首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Santolina chamaecyparissus is an important medicinal plant growing in the Mediterranean region and has been reported as a potent anti-inflammatory, antibacterial, antioxidant, and antifungal agent. The purpose of the current research is to identify the chemical constituents in ethyl acetate extract (EAE) from the leaves of S. chamaecyparissus, and to evaluate antidiabetic, and anticancer activity. Chemical constituents of EAE were identified by GC-MS, and the antidiabetic activity was evaluated by α-glucosidase inhibition assay. The anticancer activity was assessed by Epidermal Growth Factor Receptor (EGFR) expression in human breast cancer cell line (MCF7) by using quantitative RT-PCR method. GC-MS analysis of EAE of S. chamaecyparissus yielded 44 compounds. Tetrapentacontane (27.15%), eicosyl acetate (8.40%), 2-methylhexacosane (6.87%), and n-pentadecanol (5.44%) were found as major chemical constituents. The EAE of S. chamaecyparissus showed concentration dependant inhibition of α-glucosidase enzyme and the IC50 value (IC50 110 ± 4.25 µg/mL) was found comparable with standard acarbose (IC50 105 ± 3.74 µg/mL). The real-time qRT-PCR results showed that the EGFR protein (bcl-2) in human breast cancer cell line (MCF7) was negatively expressed with a value of −0.69297105 after treatment with EAE (100 µg/mL). The study results are suggesting the possible use of S. chamaecyparissus in the management of diabetes, and human breast cancer.  相似文献   

2.
Xie K  Zhang XW  Huang L  Wang YT  Lei Y  Rong J  Qian CW  Xie QL  Wang YF  Hong A  Xiong S 《Cytotechnology》2011,63(4):345-350
A novel, optical sensor was fixed in a new type of disposable bioreactor, Tubespin, for the on-line (real-time) monitoring of dissolved oxygen concentrations during cell culture. The cell density, viability and volumetric mass transfer coefficient were also determined to further characterize the bioreactors. The kLa value of the Tubespin at standard conditions was 24.3 h−1, while that of a spinner flask was only 2.7 h−1. The maximum cell density in the Tubespin bioreactor reached 6 × 106 cells mL−1, which was two times higher than the cell density in a spinner flask. Furthermore, the dynamic dissolved oxygen level was maintained above 90% air-saturation in the Tubespin, while the value was only 1.9% in a spinner flask. These results demonstrate the competitive advantage of using the Tubespin system over spinner flasks for process optimization and scale-down studies of oxygen transfer and cell growth.  相似文献   

3.
In this study was conducted the in vitro antimicrobial, antibiofilm, antioxidant, antigenotoxic and anticancer activities investigations on the moss Bryum capillare Hedw (BC). Antimicrobial and antibiofilm activity were tested by MIC and microplate biofilm methods on antibiotic resistant bacteria. While the antioxidant activity of the extract was evaluated by DPPH, metal chelating, plasma lipid peroxidation and total phenolic content, the antigenotoxicity and cytotoxicity were established by Comet test and the WST-1 Cell proliferation assay kit respectively. The MIC values were found to be ≥ 125 µg.mL−1 and a biofilm inhibition of 3–5% against only S. epidermidis was observed. Total phenolic compounds were determined as 23.26 mg/g. The results of DPPH assay, chelating and plasma lipid peroxidation activity were found to be 15%, 3% and 4% respectively. The extract was observed to decrease the affect of H2O2 that cause DNA damage. The BC was also determined 60 ± 5% anticancer activity against SKBR 3 and 76 ± 5% anticancer activity against HeLa cells, where this concentration had only 18 ± 5% cytotoxicity against MCF-12A cells. Also, these results have indicated the potential of Bryum capillare for the first time in novel natural compounds search.  相似文献   

4.
Extracellular glucoamylase of Colletotrichum sp. KCP1 produced through solid state fermentation was purified by two steps purification process comprising ammonium sulphate precipitation followed by gel permeation chromatography (GPC). The Recovery of glucoamylase after GPC was 50.40 % with 19.3-fold increase in specific activity. The molecular weight of enzyme was found to be 162.18 kDa by native-PAGE and was dimeric protein of two sub-units with molecular weight of 94.62 and 67.60 kDa as determined by SDS-PAGE. Activation energy for starch hydrolysis was 26.45 kJ mol−1 while temperature quotient (Q10) was found to be 1.9. The enzyme was found to be stable over wide pH range and thermally stable at 40–50 °C up to 120 min while exhibited maximum activity at 50 °C with pH 5.0. The pKa1 and pKa2 of ionisable groups of active site controlling Vmax were 3.5 and 6.8, respectively. Vmax, Km and Kcat for starch hydrolysis were found to be 58.82 U ml−1, 1.17 mg (starch) ml−1 and 449 s−1, respectively. Activation energy for irreversible inactivation (Ea(d)) of glucoamylase was 74.85 kJ mol−1. Thermodynamic parameters of irreversible inactivation of glucoamylase and starch hydrolysis were also determined.  相似文献   

5.
An animal protein-free medium was developed for Drosophila melanogaster S2 (S2AcGPV2) cells genetically modified to produce the rabies virus G glycoprotein (GPV). IPL-41, used as a basal medium, was supplemented with yeastolate, carbohydrates, amino acids and lipids aiming initially to reduce and further to eliminate the need of fetal bovine serum. The S2AcGPV2 cells were fully capable of growing in serum-free supplemented IPL-41 medium containing 6 g L−1 yeastolate ultrafiltrate, 10 g L−1 glucose, 3.5 g L−1 glutamine, 0.5 g L−1 fructose, 2 g L−1 lactose, 0.6 g L−1 tyrosine, 1.48 g L−1 methionine and 1% (v/v) lipid emulsion, reaching 19 × 106 cells mL−1. Maximum specific growth rate and cell productivity were 0.025 h−1 and 0.57 × 105 cells mL−1 h−1, respectively. Glucose and lactose were consumed during cell culture, but not fructose. Lactate concentration generally decreased during cell culture, while ammonium concentration reached 167 mg L−1, however, without noticeable deleterious effects on cell growth. GPV concentration values achieved were, however, modest in the proposed medium formulation.  相似文献   

6.
A field study was carried out to investigate the effect of three Zn levels 0, 20 kg ZnSO4 ha−1 and 20 kg ZnSO4 ha−1+ foliar spray of 0.5 % ZnSO4 on superoxide dismutase activity, acid phosphatase activity and grain yield and a pot experiment to study the effect of zinc deficient and sufficient conditions on organic acid exudation. Increasing Zn levels was established as beneficial in improving the enzyme activities of genotypes. Combined foliar and soil application of Zn proved to be superior of all the treatments. Zinc application resulted in a maximum increment limit of 96.8 % in superoxide dismutase activity, 75.76 % in acid phosphatase activity, and a decrement limit of 88.57 % in oxalic acid exudation irrespective of stages and year of study. The increased enzyme activities had a positive impact on grain yield. As an average of all genotypes an improvement of 19.88 % in 2009 and 21.29 % in 2010 due to soil application while of 16.45 % in 2009 and 13.01 % in 2010 due to combined application was calculated for grain yield. There existed a variation among genotypes in showing responses towards zinc application and the genotypes UP 2584 and PBW 550 were found to be more responsive.  相似文献   

7.
Human dipeptidylpeptidase IV (hDPPIV) is an enzyme that is in hydrolase class and has various roles in different parts of human body. Its deficiency may cause some disorders in the gastrointestinal, neurologic, endocrinological and immunological systems of humans. In the present study, hDPPIV enzyme was expressed on Spodoptera frugiperda (Sf9) cell lines as a host cell, and the expression of hDPPIV was obtained by a baculoviral expression system. The enzyme production, optimum multiplicity of infection, optimum transfection time, infected and uninfected cell size and cell behavior during transfection were also determined. For maximum hDPPIV (269 mU mL−1) enzyme, optimum multiplicity of infection (MOI) and time were 0.1 and 72 h, respectively. The size of infected cells increased significantly (P < 0.001) after 24 h post infection. The results indicated that Sf9 cell line was applicable to the large scale for hDPPIV expression by using optimized parameters (infection time and MOI) because of its high productivity (4.03 mU m L−1 h−1).  相似文献   

8.
A simple, reliable, highly sensitive and selective spectrofluorimetric method has been developed for determination of certain aminoglycosides namely amikacin sulfate, tobramycin, neomycin sulfate, gentamicin sulfate, kanamycin sulfate and streptomycin sulfate. The method is based on the formation of a charge transfer complexes between these drugs and safranin in buffer solution of pH 8. The formed complexes were quantitatively extracted with chloroform under the optimized experimental conditions. These complexes showed an excitation maxima at 519–524 nm and emission maxima at 545–570 nm. The calibration plots were constructed over the range of 4–60 pg mL−1 for amikacin, 4–50 pg mL−1 for gentamicin, neomycin and kanamycin, 4–40 pg mL−1 for streptomycin and 5–50 pg mL−1 for tobramycin. The proposed method was successfully applied to the analysis of the cited drugs in dosage forms. The proposed method was validated according to ICH and USP guidelines with respect to specificity, linearity, accuracy, precision and robustness. The high sensitivity of the proposed method allowed determination of amikacin and gentamicin in spiked and real human plasma.Key words: aminoglycosides, dosage forms, human plasma, safranin, spectrofluorimetry  相似文献   

9.
The main objective of this study is to investigate the cytotoxic, genotoxic and antioxidant properties of zingiberene (ZBN) in an in vitro rat brain cell culture study. The cytotoxic effect was determined against the rat neuron and N2a neuroblastoma (N2a-NB) cell lines using the 3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, while the antioxidant activity was assessed using the total antioxidant capacity (TAC) and total oxidative stress (TOS) assays. The effects on DNA damage were also evaluated in this study by the single cell gel electrophoresis assay. The results indicated that ZBN has an anti-proliferative activity suppressing the proliferation of N2a-NB cells at concentrations over 50 mg L−1 and neuron cells at concentrations over 150 mg L−1. In addition, ZBN treatments at higher doses (≤50 mg L−1) led to increases of TOS levels in N2a-NB cell cultures. However 25 mg L−1 of ZBN treatment caused increases of TAC levels in cultured neuron and N2a-NB cell cultures while ZBN at doses of 10–400 mg L−1 did not increase the number of total damage score in both cell lines. This study clearly indicates that ZBN has a significant potential to be used as a natural anticancer agent in cultured N2a-NBs.  相似文献   

10.
The genome sequence of Streptomyces coelicolor A3(2) contains more than 50 genes coding for putative lipolytic enzymes. Many studies have shown the capacity of this actinomycete to store important reserves of intracellular triacylglycerols in nutrient depletion situations. In the present study, we used genome mining of S. coelicolor to identify genes coding for putative, non-secreted esterases/lipases. Two genes were cloned and successfully overexpressed in E. coli as His-tagged fusion proteins. One of the recombinant enzymes, EstC, showed interesting cold-active esterase activity with a strong potential for the production of valuable esters. The purified enzyme displayed optimal activity at 35°C and was cold-active with retention of 25% relative activity at 10°C. Its optimal pH was 8.5–9 but the enzyme kept more than 75% of its maximal activity between pH 7.5 and 10. EstC also showed remarkable tolerance over a wide range of pH values, retaining almost full residual activity between pH 6–11. The enzyme was active toward short-chain p-nitrophenyl esters (C2–C12), displaying optimal activity with the valerate (C5) ester (k cat/K m = 737±77 s−1 mM−1). The enzyme was also very active toward short chain triglycerides such as triacetin (C2:0) and tributyrin (C4:0), in addition to showing good primary alcohol and organic solvent tolerance, suggesting it could function as an interesting candidate for organic synthesis of short-chain esters such as flavors.  相似文献   

11.
Undecaprenyl pyrophosphate synthase (UPPs) is an essential enzyme in a key bacterial cell wall synthesis pathway. It catalyzes the consecutive condensations of isopentenyl pyrophosphate (IPP) groups on to a trans-farnesyl pyrophosphate (FPP) to produce a C55 isoprenoid, undecaprenyl pyrophosphate (UPP). Here we report the discovery and co-crystal structures of a drug-like UPPs inhibitor in complex with Streptococcus pneumoniae UPPs, with and without substrate FPP, at resolutions of 2.2 and 2.1 Å, respectively. The UPPs inhibitor has a low molecular weight (355 Da), but displays potent inhibition of UPP synthesis in vitro (IC50 50 nM) that translates into excellent whole cell antimicrobial activity against pathogenic strains of Streptococcal species (MIC90 0.4 µg mL−1). Interestingly, the inhibitor does not compete with the substrates but rather binds at a site adjacent to the FPP binding site and interacts with the tail of the substrate. Based on the structures, an allosteric inhibition mechanism of UPPs is proposed for this inhibitor. This inhibition mechanism is supported by biochemical and biophysical experiments, and provides a basis for the development of novel antibiotics targeting Streptococcus pneumoniae.  相似文献   

12.
Bacopa monnieri (Linn.) Wettst. commonly known as waterhyssop, Brahmi plant, traditionally used for memory enhancement, nerve tonic, epilepsy, central nervous system (CNS), antidepressant, anxiety, blood pressure and antioxidant activities. Due to pharmaceutical demands its lost natural habitat. At this juncture we describe a resourceful protocol for micropropagation of water hyssop plant. Surface sterilized leaf and nodal explants were inoculated on basal MS semi-solid medium added with PGRs; auxins, cytokinins. Highest calli formation from leaf explants was obtained on NAA (2.5 mg−1) and showed (94.22%) accompanied via 2,4-D showed (2.5 mg−1; 82.43%), maximum calli formation in nodal explants was obtained on 2,4-D showed (2.5 mg−1; 71.14%) followed by NAA (2.5 mg−1) showed (62.15%), in internodes explants uppermost calli formation was obtained from 2,4-D showed (2.5 mg−1; 65.21%) followed by NAA (2.5 mg−1) showed (52.14%). The maximum somatic embryogenic callus, calli induction and formation (84%) was observed on 2,4-D + KIN (2.0 + 1.5 mg−1) amended solid medium. Uppermost shoot formation was observed in combination of IAA + BAP (1.0 + 1.0 mg−1) showed (78.54%) shoot formation followed by IBA (2.0 mg−1) alone showed (75.37%). The maximum shoot elongation was noticed from NAA + BAP (3.0 + 3.0 mg−1) with 21.21 cm followed by NAA (2.0 mg−1) showed (15.22 cm) although, chief root formation was obtained from IBA (2.0 mg−1) with 83.75% root formation along higher number of roots (47.43%) per shoot. Followed by IAA (2.0 mg−1) showed root induction (73.43%) and no of roots (38.54%) per shoot. In hardening under pot condition plants survivability (100%) was observed under glass house conditions, the present in vitro PTC techniques is extremely significant to gratifying its natural conservation.  相似文献   

13.
The photolysis of riboflavin (RF) in the presence of acetate buffer (pH 3.8–5.6) and carbonate buffer (pH 9.2–10.8) has been studied using a multicomponent spectrophotometric method for the simultaneous assay of RF and its photoproducts. Acetate and carbonate buffers have been found to catalyze the photolysis reaction of RF. The apparent first-order rate constants for the acetate-catalyzed reaction range from 0.20 to 2.86 × 10−4 s−1 and for the carbonate-catalyzed reaction from 3.33 to 15.89 × 10−4 s−1. The second-order rate constants for the interaction of RF with the acetate and the carbonate ions range from 2.04 to 4.33 × 10−4 M−1 s−1 and from 3.71 to 11.80 × 10−4 M−1 s−1, respectively. The k-pH profile for the acetate-catalyzed reaction is bell shaped and for the carbonate-catalyzed reaction a steep curve. Both HCO3 and CO32 − ions are involved in the catalysis of the photolysis reaction in alkaline solution. The rate constants for the HCO3 and CO32 − ions catalyzed reactions are 0.72 and 1.38 × 10−3 M−1 s−1, respectively, indicating a major role of CO32 − ions in the catalysis reaction. The loss of RF fluorescence in acetate buffer suggests an interaction between RF and acetate ions to promote the photolysis reaction. The optimum stability of RF solutions is observed in the pH range 5–6, which is suitable for pharmaceutical preparations.KEY WORDS: acetate effect, carbonate effect, photolysis, riboflavin, spectrophotometric assay  相似文献   

14.
Heparin-like glycans with diverse disaccharide composition and high anticoagulant activity have been described in several families of marine mollusks. The present work focused on the structural characterization of a new heparan sulfate (HS)-like polymer isolated from the mollusk Nodipecten nodosus (Linnaeus, 1758) and on its anticoagulant and antithrombotic properties. Total glycans were extracted from the mollusk and fractionated by ethanol precipitation. The main component (>90%) was identified as HS-like glycosaminoglycan, representing ∼4.6 mg g−1 of dry tissue. The mollusk HS resists degradation with heparinase I but is cleaved by nitrous acid. Analysis of the mollusk glycan by one-dimensional 1H, two-dimensional correlated spectroscopy, and heteronuclear single quantum coherence nuclear magnetic resonance revealed characteristic signals of glucuronic acid and glucosamine residues. Signals corresponding to anomeric protons of nonsulfated, 3- or 2-sulfated glucuronic acid as well as N-sulfated and/or 6-sulfated glucosamine were also observed. The mollusk HS has an anticoagulant activity of 36 IU mg−1, 5-fold lower than porcine heparin (180 IU mg−1), as measured by the activated partial thromboplastin time assay. It also inhibits factor Xa (IC50 = 0.835 μg ml−1) and thrombin (IC50 = 9.3 μg ml−1) in the presence of antithrombin. In vivo assays demonstrated that at the dose of 1 mg kg−1, the mollusk HS inhibited thrombus growth in photochemically injured arteries. No bleeding effect, factor XIIa-mediated kallikrein activity, or toxic effect on fibroblast cells was induced by the invertebrate HS at the antithrombotic dose.  相似文献   

15.
Ephedra foliata Boiss. & Kotschy ex Boiss., (family – Ephedraceae), is an ecologically and economically important threatened Gymnosperm of the Indian Thar Desert. A method for micropropagation of E. foliata using nodal explant of mature female plant has been developed. Maximum bud-break (90 %) of the explant was obtained on MS medium supplemented with 1.5 mg l−1 of benzyl adenine (BA) + additives. Explant produces 5.3 ± 0.40 shoots from single node with 3.25 ± 0.29 cm length. The multiplication of shoots in culture was affected by salt composition of media, types and concentrations of plant growth regulators (PGR’s) and their interactions, time of transfer of the cultures. Maximum number of shoots (26.3 ± 0.82 per culture vessel) were regenerated on MS medium modified by reducing the concentration of nitrates to half supplemented with 200 mg l−1 ammonium sulphate {(NH4) 2SO4} (MMS3) + BA (0.25 mg l−1), Kinetin (Kin; 0.25 mg l−1), Indole-3-acetic acid (IAA; 0.1 mg l−1) and additives. The in vitro produced shoots rooted under ex vitro on soilrite moistened with one-fourth strength of MS macro salts in screw cap bottles by treating the shoot base (s) with 500 mg l−1 of Indole-3-butyric acid (IBA) for 5 min. The micropropagated plants were hardened in the green house. The described protocol can be applicable for (i) large scale plant production (ii) establishment of plants in natural habitat and (iii) germplasm conservation of this endemic Gymnosperm of arid regions.  相似文献   

16.
Most of L-asparaginase activity of Tetrahymena pyriformis was found to be present in microsomal membranes from which it has been purified to homogeneity (Tsirka, S.A.E. and Kyriakidis, D.A. Mol. Cell. Biochem. 83: 147–155, 1988). The native enzyme has a relative molecular weight of approximately 200 kDa, while under denaturing conditions the enzyme exhibits. a subunit size of 39 kDa. Aminoacid analysis and an oligopeptide from N-terminal sequence have been determined. Dephosphorylation of L-asparaginase by alkaline phosphatase results in an activation of its catalytic activity. This enzyme also exhibits intrinsic phosphorylation activity with a Km value for ATP of 0.5 mM. Autophosphorylation with -32P ATP of purified L-asparaginase results in the phosphorylation of tyrosine residues as well as in loss of its activity. Mg2+ and Ca2+ added together act synergistically to stimulate the kinase activity by more than 160%. The polyamines putrescine, spermidine and spermine activate the kinase approximately 100%, while neither cAMP or cGMP have any effect. These results indicate that this membrane protein with dual L-asparaginase/kinase activity must play an important role in regulating the intracellular levels of L-asparagine in Tetrahymena pyriformis.  相似文献   

17.
The dynamics of amyloid fibrils, including their formation and dissociation, could be of vital importance in life. We studied the kinetics of dissociation of the amyloid fibrils from wild-type hen lysozyme at 25°C in vitro as a function of pressure using Trp fluorescence as a probe. Upon 100-fold dilution of 8 mg ml−1 fibril solution in 80 mM NaCl, pH 2.2, no immediate change occurred in Trp fluorescence, but at pressures of 50–450 MPa the fluorescence intensity decreased rapidly with time (kobs = 0.00193 min−1 at 0.1 MPa, 0.0348 min−1 at 400 MPa). This phenomenon is attributable to the pressure-accelerated dissociation of amyloid fibrils into monomeric hen lysozyme. From the pressure dependence of the rates, which reaches a plateau at ∼450 MPa, we determined the activation volume ΔV0‡ = −32.9 ± 1.7 ml mol(monomer)−1 and the activation compressibility Δκ = −0.0075 ± 0.0006 ml mol(monomer)−1 bar−1 for the dissociation reaction. The negative ΔV0‡ and Δκ values are consistent with the notion that the amyloid fibril from wild-type hen lysozyme is in a high-volume and high-compressibility state, and the transition state for dissociation is coupled with a partial hydration of the fibril.  相似文献   

18.
An efficient protocol for in-vitro propagation of an important ornamental crop, Petunia hybrida Vilm. Cv. “Bravo” was developed. The explants that were used to carry out the experiment were Leaf segments, nodal segments and shoot tips. Nodal segments recorded highest per cent asepsis followed by shoot tips and leaf segments. Asepsis was found to be highest when the explants were sterilized with Fungicide (Carbendazim) 0.02% for the duration of 30 min followed by 0.1% HgCl2 for duration of 10 min and then ethanol 70% for 10 s. Longer duration of the sterilant treatment showed more necrotic effects on the explants, thus mercuric chloride treatment when given for 5 min proved to be more effective in terms of survival of the explants. Maximum establishment per cent was recorded in Murashige and Skoog (MS) media fortified with BAP (1.5 mg L−1) and IBA (0.5 mg L−1) in shoot tips and nodal segments, i.e. 97.90 and 95.74% respectively. Callus was efficiently induced and developed when PGR amalgamation of BAP (0.1 mg L−1) and 2,4-D (1.5mg L−1) was used. Kinetin at the concentration of 2.0 mg L−1 along with IBA at 0.5mg L−1 recorded highest callus regeneration in both leaf and internodal segment derived callus. Maximum proliferation percent of shoots (97.90%), highest number of shoots (20.50 explant−1) and maximum length of shoot (2.70 cm) was recorded in PGR combination of IBA and BAP both at 0.5 mg L1 concentration level. Rhizogenesis was recorded to be highest in the MS media containing IBA 1.00 mg L−1. Best hardening media which recorded maximum survival per cent 92.50% was noticed on the media formulation comprised of equal ratio of perlite and vermiculite mix, under poly house conditions.  相似文献   

19.
Marine anthozoans maintain a mutualistic symbiosis with dinoflagellates that are prolific producers of the algal secondary metabolite dimethylsulfoniopropionate (DMSP), the precursor of the climate-cooling trace gas dimethyl sulfide (DMS). Surprisingly, little is known about the physiological role of DMSP in anthozoans and the environmental factors that regulate its production. Here, we assessed the potential functional role of DMSP as an antioxidant and determined how future increases in seawater pCO2 may affect DMSP concentrations in the anemone Anemonia viridis along a natural pCO2 gradient at the island of Vulcano, Italy. There was no significant difference in zooxanthellae genotype and characteristics (density of zooxanthellae, and chlorophyll a) as well as protein concentrations between anemones from three stations along the gradient, V1 (3232 μatm CO2), V2 (682 μatm) and control (463 μatm), which indicated that A. viridis can acclimate to various seawater pCO2. In contrast, DMSP concentrations in anemones from stations V1 (33.23 ± 8.30 fmol cell−1) and V2 (34.78 ± 8.69 fmol cell−1) were about 35% lower than concentrations in tentacles from the control station (51.85 ± 12.96 fmol cell−1). Furthermore, low tissue concentrations of DMSP coincided with low activities of the antioxidant enzyme superoxide dismutase (SOD). Superoxide dismutase activity for both host (7.84 ± 1.37 U·mg−1 protein) and zooxanthellae (2.84 ± 0.41 U·mg−1 protein) at V1 was 40% lower than at the control station (host: 13.19 ± 1.42; zooxanthellae: 4.72 ± 0.57 U·mg−1 protein). Our results provide insight into coastal DMSP production under predicted environmental change and support the function of DMSP as an antioxidant in symbiotic anthozoans.  相似文献   

20.
Abstract

Several soil isolates from 1 g of soil sample were isolated and screened for the production of L-asparaginase. Primary screening was performed using rapid plate assay; dye indicator studies were conducted, and phenol red with 0.005% concentration was found to be optimum. The secondary screening was carried out using the Nesslerization method. The bacteria screened for L-asparaginase production with no glutaminase activity was identified as Bacillus subtilis. Crude L-asparaginase enzyme was partially purified 1.57 folds of purity and 110 U/mg of specific activity. The glutaminase-free L-asparaginase activity was also confirmed using LC-MS analysis. The presence of mass peaks at 147.0 in the reaction mixture suggested an absence of glutaminase activity. An optimized medium obtained comprised of Dextrose 1.5 g/L, K2HPO4 1.2 g/L, L-asparagine 15 g/L, and Tryptone 5 g/L. The highest L-asparaginase activity was observed at 6.0 pH and 30 °C. Kinetic parameters associated with biomass and L-asparaginase production were also studied. The computed values were µm 0.104 h?1, Xm 6g/L P0 1.7U/mL Pm 8.2 U/mL YX/S 4 g-cell/g-glucose µPm 0.35 h?1 qp 5.46 U/g/h YP/x 13.6667 U/g-cell. The novel bacterial isolates showed promise as a potential glutaminase-free L-asparaginase producer, which can prove to be of industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号