of reperfusion. The treatment groups received PCSK9i (Pep2‐8, 10 μg/kg) intravenously. A control group (n = 10) received saline solution. During the I/R protocol, arrhythmia scores and LV function were determined. Then, the infarct size, mitochondrial function, mitochondrial dynamics and level of apoptosis were determined. PCSK9i given prior to ischaemia exerted cardioprotection through protection of cardiac mitochondrial function, decreased infarct size and improved LV function, compared with control. PCSK9i administered during ischaemia and upon the onset of reperfusion did not provide any of those benefits. PCSK9i administered before ischaemia exerts cardioprotection, as demonstrated by the attenuation of infarct size and cardiac arrhythmia during cardiac I/R injury. The attenuation is associated with improved mitochondrial function and connexin43 phosphorylation, leading to improved LV function.  相似文献   

2.
Deuchar GA  Opie LH  Lecour S 《Life sciences》2007,80(18):1686-1691
Although Tumor Necrosis Factor alpha (TNFα) is used as a preconditioning mimetic in vitro, its role in ischaemic preconditioning (IPC) has not been clearly defined. Here, we propose to use an in vivo model (that takes into account the activation of leukocytes which may affect levels of TNFα) to demonstrate that i) TNFα acts as a trigger in IPC and ii) the dose-dependent nature of this cardioprotective effect of TNFα. Male Wistar rats were subjected to 30 min of left coronary artery occlusion (index ischaemia), followed by 24 h reperfusion. In the presence or absence of a soluble TNFα receptor (sTNFα-R), preconditioning was induced by 3 cycles of ischaemia (3 min)/reperfusion (5 min) (IPC) or various doses (0.05-4 μg/kg) of exogenous TNFα. Following 24 h reperfusion, infarct size (IS, expressed as % of the area at risk (AAR)) was assessed. Tissue levels of TNFα from the AAR, following IPC and TNFα stimulus were determined using Western Blot. IPC caused decrease in IS (4.5 ± 1.3% vs 30.8 ± 4.3% in ischaemic rats; P < 0.001) and increase of TNFα levels following the IPC stimulus. The protective effect of IPC was abrogated in the presence of the sTNFα-R. In addition, exogenous TNFα dose-dependently reduced IS with maximal protection at a dose of 0.1 μg/kg (IS = 12.6%, P < 0.01 vs ischaemic). In conclusion our data provide strong evidence for a role of TNFα during the trigger phase of IPC. In addition, exogenous TNFα mimics IPC by providing a dose-dependent cardioprotective effect against ischaemia-reperfusion injury in vivo.  相似文献   

3.

Triiodothyronine (T3) and renin–angiotensin system (RAS) are functionally related in cardiovascular system. Recently, in an in vivo myocardial ischemia/reperfusion (I/R) model in rats, we showed that T3 treatment improved the post-ischemic recovery of cardiac function. In the present study, we used the same experimental model of regional I/R, obtained by 30 min occlusion of the left descending coronary artery, followed by 3-days of reperfusion, to investigate the effect of 48-h treatment (started 1 day after ischemia) with 6 µg/kg/day T3 or vehicle. T3 was delivered by constant subcutaneous infusion via miniosmotic pump. In particular, aim of this work is to evaluate the effects of T3 on the gene expression of the main receptors and enzymes involved in the two cardiac arms of RAS in an in vivo rat model of I/R: AT1R-ACE (detrimental arm) and AT2R/MAS1-ACE2 (protective arm). Gene expression was evaluated by Real-Time PCR in infarct zone (Area-At-Risk: AAR) and in tissues distant from ischemic wound (Remote Zone: RZ). Three different rat groups were used: sham-operated; I/R and I/R?+?T3. Main result of the study is the opposite response of AT1R and AT2R/MAS1 expression to I/R procedure and to T3 administration after I/R in both AAR and RZ. Moreover, T3 significantly increased ACE and ACE2 enzyme expression in AAR and RZ. This study reveals that T3 stimulates the expression of protective genes related to RAS such as AT2R/MAS1-ACE2 mainly in BZ, suggesting that, at least in part, T3 could be involved in the local cardiac ameliorative response to I/R procedure.

  相似文献   

4.
BackgroundToll-like receptors (TLRs) have been implicated in myocardial ischemia/reperfusion (I/R) injury. The TLR9 ligand, CpG-ODN has been reported to improve cell survival. We examined effect of CpG-ODN on myocardial I/R injury.MethodsMale C57BL/6 mice were treated with either CpG-ODN, control-ODN, or inhibitory CpG-ODN (iCpG-ODN) 1 h prior to myocardial ischemia (60 min) followed by reperfusion. Untreated mice served as I/R control (n = 10/each group). Infarct size was determined by TTC straining. Cardiac function was examined by echocardiography before and after myocardial I/R up to 14 days.ResultsCpG-ODN administration significantly decreased infarct size by 31.4% and improved cardiac function after myocardial I/R up to 14 days. Neither control-ODN nor iCpG-ODN altered I/R-induced myocardial infarction and cardiac dysfunction. CpG-ODN attenuated I/R-induced myocardial apoptosis and prevented I/R-induced decrease in Bcl2 and increase in Bax levels in the myocardium. CpG-ODN increased Akt and GSK-3β phosphorylation in the myocardium. In vitro data suggested that CpG-ODN treatment induced TLR9 tyrosine phosphorylation and promoted an association between TLR9 and the p85 subunit of PI3K. Importantly, PI3K/Akt inhibition and Akt kinase deficiency abolished CpG-ODN-induced cardioprotection.ConclusionCpG-ODN, the TLR9 ligand, induces protection against myocardial I/R injury. The mechanisms involve activation of the PI3K/Akt signaling pathway.  相似文献   

5.
BackgroundLeft ventricular assist device (LVAD) mechanically unloads the left ventricle (LV). Theoretical analysis indicates that partial LVAD support (p-LVAD), where LV remains ejecting, reduces LV preload while increases afterload resulting from the elevation of total cardiac output and mean aortic pressure, and consequently does not markedly decrease myocardial oxygen consumption (MVO2). In contrast, total LVAD support (t-LVAD), where LV no longer ejects, markedly decreases LV preload volume and afterload pressure, thereby strikingly reduces MVO2. Since an imbalance in oxygen supply and demand is the fundamental pathophysiology of myocardial infarction (MI), we hypothesized that t-LVAD minimizes MVO2 and reduces infarct size in MI. The purpose of this study was to evaluate the differential impact of the support level of LVAD on MVO2 and infarct size in a canine model of ischemia-reperfusion.MethodsIn 5 normal mongrel dogs, we examined the impact of LVAD on MVO2 at 3 support levels: Control (no LVAD support), p-LVAD and t-LVAD. In another 16 dogs, ischemia was induced by occluding major branches of the left anterior descending coronary artery (90 min) followed by reperfusion (300 min). We activated LVAD from the beginning of ischemia until 300 min of reperfusion, and compared the infarct size among 3 different levels of LVAD support.Resultst-LVAD markedly reduced MVO2 (% reduction against Control: -56 ± 9%, p<0.01) whereas p-LVAD did less (-21 ± 14%, p<0.05). t-LVAD markedly reduced infarct size compared to p-LVAD (infarct area/area at risk: Control; 41.8 ± 6.4, p-LVAD; 29.1 ± 5.6 and t-LVAD; 5.0 ± 3.1%, p<0.01). Changes in creatine kinase-MB paralleled those in infarct size.ConclusionsTotal LVAD support that minimizes metabolic demand maximizes the benefit of LVAD in the treatment of acute myocardial infarction.  相似文献   

6.
PurposeThe aim was to identify vascular calcification in 4DCT scan of lung cancer patients and establish the association between overall survival (OS) and vascular calcification, as surrogate for vascular health.MethodsVascular calcification within the thoracic cavity were segmented in 334 lung cancer patients treated with stereotactic body radiation therapy (SBRT). This has been done automatically on 4D planning CT and average reconstruction scans. Correlation between cardiac comorbidity and calcification volumes was evaluated for patients with recorded Adult Co-Morbidity Evaluation (n = 303). Associations between the identified calcifications and OS were further investigated.ResultsThe volume of calcification from the average scan was significantly lower than from each phase (p < 0.001). The highest level of correlations between cardiac comorbidity and volume of the calcifications were found for one phase representing inhale and two phases representing exhale with the least motion blurring due to respiration (p < 0.005). The volume of the calcifications was subsequently averaged over these three phases. The average of calcification volumes over the three phases (denoted by inhale-exhale) showed the highest likelihood in univariate analysis and was chosen as vascular calcification measure. Cox-model suggested that tumor volume (Hazard Ratio [HR] = 1.46, p < 0.01) and inhale-exhale volume (HR = 1.05, p < 0.05) are independent factors predicting OS after adjusting for age, sex, and performance status.ConclusionIt was feasible to use. It 4DCT scan for identifying thoracic calcifications in lung cancer patients treated with SBRT. Calcification volumes from inhale-exhale phases had the highest correlation with overall cardiac comorbidity and the average of the calcification volume obtained from these phases was an independent predictive factor for OS.  相似文献   

7.
BackgroundPatients with outflow tract ventricular tachycardia (OTVT) with normal echocardiogram are labeled as idiopathic VT (IVT). However, a subset of these patients is subsequently diagnosed with underlying cardiac sarcoidosis (CS). Objective:Whether electrocardiogram (ECG) abnormalities in sinus rhythm (SR) can differentiate underlying CS from IVT.MethodsWe retrospectively analyzed the SR-ECGs of 42 patients with OTVT/premature ventricular complexes (PVC) and normal echocardiography. All underwent advanced imaging with cardiac magnetic resonance (CMR)/18FDG PET-CT for screening of CS. Twenty-two patients had significant abnormalities in cardiac imaging and subsequently had biopsy-proven CS (Cases). Twenty patients had normal imaging and were categorized as IVT (Controls). SR-ECGs of all patients were analyzed by 2 independent, blinded observers.ResultsBaseline characteristics were comparable. Among the ECG features analyzed – fascicular (FB) or bundle branch block (BBB) was seen in 9/22 Cases vs. 1/20 controls (p = 0.01). Among patients without FB or BBB, fragmented QRS (fQRS) was present in 9/13 cases but in none of the controls (p < 0.001). Low voltage QRS was more often seen among cases as compared to controls (10/22 vs. 3/20 p = 0.03). A stepwise algorithm based on these 3 sets of ECG findings helped to diagnose CS among patients presenting with OTVT/PVC with sensitivity of 91%, specificity of 75%, a PPV of 80%, and a NPV of 88%.ConclusionsIn patients presenting with OTVT/PVC: FB/BBB, fQRS, and low QRS voltage on the baseline ECG were more often observed among patients with underlying CS as compared to true IVT. These findings may help to distinguish underlying CS among Cases presenting with OTVT/PVC.  相似文献   

8.
Pharmacological preconditioning limits myocardial infarct size after ischemia/reperfusion. Dexmedetomidine is an α2-adrenergic receptor agonist used in anesthesia that may have cardioprotective properties against ischemia/reperfusion injury. We investigate whether dexmedetomidine administration activates cardiac survival kinases and induces cardioprotection against regional ischemia/reperfusion injury. In in vivo and ex vivo models, rat hearts were subjected to 30 min of regional ischemia followed by 120 min of reperfusion with dexmedetomidine before ischemia. The α2-adrenergic receptor antagonist yohimbine was also given before ischemia, alone or with dexmedetomidine. Erk1/2, Akt and eNOS phosphorylations were determined before ischemia/reperfusion. Cardioprotection after regional ischemia/reperfusion was assessed from infarct size measurement and ventricular function recovery. Localization of α2-adrenergic receptors in cardiac tissue was also assessed. Dexmedetomidine preconditioning increased levels of phosphorylated Erk1/2, Akt and eNOS forms before ischemia/reperfusion; being significantly reversed by yohimbine in both models. Dexmedetomidine preconditioning (in vivo model) and peri-insult protection (ex vivo model) significantly reduced myocardial infarction size, improved functional recovery and yohimbine abolished dexmedetomidine-induced cardioprotection in both models. The phosphatidylinositol 3-kinase inhibitor LY-294002 reversed myocardial infarction size reduction induced by dexmedetomidine preconditioning. The three isotypes of α2-adrenergic receptors were detected in the whole cardiac tissue whereas only the subtypes 2A and 2C were observed in isolated rat adult cardiomyocytes. These results show that dexmedetomidine preconditioning and dexmedetomidine peri-insult administration produce cardioprotection against regional ischemia/reperfusion injury, which is mediated by the activation of pro-survival kinases after cardiac α2-adrenergic receptor stimulation.  相似文献   

9.
Hyperglycaemia during acute myocardial infarction is common and associated with increased mortality. Thioredoxin‐interacting protein (Txnip) is a modulator of cellular redox state and contributes to cell apoptosis. This study aimed to investigate whether or not hyperglycaemia enhances Txnip expression in myocardial ischaemia/reperfusion (MI/R) and consequently exacerbates MI/R injury. Rats were subjected to 30 min. of left coronary artery ligation followed by 4 hrs of reperfusion and treated with saline or high glucose (HG, 500 g/l, 4 ml/kg/h intravenously). In vitro study was performed on cultured rat cardiomyocytes subjected to simulated ischaemia/reperfusion (SI/R) and incubated with HG (25 mM) or normal glucose (5.6 mM) medium. In vivo HG infusion during MI/R significantly impaired cardiac function, aggravated myocardial injury and increased cardiac oxidative stress. Meanwhile, Txnip expression was enhanced whereas thioredoxin activity was inhibited following HG treatment in ischaemia/reperfusion (I/R) hearts. In addition, HG activated p38 MAPK and inhibited Akt in I/R hearts. In cultured cardiomyocytes subjected to SI/R, HG incubation stimulated Txnip expression and reduced thioredoxin activity. Overexpression of Txnip enhanced HG‐induced superoxide generation and aggravated cardiomyocyte apoptosis, whereas Txnip RNAi significantly blunted the deleterious effects of HG. Moreover, inhibition of p38 MAPK or activation of Akt markedly blocked HG‐induced Txnip expression in I/R cardiomyocytes. Most importantly, intramyocardial injection of Txnip siRNA markedly decreased Txnip expression and alleviated MI/R injury in HG‐treated rats. Hyperglycaemia enhances myocardial Txnip expression, possibly through reciprocally modulating p38 MAPK and Akt activation, leading to aggravated oxidative stress and subsequently, amplification of cardiac injury following MI/R.  相似文献   

10.
《Cytokine》2014,70(2):255-262
Activin A, a member of the transforming growth factor-β superfamily, is stimulated early in inflammation via the Toll-like receptor (TLR) 4 signalling pathway, which is also activated in myocardial ischaemia–reperfusion. Neutralising activin A by treatment with the activin-binding protein, follistatin, reduces inflammation and mortality in several disease models. This study assesses the regulation of activin A and follistatin in a murine myocardial ischaemia–reperfusion model and determines whether exogenous follistatin treatment is protective against injury. Myocardial activin A and follistatin protein levels were elevated following 30 min of ischaemia and 2 h of reperfusion in wild-type mice. Activin A, but not follistatin, gene expression was also up-regulated. Serum activin A did not change significantly, but serum follistatin decreased. These responses to ischaemia–reperfusion were absent in TLR4−/− mice. Pre-treatment with follistatin significantly reduced ischaemia–reperfusion induced myocardial infarction. In mouse neonatal cardiomyocyte cultures, activin A exacerbated, while follistatin reduced, cellular injury after 3 h of hypoxia and 2 h of re-oxygenation. Neither activin A nor follistatin affected hypoxia-reoxygenation induced reactive oxygen species production by these cells. However, activin A reduced cardiomyocyte mitochondrial membrane potential, and follistatin treatment ameliorated the effect of hypoxia-reoxygenation on cardiomyocyte mitochondrial membrane potential. Taken together, these data indicate that myocardial ischaemia–reperfusion, through activation of TLR4 signalling, stimulates local production of activin A, which damages cardiomyocytes independently of increased reactive oxygen species. Blocking activin action by exogenous follistatin reduces this damage.  相似文献   

11.
Background and objectivesQuadripolar left ventricular (LV) leads in cardiac resynchronization therapy (CRT) offer multi-vector pacing with different pacing configurations and hence enabling LV pacing at most suitable site with better lead stability. We aim to compare the outcomes between quadripolar and bipolar LV lead in patients receiving CRT.MethodsIn this prospective, non-randomized, single-center observational study, we enrolled 93 patients receiving CRT with bipolar (BiP) (n = 31) and quadripolar (Quad) (n = 62) LV lead between August 2016 to August 2019. Patients were followed for six months, and outcomes were compared with respect to CRT response (defined as ≥5% absolute increase in left ventricle ejection fraction), electrocardiographic, echocardiographic parameters, NYHA functional class improvement, and incidence of LV lead-related complication.ResultsAt the end of six months follow up, CRT with quadripolar lead was associated with better response rate as compared to bipolar pacing (85.48% vs 64.51%; p = 0.03), lesser heart failure (HF) hospitalization events (1.5 vs 2; p = 0.04) and better improvement in HF symptoms (patients with ≥1 NYHA improvement 87.09% vs 67.74%; p = 0.04). There were fewer deaths per 100 patient-year (6.45 vs 9.37; p = 0.04) and more narrowing of QRS duration (Δ12.56 ± 3.11 ms vs Δ7.29 ± 1.87 ms; p = 0.04) with quadripolar lead use. Lead related complications were significantly more with the use of bipolar lead (74.19% vs 41.94%; p = 0.02).ConclusionsOur prospective, non-randomized, single-center observational study reveals that patients receiving CRT with quadripolar leads have a better response to therapy, lesser heart failure hospitalizations, lower all-cause mortality, and fewer lead-related complications, proving its superiority over the bipolar lead.  相似文献   

12.
AimTo evaluate whether left bundle branch block with residual conduction (rLBBB) is associated with worse outcomes after cardiac resynchronisation therapy (CRT).MethodsAll consecutive CRT implants at our institution between 2006 and 2013 were identified from our local device registry. Pre- and post-implant patient specific data were extracted from clinical records.ResultsA total of 690 CRT implants were identified during the study period. Prior to CRT, 52.2% of patients had true left bundle branch block (LBBB), 19.1% a pacing-induced LBBB (pLBBB), 11.2% a rLBBB, 0.8% a right bundle branch block (RBBB), and 16.5% had a nonspecific intraventricular conduction delay (IVCD) electrocardiogram pattern. Mean age at implant was 67.5 years (standard deviation [SD] = 10.6), mean left ventricular ejection fraction (LV EF) was 25.7% (SD = 7.9%), and mean QRS duration was 158.4 ms (SD = 32 ms). After CRT, QRS duration was significantly reduced in the LBBB (p < 0.001), pLBBB (p < 0.001), rLBBB (p < 0.001), RBBB (p = 0.04), and IVCD groups (p = 0.03). LV EF significantly improved in the LBBB (p < 0.001), rLBBB (p = 0.002), and pLBBB (p < 0.001) groups, but the RBBB and IVCD groups showed no improvement. There was no significant difference in mortality between the LBBB and rLBBB groups. LV EF post-CRT, chronic kidney disease, hyperkalaemia, hypernatremia, and age at implant were significant predictors of mortality.ConclusionCRT in patients with rLBBB results in improved LV EF and similar mortality rates to CRT patients with complete LBBB. Predictors of mortality post-CRT include post-CRT LV EF, presence of CKD, hyperkalaemia, hypernatremia, and older age at implant.  相似文献   

13.
During acute myocardial infarction (AMI), ischemia leads to necrotic areas surrounded by border zones of reversibly damaged cardiomyocytes, showing membrane flip-flop. During reperfusion type IIA secretory phopholipase A2 (sPLA2-IIA) induces direct cell-toxicity and facilitates binding of other inflammatory mediators on these cardiomyocytes. Therefore, we hypothesized that the specific sPLA2-IIA-inhibitor PX-18 would reduce cardiomyocyte death and infarct size in vivo. Wistar rats were treated with PX-18 starting minutes after reperfusion, and at day 1 and 2 post AMI. After 28 days hearts were analyzed. Furthermore, the effect of PX-18 on membrane flip-flop and apoptosis was investigated in vitro. PX-18 significantly inhibited sPLA2-IIA activity and reduced infarct size (reduction 73 ± 9%, P < 0.05), compared to the vehicle-treated group, without impairing wound healing. In vitro, PX-18 significantly reduced reversible membrane flip-flop and apoptosis in cardiomyocytes. However, no sPLA2-IIA activity could be detected, suggesting that PX-18 also exerted a protective effect independent of sPLA2-IIA. In conclusion, PX-18 is a potent therapeutic to reduce infarct size by inhibiting sPLA2-IIA, and possibly also by inhibiting apoptosis of cardiomyocytes in a sPLA2-IIA independent manner. A. van Dijk and P. A. J. Krijnen have contributed equally to the study.  相似文献   

14.
Background:Myocardial infarction is one of the leading causes of morbidity and mortality worldwide. Oxidative stress plays a vital role in the pathogenesis of atherosclerosis leading to myocardial infarction and Glutathione S-transferases (GSTs) act as detoxifying enzymes to reduce oxidative stress. The aim of the present study was to investigate the associations of the GST (T1 & M1) gene polymorphism with the susceptibility of myocardial infarction in the Bangladeshi population.Methods:A case-control study on 100 cardiac patients with MI and 150 control subjects was conducted. The genotyping of GST (T1 & M1) gene was done using conventional Polymerase Chain Reaction.Results:The percentage of GSTM1 genotypes was significantly (p< 0.01) lower in patients compared to control subjects while the GSTT1 genotypes were not significantly different between the study subjects. The individual with GSTM1 null allele was at 2.5-fold increased risk {odds ratio (OR)= 2.5; 95 % confidence interval (95 % CI)= 1.4 to 4.3; p< 0.01} of experiencing MI while individual with either GSTM1 or GSTT1 genotypes was at lower risk. In the case of GST M1 and GST T1 combined genotype, patients having both null genotypes for GST M1 and GST T1 gene showed significantly (p< 0.01) higher risk of experiencing MI when compared to control subjects (OR= 3.5; 95% CI= 1.7–7.2; p< 0.001). Conclusion:Thus our recent study suggested that GSTM1 alone and GSTM1 and T1 in combination augments the risk of MI in Bangladeshi population. Key Words: Bangladesh, GST (T1 & M1), Myocardial infarction, PCR, Polymorphism  相似文献   

15.
Ischaemic preconditioning (IP) is a strong endogenous infarct reducing stimulus which has not previously been evaluated with myocardial perfusion imaging using 99mTc-MIBI. Factors responsible for cellular MIBI uptake are affected by both IP and acute ischaemia (plasma membrane and mitochondrial membrane potential and oxidative metabolism). IP seems to involve mitochondrial K-ATP channels affecting mitochondrial membrane potential and thereby potentially MIBI uptake. The study evaluated the performance of MPI with MIBI as a tracer to characterise the extent that severely ischaemic compromised myocardium was salvaged by IP. In a closed chest model, an ischaemic preconditioned group (8 pigs) subjected to IP before introducing a 45 min period of catheter based coronary occlusion was compared with a control group (9 pigs). Area at risk'(AAR), infarct size (IS) and IS relative to AAR was determined by MIBI SPECT and by a standard histochemical method. The results demonstrated that infarct size was significantly smaller in the IP group both relative to left ventricle (IS/LV) and to area at risk (IS/AAR). Both AAR/LV and IS/LV, however, were greater when measured by MPI than with histochemistry. There was no difference in the ratio between infarct size and area at risk (IS/AAR). In conclusion, MPI with MIBI is a reliable measurement of infarct reduction by ischaemic preconditioning. Myocardium affected by recent ischaemia is correctly distinguished as viable by MPI in early reperfusion, when compared to a standard histochemical technique.  相似文献   

16.
Recent evidence indicates that hyperglycemia is an important risk factor for the development of cardiovascular disease. We tested the hypothesis that myocardial infarct size is related to blood glucose concentration in the presence or absence of ischemic preconditioning (PC) stimuli in canine models of diabetes mellitus and acute hyperglycemia. Barbiturate-anesthetized dogs were subjected to a 60-min period of coronary artery occlusion and 3-h reperfusion. Infarct size was 24 +/- 2% of the area at risk (AAR) for infarction in control dogs. PC significantly (P < 0.05) decreased the extent of infarction in normal (8 +/- 2% of AAR), but not diabetic (22 +/- 4% of AAR), dogs. Infarct size was linearly related to blood glucose concentration during acute hyperglycemia (r = 0.96; P < 0.001) and during diabetes (r = 0.74; P < 0.002) in the presence or absence of PC stimuli. Increases in serum osmolality caused by administration of raffinose (300 g) did not increase infarct size (11 +/- 3% of AAR) or interfere with the ability of PC to protect against infarction (2 +/- 1% of AAR). The results indicate that hyperglycemia is a major determinant of the extent of myocardial infarction in the dog.  相似文献   

17.
Alleviating the oxidant stress associated with myocardial ischaemia reperfusion has been demonstrated as a potential therapeutic approach to limit ischaemia reperfusion (I/R)-induced cardiac damage. It is reported that EGFR/erbB2 signalling is an important cardiac survival pathway in cardiac function and activation of EGFR has a cardiovascular effect in global ischaemia. Epidermal growth factor (EGF), a typical EGFR ligand, was considered to have a significant role in activating EGFR. However, no evidence has been published whether exogenous EGF has protective effects on myocardial ischaemia reperfusion. This study aims to investigate the effects of EGF in I/R-induced heart injury and to demonstrate its mechanisms. H9c2 cells challenged with H2O2 were used for in vitro biological activity and mechanistic studies. The malondialdehyde (MDA) and Superoxide Dismutase (SOD) levels in H9c2 cells were determined, and the cell viability was assessed by MTT assay. Myocardial I/R mouse administrated with or without EGF were used for in vivo studies. Pretreatment of H9c2 cells with EGF activated Nrf2 signalling pathway, attenuated H2O2-increased MDA and H2O2-reduced SOD level, followed by the inhibition of H2O2-induced cell death. In in vivo animal models of myocardial I/R, administration of EGF reduced infarct size and myocardial apoptosis. These data support that EGF decreases oxidative stress and attenuates myocardial ischaemia reperfusion injury via activating Nrf2.  相似文献   

18.
BackgroundThe rs7932837 polymorphism in the Hematopoietically expressed homeobox (HHEX) gene was discovered through genome-wide association studies and is a promising candidate for type 2 diabetes mellitus (T2DM), which is one of the risk factors for obesity and other complications. T2DM has been identified as a heterogeneous and multifactorial disease characterized by insulin resistance and secretion.AimThe aim of this study was to investigate the rs7932837 polymorphism in the HHEX gene in overweight patients diagnosed with T2DM in the Saudi Population.MethodsIn this case-control study, one hundred T2DM cases and 100 controls were selected based on inclusion and exclusion criteria. Genotyping was performed with polymerase chair reaction-restriction fragment length polymorphism analysis and statistical analysis was performed between T2DM cases and controls for clinical characteristics, genotype and allele frequencies and multiple logistic regression analysis.ResultsIn this study, T2DM cases were compared with healthy control subjects. Clinical characteristic analysis revealed the statistical analysis between age, weight, BMI, FBG, HDL-c, TC, TG and family history (p < 0.05). HWE analysis was in the accordance (p < 0.05). The rs7932837 polymorphism in the recessive model showed the positive association (AA + AG vs AA: 2.22 [1.25–3.96] & p = 0.006) and none of the genotypes or alleles were in the statistical association. Multiple logistic regression analysis revealed positive association with age, BMI and FBG (p < 0.05).ConclusionThis study concludes as rs7932837 polymorphism in the HHEX gene showed positive association with recessive model and future studies recommend to carry out with large number of sample size with additional polymorphisms in HHEX gene.  相似文献   

19.
20.

Aim

Stimulation of the nitric oxide (NO) – soluble guanylate (sGC) - protein kinase G (PKG) pathway confers protection against acute ischaemia/reperfusion injury, but more chronic effects in reducing post-myocardial infarction (MI) heart failure are less defined. The aim of this study was to not only determine whether the sGC stimulator riociguat reduces infarct size but also whether it protects against the development of post-MI heart failure.

Methods and Results

Mice were subjected to 30 min ischaemia via ligation of the left main coronary artery to induce MI and either placebo or riociguat (1.2 µmol/l) were given as a bolus 5 min before and 5 min after onset of reperfusion. After 24 hours, both, late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) and 18F-FDG-positron emission tomography (PET) were performed to determine infarct size. In the riociguat-treated mice, the resulting infarct size was smaller (8.5±2.5% of total LV mass vs. 21.8%±1.7%. in controls, p = 0.005) and LV systolic function analysed by MRI was better preserved (60.1%±3.4% of preischaemic vs. 44.2%±3.1% in controls, p = 0.005). After 28 days, LV systolic function by echocardiography treated group was still better preserved (63.5%±3.2% vs. 48.2%±2.2% in control, p = 0.004).

Conclusion

Taken together, mice treated acutely at the onset of reperfusion with the sGC stimulator riociguat have smaller infarct size and better long-term preservation of LV systolic function. These findings suggest that sGC stimulation during reperfusion therapy may be a powerful therapeutic treatment strategy for preventing post-MI heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号